
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35

Kinect based character navigation in VR Game

Thi Chau Ma1, Minh Duong Hoang2,

Department of Networking and Computer Communications,
Faculty of Information Technology,

VNU University of Engineering and Technology,
E3 Building, 144 Xuan Thuy Street, Cau Giay, Hanoi, Vietnam

Abstract

VR game is a hot field because it provides practical experience for the player. However, in the game, players
are usually required attaching special equipments. Those equipments are often very expensive. Moreover, many
devices make players less flexible because they are attached to players. VR game using Kinect is a good choice
because Kinect is affordable and not attached directly to the player. In this paper, we propose a technique
of Kinect based character navigation in VR Game. As environment is supported by Kinect, we implement
character navigation by player’s hand actions. Besides, we use markers to increase the effectiveness of hand
action recognition. In our experiments, character’s rotations reaches 70% in accuracy. Straight movement and
turning reach 98% in accuracy.

Received 02 October 2015, revised 25 October 2015, accepted 20 December 2015

Keywords: Kinect application, hand recognition, VR games

1. Introduction

In the last two years, in Vietnam, the game
attracted a lot of investments and researches.
According to [1], Vietnam is the largest market
in Southeast Asia Game. However, restrictions
still exist, obviously, the solutions are still
awaited. An important factor that make the
game to be attractive is the ability of character
movements. To control the movement of the
characters, players have to touch and navigate
specialized devices to control the movements of
the characters. These devices were typically
gamepad, keyboardist, Wiimote. Besides, with
technology advances, in virtual reality games,
players no need to touch game devices. In
these games, body actions or speech were used
to control the character movement through the
special devices, such as Kinect, Virtuix Omni.

We are interested in games using Kinect
because the type of these games gives players

the flexibility and comfort while playing without
exposure Kinect. Moreover, Kinect relatively
low cost comparing with other devices such as,
head mounted devices or data gloves. Kinect-
supported games can be classified into two main
categories. In the first type, entire bodies of
players are identified to contribute and play
games like audition games [2], or collision
ball games [3]. In the second type, hand
gestures are recognized to control games [4].
In our research, we want to make use of hand
actions obtained by Kinect to navigate character
in order to give players the freedom and comfort
in playing games. However, the accuracy of the
hand action recognition and the number of hand
actions based on Kinect were limited because of
identical when recognizing different bone joints.
In this paper, we propose a solution of Kinect
based character navigation in VR Games. We
recognize hand action to navigate characters in
VR Games. Marker is glued to the hands of

28



T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35 29

players to obtain more number of hand actions
and increase accuracy in hand action recognition.
The use of glued makers does not reduce the
degree of flexibility of players.

2. Related Works

With the available and affordable Kinect,
Kinect and its applications appear a lot in the life.
First of all, we mention the applications in the
medical. Kinect provide a Software Development
Kit (SDK) which gives access to skeletal tracking
data and can be used directly in rehabilitation
game developments. So, there are lots of
physical therapy and rehabilitation applications
[5][6][7] using Kinect. These applications are
classified into 3 groups. Fall detection and
Fall risk reduction, Stroke Rehabilitation and
exercise games. In [8], authors presented a
low-cost system to surgical training for computer
assisted surgeries by utilizing dual sensors and
marker based tracking components. Markers
were patterns in the form of checkboard. By
using markers, they implemented calibration of
dual infrared sensors and point correspondence
establishment in a stereo configuration. Then
they accomplished 3D localization by multiple
back projection lines. The system was effectively
the combination of inexpensive electronic devices
and traditional tracking algorithm.

Secondly, in the VR environment, a hot and
exciting field, Kinect attracted much attention.
Kinect is one of easy ways of 3D reconstruction.
In the environment, data recognized by Kinect is
divided in two types: Human skeleton and hand
recognitions. RGBDemo [9] is an open source
software providing a simple toolkit to manipulate
Kinect data. In this software, 3D model of an
object would be rebuilt when the object are taken
with markers. 3D builder app [10] and Kinect
sensor are used to create a 3D reconstruction
for a 3D printer. Ultra Seven [11] is a game
used Kinect in AR environment. In the game,
the player is turned into a character and shot
his power. The character was modeled game
player by body recognition with Kinect. Easy
to see the above Kinect applications are based on

recognition of human skeleton.
Another type of Kinect applications is based

on hand actions [12][13][14]. In [12],
authors accurately reconstructed complex hand
poses across a variety of subjects using Kinect.
The system allowed continually recovering from
tracking failures. Matthew Tang [13] showed
a novel method for recognizing hand gestures
using Kinect sensor. In the approach, they
recognize ’grasp’ and ’drop’ gestures with over
90% accuracy. In her thesis [14], Yi li used
K-means clustering and Graham Scan algorithm
to recognize nine popular gestures and counting
numbers. Kinect data range was between 0.5m
to 0.8m. Hands were distinguished from the
background by depth information.

In Kinect applications in particular and
recognitions in general, Marker is an effective
tool. Marker is a very simple sticker, usually
in the form of checker board pattern. Marker is
popular in modeling by its simple manipulation
and efficiency. Checker board pattern has been
using in camera calibration [15][16][17] to
reconstruct 3D model from 2D images. Checker
board pattern is also use in Kinect calibration
[18] to align depth camera and RGB camera.
Marker help robot to detect path to navigate.

In this paper, we want use hand actions from
Kinect to control the movement of character in
VR game. We utilize marker to detect hand
actions easily and accurately.

3. Proposed method

In this paper, we propose a Kinect-based
navigation technique in VR game. In the
game, we use a Kinect sensors to obtain
player’s hand actions. The players navigates
characters using actions only on one hand. The
character’s actions include straight movement,
turning (left/right) and rotation. We chose these
action in implementation because hand gestures
are meaningful to people. So, learning and
using hand gestures are easy. Moreover, in the
game, most free parts of body but hand makes
player more comfortable. In technique term,
the problem is more focus. Meanings of these



30 T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35

actions are described clearly as follow. Straight
movement is character goes forward/backward.
Turning is character turns left/ right. Rotation is
character rotates his body left/right or up/down to
observe the scene. This action changes eye view
to make decision of other actions. The player’s
thumb finger is worn marker for determining
the exact location, and recognizing of complex
hand gestures as well. In addition to character
navigation, the player can also use the hand
to perform other actions in the game such as,
shooting, and selection.

Firstly, we define some parameters later used
in the process of navigation. Root is player’s
neck joint (Fig 1) on player’s. Rootdepth is the
distance from Kinect sensor to root. Handdepth

is the distance from Kinect sensor to the wrist
joint of the hand. HandX is the wrist joint in
horizontal direction in acquired image. RootX

is root in horizontal direction. StraightVector
is a vector showing straight direction of the
character. OrthVector is a vector orthogonal to
straightVector on the left. StraightSpeed and
OrthSpeed are speed vectors in movements.

We defined three types of navigation: straight
movement, turning (left/right) and rotation
corresponding to the following actions:

• Straight movement: move the wrist towards
or away from the root. The change of the
distance from the wrist to the root decides
the direction (forward/backward) and speed
of movement.

• Turning: change the wrist to left or right
while distance between the wrist and root
does not change.

• Rotation: rotate the wrist. The changed
angle decides the speed of rotation.

These actions are determined by comparing
the position of wrist with root and rotation of
marker glued on a thumb finger. In detail,
navigation technique includes three main steps
(Fig 2): parameter setup, hand marker tracking,
and navigation estimation. In parameter setup,
players are asked to stand or sit in front of
the Kinect sensor for a while to obtain some

Fig. 1: Kinect skeleton

measurements such as, root position and hand
depth. These measurements are utilized to
calculate character’s speed and acceleration. In
hand marker tracking, we use emguCV [19]
and POSIT algorithm [20] to determine marker
and its’ rotation. Then, above defined actions
are recognized. Finally, we perform navigation
estimation by recognized actions.

4. Implementation

4.1. Parameter setup

At the beginning process, player is required
to stand in front of Kinect to collect initial data
about root and wrist joint position. Player simply
need to be in the pose such that Kinect can see
his root and wrist joint position. Player wears a
marker in front of fist. In order to track rotation
easily, we should use marker in the form of
checker board. We define some stand distances
by the initial depth data as follows:

• InitDistS traight = HandDepth − RootDepth

• InitDistOrth = HandX − RootX

• HandRangeS traight = Max(HandDepth) -
Min(HandDepth)

• HandRangeOrth = Max(HandX) -
Min(HandX)



T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35 31

Fig. 2: Overview method process

4.2. Hand and marker tracking
Hand tracking is processed by using Kinect

SDK. To detect marker, we process RGB image
from Kinect to get contours fitting for 4 vertices.
After that, camera is calibrated in stardard form,
and data of marker is extracted in the form of a
2D matrix.

4.2.1. Skeleton tracking
The skeleton tracking feature of Kinect is used

to get hand position. This process has two
stage: first computes a depth map (using structed
light), then infers body position (using machine
learning). At first stage, the depth images are
all computed by the PrimeSense hardware built
into Kinect. Pixels in a depth image indicated
calibrated depth in the scene, rather than a
measure of intensity of color. Depth images
offer several benefits, such as working in low
light levels, giving a calibrated scale estimate,
being color and texture invariant and resolving
silhouette ambiguities in pose.

The depth image received from previous stage
is transformed to body part image by using
randomized decision forest. This tree is learned
from 100,000 depth images with known skeleton

and theirs derivations. After classifying image
into body parts, this information is pooled to
generate the position of 3D skeletal joints. The
mean shift algorithm is used to compute modes of
probability distributions. By using this algorithm,
the densest region of body part is extracted. For
more detail information, please read [21].

4.2.2. Marker tracking
The marker detection has three main steps.

First, the contour detection algorithm[22] is used
to detect all quadrangle. To normalize the marker
image, the input image must be unwarp by
using perspective transformation. The estimated
transformation will transform the marker the
square form to extract data from it. In the
implementation, we use simple marker 5x5 bit.
For each normalized quadrangle, the image is
divided into cells. The data of each cell is decided
by the number of white pixels; if the number
of white pixels is greater than the number of
black pixels then the cell’s value is 1, otherwise,
the value is 0. After comparing the candidate
marker’s value with the real marker’s value, the
marker is recognized.

4.3. Navigation estimation
4.3.1. Forward, backward

When playing, player do hand actions.
While distance between wrist joint changes, the
character moves straight away. If the distance
increases, character moves forward. Otherwise,
character moves backward. The estimataion of
straight speed is shown in Algorithm 1.

At each frame, the depth distance between
Hand and Root depthDistance is calculated
and the difference between current pose and
initial pose rawVertical is obtained. If
rawVertical is greater than minimum distance
minDeltaS traight, rawVertical is converted into
range [0, 1] and assigned to scaledVertical.
Otherwise, scaledVertical is 0. After that, the
speed vector of forward movement is calculated.

4.3.2. Left, right
We use horizontal distance between root

and wrist joint to control character turning (
Algorithm 2).



32 T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35

Algorithm 1: Estimate forward/backward

depthDistance← RootDepth - HandDepth1

rawVertical← (depthDistance − InitDistS traight)2

if rawVertical > minDeltaS traight then3

scaledVertical← rawVertical / HandRangeS traight4

else5

scaledVertical← 06

StraightSpeed← StraightVector × playerMaxS peed × scaledVertical7

Algorithm 2: Estimate Left/right movement

orthDistance← HandX - RootX1

rawHorizontal← orthDistance − InitDistOrth2

if rawHorizontal > minDeltaOrth then3

scaledHorizontal← rawHorizontal / HandRangeOrth4

else5

scaledHorizontal← 06

OrthoSpeed← OrthoVector × playerMaxS peed × scaledHorizontal7

The horizontal distance between Hand
and Root orthDistance is obtained and the
difference between current pose and initial pose
rawHorizontal is calculated by subtract current
orthDistance to InitDistOrth. If rawHorizontal
is greater than minimum distance minDeltaOrth,
rawHorizontal is converted into range [0, 1]
and assigned to scaledHorizontal. Otherwise,
scaledHorizontal is 0. After that, the speed
vector of left movement is calculated.

4.3.3. Rotation
Player rotates the wrist to control character

rotation. The marker is rotated follow the hand.
By using Coplanar POSIT algorithm [20], the
estimated angle can be inferred into 3 axis angles
(ie. yaw, pitch, roll). The estimated roll angle
is used to rotate left, right, and the pitch angle
decide to rotate player up or down. After
that, each frame add amount of angle to user’s
quaternion to change the rotation angle of player
(Algorithm 3).

Firstly, the left/right rotation is measured.

By tracking marker, the marker rotation state
markerS tate is estimated. The estimated rotation
and translation matrix HomoMat is calculated by
coplanar POSIT algorithm. After extract yaw,
pitch, roll angle, the markerS tate is checked.
If marker is in FRONT state and roll angle is
greater than minimum angle to rotate minAngleX ,
axisX is obtained by normalize roll angle into
range [0, 1]. If marker is in LEFT , RIGHT state,
the axisX is respectively 1 and −1. The up/down
rotation is measured by using pitch angle instead
of yaw angle because of the instability of yaw
angle estimation. If pitch angle is too small then
player does not rotate. Because the value of pitch
is the same when marker rotate up and down, the
value of roll and yaw is checked to infer whether
player want to rotate up or down. If roll and
yaw less than 90, player wants to rotate up; and
otherwise, player rotates down. After normalized
axisX and axisY , the rotation speed of each frame
∆angleX and ∆angleY are calculated.



T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35 33

Algorithm 3: Estimate rotation

axisX ← 0, axisY ← 01

markerS tate← Extract(markerData) %2

detect marker on thumb figure %
HomoMat← CoPOS IT (source, des) %3

extract homography matrix %
(yaw, pitch, roll)← Extract(HomoMat) %4

determine yaw, pitch or roll %
if markerS tate==FRONT then5

if Abs(roll) > minAngleX then6

axisX ← roll/maxAngleX7

else8

axisX ← 09

else10

if markerS tate==LEFT then11

axisX ← 112

else13

axisX ← −114

pitch← pitch + 9015

if pitch < minAngleY then16

axisY ← 017

else18

if roll < 90 and yaw < 90 then19

axisY ← Abs(pitch)/maxAngleY20

else21

axisY ← −Abs(pitch)/maxAngleY22

∆angleX ← axisX × dampling × TimeFrame23

∆angleY ← axisY × dampling × TimeFrame24

5. Evaluation

To prove the effectiveness of the proposed
method, we experimented on several routes (Fig
3). These routes are in the shapes of lines,
triangulations, rectangles, hexagons. Each route
estimated minimum number of movement actions
(ie. forward, backward, left, right) and rotation
(ie. left/right, up/down) actions to complete each
test (Fig 4). We compare the time to complete
test of this method to keyboard/mouse method
(Table 1). Though, our proposal’s runtime has not
reached those of using keyboard/mouse. In small
games including mainly character’s movement,
our runtime is acceptable. The proposed method

Fig. 3: A test map

Fig. 4: A test

works well with simple movement action, such
as forward, backward, left, right; however, the
accuracy of movement is decrease a bit with
compound movement actions like forward-left,
backward-left, etc. According to table 2, the
accuaracy of up/down rotation is lowest because
of shadow and errors of estimation algorithm.

Each test is defined by a sequence of
movements and rotations. An error is defined
as follow: ”when user sends control a signal,
the responding result is not corrected or the
responding time is over a time threshold, then
an error is occurred”. In order to calculate
the accuracy, we experimented each test several
(around 20) times. The experimenters do
the sequence of actions as definition of the
test in order to reach the final destination.
For each sending signal, if the responding
movement/rotation is incorrect or the responding
time is too long (the time threshold is 1 second),
then it is counted as an error. The accuracy
is calculated by the percentage of the number
of corrected actions overall the number of all
actions, where number of corrected actions equals



34 T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35

to the subtraction between the number of actions
and the number of errors.

We applied Kinect based character navigation
in Maze Game and Haunted House Game. In
Maze, we navigate character finding his way to
get destination. In Haunted House Game, we
navigate character escaping from a ghost’s chase.

Table 1: Comparison of detection time
reductions.

Route name Movement / Time (keyboard/

Rotation our method)
Movement 12 / 0 55.3s/38.2s

Test
Rotate 0 / 2 6.2s/4.6s

Left/Rightt
Rotate 0 / 2 20.1s/4.7s

Up/Down
Triangle 2 / 2 44.8s/21.1s

Rectangular 4 / 4 25.6s/16.5s
Hexagons 8 / 8 34.0s/20.1s

Table 2: Accuracy of character navigation

Route name Movement Rotation Error
Movement 12 0 3%

Test
Rotate 0 2 2%

Left/Rightt
Rotate 0 2 30%

Up/Down
Triangle 2 2 4%

Rectangular 4 4 2%
Hexagons 8 8 3%

6. Conclusions

In the paper, we proposed a technique to
navigate characters by hand actions in VR game.
A Kinect was used to obtain the hand actions.
In this technique, we also suggested using the
marker attached to the player’s hand to increase
the accuracy of hand action recognition. So, we

not only take advantage of low-cost device but
also enhance flexibility for players. accuracy of
straight movement is up to 98%. Rotate left / right
test also gives high accuracy, but rotate up/down
have low accuracy. We deploy our solution in
some realtime games such as finding short route
in Mazes, finding way to escape the haunted
house.

In the near future, we study deeply recognition
techniques to enhance the accuracy of
recognizing rotation, especially the accuracy
of rotate up/down. We also think about how to
improve running time to apply our method in
many kinds of VR games. Beside that, more
gestures can be defined to control not only the
navigation but also game actions (ex. jumping,
shooting, interacting, etc.) by using hand finger.
Moreover, by using Kinect, the action in game
can be defined by body action; this makes the
games more interactive and interesting.

Acknowledgments

This work has been supported by VNU
University of Engineering and Technology, under
Project No. CN.15.02

References

[1] http://www.vnu-itp.edu.vn/en/news/market/178-viet-
nam-hien-nay-la-thi-truong-game-lon-nhat-khu-vuc-
dong-nam-a.html.

[2] D. C. (series), Mtv games, , Microsoft Game Studios.
2011.

[3] Kinect adventures, . Microsoft Game Studios, 2010.
[4] http://www.metacritic.com/game/xbox-360/angry-

birds-trilogy.
[5] A. M. L. D. C. V. L. M. Khademi, H.

Mousavi Hondori, S. C. Cramer, Comparing direct
and indirect interaction in stroke rehabilitation, .in
Proceedings of the Extended Abstracts of the 32nd
Annual ACM Conference on Human Factors in
Computing Systems 2014 1639–1644.

[6] L. D. S. C. M. Khademi, H. M. Hondori, C. V.
Lopes, Comparing ’pick and place’ task in spatial
augmented reality versus non-immersive virtual reality
for rehabilitation setting, .inAnnual International
Conference of the IEEE Engineering in Medicine and
Biology Society 2013 4613–4616.

[7] H. M. Hondori, M. Khademi., A review on
technical and clinical impact of microsoft kinect on



T. C. Ma, M. D. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2016) 28–35 35

physical therapy and rehabilitation, Journal of Medical
Engineering 2014.

[8] W. L. Hongliang Ren, A. Lim, Marker-based surgical
instrument tracking using dual kinect sensors, IEEE
transactions on automation science and engineering.
2014.

[9] http://rgbdemo.org/index.php.
[10] http://windows.microsoft.com/en-us/windows-8/apps-

windows-store-tutorial.
[11] https://code.google.com/p/kinect-ultra/.
[12] T. Sharp, et. al., Accurate, robust, and flexible real-

time hand tracking, Best of CHI Honorable Mention
Award 2012.

[13] M. Tang, Recognizing hand gestures with microsoft’s
kinect, CS228 2011.

[14] Y. Li, Hand gesture recogniton using kinect, Master
thesis 2012.

[15] Z. Zhang, A flexible new technique for camera
calibration, IEEE Transactions on Pattern Analysis and
Machine Intelligence 22 (2000) 1330–1334.

[16] P. F. Sturm, S. J. Maybank, On plane-based
camera calibration: A general algorithm, singularities,

applications, International Conference on Computer
Vision 1999.

[17] J. Heikkila, O. Silven, A four-step camera calibration
procedure with implicit image correction, CVPR,
IEEE Computer Society 1997 1106–1112.

[18] U. N. Carolina Raposo, Joao Pedro Barreto, Fast
and accurate calibration of a kinect sensor, 3DV-
Conference (2013) 342 – 349.

[19] http://www.emgu.com/.
[20] D. F. D. Denis Oberkampf, L. S. Davis., Iterative pose

estimation using coplanar feature points, Comput. Vis.
Image Underst. 1996 495–511.

[21] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp,
M. Finocchio, R. Moore, A. Kipman, A. Blake,
Real-time human pose recognition in parts from
single depth images, in: Proceedings of the 2011
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’11, IEEE Computer Society,
Washington, DC, USA, 2011, pp. 1297–1304.

[22] S. Suzuki, K. Abe, Topological structural analysis of
digitized binary images by border following 30 (1)
(1985) 32–46.


