
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 43-48

43

An Efficient Log Management System
☆

Tran Van Cuong, Nguyen Van Nam*

Vietnam National University, Hanoi Capital City, Vietnam

Abstract

Server monitoring is really necessary because this can help administrators to track users’ activities in order

to improve user management ability, load balancing as well as to detect DDoS attacks. Usually, server

monitoring is based on logging. However, logging system is always considered to be expensive in term of

storage, data collection, data searching and analysis. In this paper, we introduce eLMS, an efficient and scalable

log management system. In our system, the log files can be collected from multiple servers, stored in a scalable

manner, appropriately indexed and fast analysed. eLMS acts both in online and off-line modes and provides a

practical web-based monitoring interface. eLMS is based on a famous open-source core called ELK including

three main modules: ElasticSearch, LogStash and Kibana. However, by using queue and streaming technique

instead of uploading technique used in LogStash, eLMS is tested to be at least ten times faster than existing ELK.

Received 01 December 2015, revised 30 December 2015, accepted 09 January 2016

Keywords: Log Files, Big Data, Streaming, Index and Search.

1. Introduction

*

Today, server monitoring becomes

important and essential for most of the IT

companies and organizations. This can help

administrators not only to protect the server

from the outside attacks such as DDoS but also

to tract customer's activities and hobbies in

order to improve individual service providing

ability. In fact, server monitoring focuses

mainly on log file processing. These are

considered to be big data in terms of volume,

variety and velocity. In fact, logs exist under

different formats such as log file, xml, meta-

data, etc. Moreover, log also grows very fast

during the time.

The log management is also a big data

application which is often based on Hadoop

platform. However, Hadoop primarily supports

☆

This work is dedicated to the 20th Anniversary of the IT

Faculty of VNU-UET
*
 Corresponding author. E-mail: van.nam@vnu.edu.vn

large-scale systems such as Google, Yahoo, ...

For small and medium-sized systems, Hadoop

becomes expensive and impractical to

implement. Moreover, Hadoop is not fast

enough for on line data processing.

In this paper, we present a novel and

efficient log management system (eLMS). This

is a light system that can be used for online

processing and is really beneficial for small and

medium companies and organizations. The

system is also extensible for future use in large

scale platforms.

eLMS log management system is based on

three open source projects: Logstash,

Elasticsearch and Kibana of Elastic technology

platform. Logstash is used to transport content

and structure of data logs. Elasticsearch is

responsible for data indexing and providing the

ability to full-text searching.

To build eLMS, we gradually optimize

different modules from Elastic platform. Firstly,

we simplify the data queue of the system to

reduce the consumption of computer resources

T.V. Cuong, N.V. Nam / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 43-48

44

such as CPU and RAM. Secondly, we propose

several techniques to read log from individual

server. Thirdly, we apply some strategies for

data indexing in database. Fourthly, we

improve mechanisms of filtering, formatting

and data tagging.

The rest of our paper is structured as

follows. Section II presents background of logs

and some difficulties in log processing. Section

III provides an overall view of log management

systems. In section III, we introduce related

works of log processing systems. In section IV,

we propose our efficient log management

system named eLMS. Our experiments is

presented and discussed in section V. Finally,

section VI concludes our work and states

several future works.

2. Background

2.1. Log overview

Log [3, 6] is a record of events that are

occurred within the network system of an

organization. This is considered as a black box

to reflect the status of the system. It records

everything that happens on the system in a

detail manner. Log allows us to know what the

system has done well as which problems occur.

Log is generated from most of the activities

and behaviors of the systems. For example, the

events of the router, firewall, database

transactions, the attacks, the connections, the

activities of the users, etc. There are many

sources that can generate logs. Moreover, there

are also many log types. For example, the log

files of the host such as Unix, Linux, Windows,

VMS, etc. is completely different from the log

of network equipment such as switch, router.

Similarly, the log of information security

applications such as firewall, IDS, anti-DDoS

equipment, defense systems, etc. is also very

different from both host log and network log.

A log line that is generated by computer is

often comprehensible by human. The content of

most of the logs is structured as follows:

LOG = TIMESTAMP + DATA

where Timestamp represents the time when

the event happens. Data contains the content

that includes all the information about the valid

and invalid events which was happened in the

system [3].

How can we find those which are not

allowed and how can we learn the mistakes of

the past from log to predict the future? Can we

expect to search in every gigabyte of log files to

identify those activities that are not allowed to

happen? The answer lies in the necessary

issues of centralized log processing systems.

2.2. Log life cycle

We can see that there are many centralized

log integration products with variety of

processing architecture that meet different

management needs. Basically, they have the

same life cycle [10] as in Fig. 1 that including

six main steps:

● Step 1: The application generates log

files: An event is generated by an application.

The life cycle begins when a data log is

recorded and stored on a server. In most cases,

it will be a single line written to a text file.

● Step 2: Data collection by shipper: The

logs are collected by the shipper and sent to

the message broker. The shipper will look up

for log files and retrieve new data to send

them to the message broker or push them

directly to the parser.

Figure 1: Log Life Cycle.

T.V. Cuong, N.V. Nam / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 43-48 45

● Step 3: Logs are temporarily queued:

Since logs are collected from multiple sources

and theses can generate a huge amount of data.

Then, the processes such as data analysis,

extraction and formatting in the parser can not

keep up data collection process which causes

data loss. In that case, we will have to place an

intermediate module which acts as a queue,

temporary data storage and allows the

sequential data processing of the parser.

However, the continuous reading and deleting

operations in the parser is time-consuming,

leading to systems with certain lag

2.3. Centralized Log Management Difficulties

In an organization which uses multiple

operating systems (Linux, Windows, Mac OSX,

etc), the software’s services and other

applications generate log and store them in

multiple formats. This causes difficulties in log

management focusing in the following

fundamental issues [4,6]:

Multiple log sources: There are many

sources of logs to be processed. They are

located on different servers within the

institution. Moreover, in a source log, there may

be hundreds of log files with different contents

and sizes.

Heterogeneous log content: Each type of

log sources has different values. Assuming the

first log contains an IP address, but no user

name, while the second log has a user name but

does not contain the IP address. This situation

leads to the difficulties in linking the records

together because we do not have the records

containing common values.

Heterogeneous log format: There are many

types of log sources using different formats

such as syslog, databases, SNMP, XML, binary

files, meta-data, resulting in difficulty of

standardization for all structures of logs.

Log protection and transmission: Logs need

to be protected to ensure the confidentiality and

integrity and need to be always ready for the

investigation. Therefore, log needs to be

transmitted over a secure channel to the storage,

and must have a separate channel to ensure

operational readiness.

2.4. Real-time Log Management Difficulties

As we already know, logs can be seen as

big data which is normally held by volume,

velocity and variety. The log processing in real

time is considered very complicated and

difficult. Firstly, the system must be able to

collect real-time data from the input data stream

at a rate of millions of messages per second.

Secondly, it is necessary to perform parallel

data processing tasks as soon as it is collected.

Thirdly, we must have methods to filter the data

to extract and refine the meaningful

information. Besides, the data have to be

restructured to a common format [2,6].

3. Related works

Over the last years, to overcome the above

difficulties, many log management system have

been proposed including Hadoop, Splunk and

ELK (ElasticSearch-Logstash-Kibana). Hadoop

[9] is usually used for high scale system such as

Google, Yahoo, etc. The framework is opened

for many third-party plugins. However, the

framework requires a master node and lots of

distributed slave nodes with high performance.

Hadoop is therefore not really efficient for light

and centralized log management system.

Splunk [7] is a closed log management

system. It offers paid services such as data

storage, analyzing, searching and visualization.

With Splunk, end-users do not aware of the

system's underlying infrastructure, operations

and managements. However, in this case, the

confidentiality and integrity of logs are

questionable that worrying users.

ELK [8] (Fig. 2) is a simple open source log

management system. ELK contains several

fundamental modules of a log management

system. Firstly, LogStash [1] is responsible for

log collection from multiple sources. Due to the

heterogeneous content, logs are then tagged

and/or filtered. Log tagging is a process in

which log file format can be identified thanks to

several key words detected in its content. Log

filtering is a process in which each log line is

extracted in to data field. Thus, LogStash inputs

T.V. Cuong, N.V. Nam / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 43-48

46

heterogeneous log files from multiple log

sources and outputs structured log data so that it

can be stored in a database.

Secondly, ElasticSearch is used for log data

indexing and storing. As in many other large scale

systems, ElasticSearch uses inverted index

technique. This means that ElasticSearch stores

not only the log content but also the reference to

the location of the content. This technique aims to

accelerate log content searching.

Finally, Kibana is a web-based interface

which analyzes and visualizes searching log.

Kibana offers also different options to data

graphical representation.

In general, ELK is centralized and much

more compact than Hadoop. ELK ensures the

confidentiality and integrity of log data since

this must not be sent to third-party servers to

process. ELK provides also the basical

functions of a log management system.

However, in ELK, when loading log file from

multiple sources to a central server, LogStash

usually causes a dead-lock. Thus, these

three systems can not be used to fully address

all the problems of a centralized log

management system.

4. Efficient Log Management System (eLMS)

In this section, because of its certain

advantages, we aims to build a novel

centralized log based on ELK which is called

eLMS (i.e efficient Log Management System).

In this system, we propose two models to avoid

the dead-lock problem of ELK. The first one,

we use streaming technique [4] instead of

uploading technique in LogStash so that the log

data can be loaded to ElasticSearch in nearly

real time. This is called the single source

model. In the second model, we replace

LogStash with a better queue, so that log files

from multiple sources can be cyclic queued

without causing loading dead-lock.

4.1. Single source model

In this model (Fig. 3), eLMS shipper

pushes log file directly to the eLMS-parser by

the use of in-streaming technique. In this

approach, instead of sending a large log file

which may cause the dead-lock, we partition the

file in to small pieces, store them in a buffer

and frequently send them to the eLMS-Parser.

Then, eLMS-parser is responsible for log

filtering according to business rules. eLMS-

parser is also used for log data tagging based

on a data mining model. This model helps us to

predict log source such as Linux, MacOS,

Windows, etc.

We also develop a Data Access library

that provides API to access to ElasticSearch

(ES). Our system inherits the two modules

ES (ElasticSearch) and Dashboard (Kibana)

from ELK.

4.2. Multiple source model

In the multiple source model (Fig.4), we

replace LogStash in ELK with a novel queue

(Message Queue) so that eLMS can receive log

Figure 2: The ELK architecture [8].

Figure 3: Single source model.

T.V. Cuong, N.V. Nam / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 43-48 47

from multiple sources without causing dead-

lock. The queue can be Kafka [5]. This is a

message cycle. Kafka uses Zeokeeper [6] as a

message buffer. Kafka acts as a central data

backbone so that it can handle hundred

megabytes of reads and writes per second from

thousands of clients.

Kafka message queue partitions messages

in categories called topics. Each partition is an

ordered sequence of messages. Kafka uses a

parallelism instead of asynchronous ordering

technique. Therefore, it has stronger ordering

guarantees than traditional messaging systems.

5. Model evaluation

In our works, we have built the single

source model for testing. We use a laptop

Lenovo X230, Core i7, CPU: 3.4 GHz, RAM:

8G to run the program. We first generate

random data with 15 fields with different

volumes (1MB, 2MB, etc.). Then we calculate

the running-time of eLMS and ELK from

inputting log files to the system until

visualizing the results in Kibana. The

evaluation results can be found in Fig. 5. In this

figure, the vertical axis represents the running-

time and the horizontal axis represents the size of

log files. The blue columns display the running-

time in ELK while the red ones represents that of

eLMS. The figure shows that the eLMS runs

much faster than the ELK. Up to 100MB of log

file size, we can see that eLMS is at least 10 times

faster than ELK. Althouth, the evaluation data is

of not very large size, we can see that our

improvements in eLMS are significant.

6. Conclusion

In this paper, we present the difficulties of a

centralized log management system. We also

explain certain systems that are recently

proposed in literature. We find that, ELK is the

most basic system and can be extended to

address the above issues. However, ELK causes

dead-lock when using LogStash with muliple

sources. ELK is really slow since LogStash is

based on uploading technique for log file

collection. We have built therefore a new

system which is based on ELK called eLMS to

avoid this dead-lock in order to accelerate the

system. Our system uses streaming technique

and an additional queue.

We have implemented eLMS. From the

evaluation results, eLMS is much faster than

ELK. In the future, we aims to continue testing

eLMS with larger log file sizes and with both

proposed models.

References

[1] James Turnbull. The Logstash Book. Version

v1.4.3. Published By You Lulu Inc. 2014.

Figure 4: Multiple source model.

Figure 5: Running-time comparison between

eLMS and Elastic (ELK).

T.V. Cuong, N.V. Nam / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 2 (2016) 43-48

48

[2] Patricio Córdova. Analysis of Real Time

Stream Processing Systems Considering

Latency. University of Toronto

patricio@cs.toronto.edu. 2015.

[3] Peter Matulis, Centralised logging with rsyslog.

Canonical, 2009.

[4] Radomır Sohlich, Jakub Janostık, Frantisek

Spacek. Centralized logging system based on

WebSockets protocol. 13th International

Conference on telecommunications and

informatics, Istanbul,Turkey, 2014.

[5] Jay Kreps , Neha Narkhede , Jun Rao. Kafka: a

Distributed Messaging System for Log

Processing. LinkedIn Corp, 2015.

[6] MIT College of Engineering University of

Pune. Real Time Generalized Log File

Management and Analysis using Pattern

Matching and Dynamic Clustering.

International Journal of Computer Applications

(0975 8887) Volume 91 - No. 16, April 2014.

[7] Johnvey Hwang. 2009. Splunk, innovation behind.

In Proceedings of the Symposium on Computer

Human Interaction for the Management of

Information Technology (CHiMiT '09). ACM,

New York, NY, USA, , pages.

DOI=http://dx.doi.org/10.1145/1641587.1814304

[8] Alberto Paro. 2013. Elasticsearch Cookbook.

Packt Publishing

[9] Tom White. 2009. Hadoop: The Definitive

Guide (1st ed.). O'Reilly Media, Inc..

[10] Alien Vault, Life Cycle of a Log, 2014,

https://www.alienvault.com/doc-

repo/usm/security-

intelligence/AlienVault_Life_cycle_of_a_log.pdf

