
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41

Reducing Startup Time in MP4 On-demand Video Streaming
Services with Movie Atom Caching

Xuan Tung Hoang∗, Tien Thanh Nguyen
VNU University of Engineering and Technology, Hanoi, Vietnam

Abstract

This paper points out negative effects on quality of experience of video streaming sessions caused by metadata
atom in MP4 movie files. Based on experiments, it is shown that the duration for downloading metadata atom could
be relatively large for high-quality full-length movie videos. This leads to noticeable and disturbing startup delay to
users when watching MP4 movies online. According to our model of user behavior, such a long startup delay could
result in a large number of ”leaving users” who abandon their video streaming before videos start to play. In order
to reduce the startup delay and the portion of users who leave video sessions early, we present a mechanism, called
Movie Atom Caching, that reuses previously downloaded metadata atoms or proactively downloads and caches
movie metadata atoms at video players before users actually play the video. The mechanism is implemented in
our video streaming prototype system. Experiments on the system show that, in typical cases, user experience is
significantly improved as startup delay is cut down.

Received 05 December 2015, revised 22 December 2015, accepted 31 December 2015

Keywords: Multimedia Streaming, MPEG-4, MP4, User Experience.

1. Introduction

MPEG-4 part 14, or MP4, is currently one
of the most popular container formats for video
contents because of it flexibility and extensibility
in combining different timed media information
into one compact file format. MP4 is currently
used as the standard video format in modern
smart phones, handheld computing devices, and
video capture devices. Streaming MP4 videos
over HTTP is also possible just by simply hosting
relocated MP4 files in web servers [1, 2]. Such
a simple streaming mechanism allows easy-to-
deploy streaming services, e.g. Youtube or
Facebook Video, and lead to popularity of MP4
streaming application on the current internet.

According to [3], an MP4 stream is a
hierarchical structure of data units called atoms
(or boxes). In general, a video can be

∗ Corresponding author. Email: tunghx@vnu.edu.vn

decomposed into two parts, multimedia data and
metadata. The former, real multimedia data, is
contained in mdat atom. The latter, metadata,
is stored in moov atom which in turn contains
smaller atoms such as trak, stsd, stss, stts, stsz
that are important for parsing and decoding data
in mdat. As a result, playback of an MP4
stream can be started only after moov atom is
successfully received. This leads to a playback
startup time and the size of moov atom is crucial
factor of the startup delay.

The size of moov depends on a number of
parameters including frame rate, rate of I-frame,
and duration of video file. Table 1 summarizes
measurements on bit rate and moov atom size of
sample mp4 files. The first file is the original
one, and other files are processed from the first
one. Particularly, the second file is a scale-down
version of the original one; the third file and the
forth file, respectively, are the first half and the
first quarter in time duration of the second file.

33



34 X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41

Table 1: Size of moov atom of sample video files

File
index

Duration
(hh:mm)

Frame
size
(W × H)

bit rate
(Kbps)

moov
size
(KB)

1 2:10 1280 × 536 2935 4167

2 2:10 720 × 301 917 4027

3 1:05 720 × 301 917 2022

4 00:33 720 × 301 917 1028

Other parameters such as frame rate and rate of I-
frames are identical for all the files. Specifically,
frame rate is set at typical values of 25 frames
per second and I-frame rate is 1 I-frame for every
50 frames.

Results in Table 1 reveal that while startup
delay, due to downloading moov atom, could
be negligible for short video clips, the startup
time is noticeable in long videos and could have
bad effects on user experience. For example,
when each file in Table 1 is downloaded over an
optimized network connection whose throughput
is approximately equal stream’s bit rate, the time
periods for downloading corresponding moov
atoms are 11 seconds, 35 seconds, 18 seconds,
and 9 seconds, respectively. As presented in
[4, 5], such long startup delays have negative
impact on viewers convenience and is considered
as poor quality of experience.

In this paper, we derive a model that captures
characteristics of impatience of users who watch
video-on-demand service on the internet. Such
a model is useful in finding out percentage of
users who quits waiting for videos because of
long startup delay. To alliviate bad effects of
startup delay, a simple mechanism called Movie
Atom Caching, or MAC, is presented. MAC
simply caches moov atoms of MP4 files that it
knows, or even prefetches them, for being able
to start video playback without download moov
atoms from servers. Such a simple mechanism is
relatively simple to implement yet very efficient
in reducing startup time of MP4 streaming. In

our implementation, at client side, we integrate
MAC mechanism into FFplay, an opensource
video player in FFmpeg tool suite [6]. At server
side, a daemon application runing in background
will automatically split moov atom headers from
the MP4 files for ease of prefetching and caching.
There could be other choices for implementing
MAC in real system such as developing plugins
for other opensource video player like VLC
[7], and integrate server side components with
a web application stack (for example, LAMP
[8]). Thanks to its simplicity, developing MAC
in that way will be equally easy as hosting MP4
files on web servers. The mechanism, MAC,
can be deployed in Linux server (CentOS 6.x)
and both Linux and Windows clients. It is
benchmarked against other streaming methods
including progressive download [2] and HLS [9].
Our initial experimental results show that MAC
can greatly improve user experience and startup
much faster than other protocols.

This paper is organized as follows:

• In Section 2, we analyse effects of startup
delay based on modeled user behaviors and
pattern of user requests.

• Implementation of our proposal for solving
startup delay problem, Movie Atom
Caching, is presented in Section 3.

• Performance evaluations are presented in
Section 4 to show efficiency of our
MAC mechanism.

• We place our work in the context of
related work in Section 5 and discuss our
outstanding issues and future works together
with conclusions in Section 6.

2. Effects of startup delays

2.1. System and user behavior models

We consider a system in which there is a single
server hosting a MP4 movie. Users’ requests
for viewing the MP4 file come to the server
sequentially according to a random process.
When a user request is served, it follows the state



X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41 35

Fig. 1: User behavior state diagram.

diagram shown in Fig. 1. Particularly, after a
request reaches the server, the user enters state
S 0 at which the movie atom is fetched. From S 0,
the user either moves to state S success, at which
he has successfully retrieved the atom and can
retrieve movie frames for playing, or moves to
state S f ailure if user gets impatient and quits from
waiting for atom.

Illustration shown in Fig. 1 describes that
behavior of users in the system model. At time
0, when a user request is processed, the server
starts sending moov atom header of the MP4 file
to client application. This will take a period
of TA for the atom to be completely sent. If
a user waits for the atom up to atom download
time, or startup delay TA, he will move from
state S 0 to state S success and stays there while
enjoying video playback. If a user, because
of impatient, stops waiting for the atom after
waiting time t, t < TA, he will move from S 0 to
S f ailure. The fraction of users having such ”early
quiting” cases is called streaming failure rate, F,
and it is directly influented by startup delay TA.
In other words, F can be used to evaluate bad
effects of startup delay on user experience and
system performance.

Let waiting time is a random variable whose
probability density function (pdf) is pw(t). pw(t)
is probability that a user quits waiting for
atom at time t since he starts download movie
atom. That probability density function can be
used to model impatience of user according to

the following observations:

• If pw(t) is ascending, then user is patient
since when t is small, the user is not as easy
to quit as he is when t is high.

• Similarly, descending pw(t) means user is
impatient.

• The more slowly pw(t) increases, the more
patient user is.

• The more rapidly pw(t) decreases, the more
impatient user is.

Modeling user behavior with function pw(t)
can help in quantitatively pointing out how
reducing startup delay can help in decreasing
percentage of users who quit waiting for
videos during startup delay. In the following
subsections we investigate several models of user
impatience pw(t) and figure out streaming failure
rate F accordingly.

2.2. Simple model of user behavior

As a simple model that captures user behaviors,
ones can let the waiting time t an exponential
random variable with mean T0 seconds. That is

pw(t; T0) =
1

T0
e−

t
T0 , t ≥ 0 (1)

Here T0 is a parameter that captures user
behavior and TA represents for system
characteristics that is independent of users
behavior. The streaming failure rate due to
startup delays, Fsimple is:

Fsimple = Pr{t < TA} (2)

=

∫ TA

0
pw(t; T0)dt (3)

= 1 − e−
TA
T0 (4)

User impatience model described as an
exponential distribution is simple but may not be
sufficiently good for modeling user behavior in
reality because of the following reasons:



36 X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41

• It only captures the case in which users are
relatively impatient since pw(t; T0) = 1

T0
e−

t
T0

is a quickly descending function. Such a
function is more suitable for modeling users
who just click on movies that they encounter
and do not intentionally watch movies that
they like.

• It lacks of capability in parameterizing
user impatience.

2.3. Parameterizing user impatience

A better model in capturing how impatient
a user is can be developed from the following
assumptions. Firstly, a user waits for video to
start up to a threshold T0. If the waiting time
reaches T0, the user does not wait any longer
and he aborts his session. Secondly, probability
distribution function pw(t) of waiting time t
increases as t increases. An typical behavior of
such characteristics is described as follows. At
the beginning, a user tries to wait for video to
start up to the threshold T0. Probability that he
aborts his session at the early stage is rather small.
However, the longer he waits, the less patient he
becomes. And when his waiting time is up to T0,
he definitely aborts his video streaming session.

We define probability distribution function
of waiting time t for the above user behavior
as belows:

pw(t; k; T0) =


(k+1)tk

T k+1
0

, t ≤ T0

0, t > T0

(5)

Here, k and T0 are two parameters such that,
k ∈ Z, k ≥ 0, and T0 > 0. Parameter k can be
used to characterize level of patience of users or
patience factor. The higher value of k is set, the
more patient users we have. When k = 0, pq(t) =
1

T0
. It means waiting time is uniformly distributed

in [0,T0), and user’s patience is neutral.
Let us consider relationships between waiting

threshold T0 and startup delay TA in this model.
If TA > T0, we can say that startup delay TA is too
long and no users are sufficiently patient to wait
for video playback to start. If T0 ≥ TA, only a

fraction of users whose waiting time periods are
less than TA is moved to state S f ailure. Thus the
streaming failure rate for this model, Fpatient, can
be calculated as:

Fpatient = Pr{t < TA} (6)

=

∫ TA

0
pw(t; k,T0)dt (7)

=
T k+1

A

T k+1
0

(8)

Let α =
TA
T0

, equations 4 and 8 become:

Fsimple = 1 − e−
TA
T0 = 1 − e−α (9)

Fpatient =

(
TA

T0

)k+1

= αk+1 (10)

Figure 2 and figure 3 show streaming failure
rate F as function of α in simple user behavior
model and in model that captures user patience.
Those plots can be used to visualize dependency
of streaming failure rate to startup delay for a
specific waiting time threshold T0.

3. Movie Atom Caching

Startup delay can be easily reduced by a simple
caching/prefetching mechanism, called Movie
Atom Caching (MAC), as described by flowchart
in fig. 4. A client application, MAC client, first
checks whether it has moov atom of a requested
MP4 movie locally. If yes, the client immediately
downloads multimedia data from mdat atom of
the requested file. Thus, the video playback can
be started almost immediately and startup delay
will be greatly reduced. If no, the MAC client
should behave similarly to a normal player by
getting moov atom from server. However, it
will completely fetch the moov atom even when
the user impatiently aborts his video streaming
session. The moov atom after being successfully
downloaded will be stored locally at MAC client
for the successive video requests. All MAC
protocols’ operations work on top of the typical
HTTP protocol.



X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41 37

Fig. 2: Streaming failure rates in simple user behavior model. Fig. 3: Streaming failure rates in patient users model.

Although the algorithm shown in figure
4 only mentions an on-demand caching
algorithm, it can be easily extended into a
proactive prefetching mechanism in which an
in-background application at client side can be
deployed to download moov atoms of files that
are likely to play by the user. Such files can be
obtained by using a recommendation system that
belong to content management system of a video
site, for example.

Although MAC algorithm is very simple,
implementing it into good working software
applications needs following requirements:

• First of all, MAC should be extensions
or add-on components of existing solutions
for streaming MP4 files. Development
of a new streaming server software is
considered a bad design choice because of
high implementation costs.

• The streaming service for MAC protocol
should be compatible with non-MAC
clients. Again, developing a completely new
streaming server software is not a good idea
because of potential incompatibility with
existing clients.

• Finally, with similar reasons as above, ones
should not develop a new video player for
MAC. Insteads, plugins should be developed
to integrate with existing video players.

Our implementation for MAC protocol is
shown in figure 5. At the beginning, MP4
files are uploaded to ”publishing area” on server.
For uploading MP4 files, any method that can
serve this purpose, e.g. FTP, scp, or rsync,
can be used. A daemon application, MAC
daemon, will monitor the publishing area for new
files and automatically split each new file into
two files containing moov atom and mdat atom
respectively. As examplified in figure 5, v1.atom
and v1.mdat are the two files splitted from the
original file v1.mp4. Those files will be moved
to ”public area” and become ready for streaming.

When a MAC client is commanded to view a
MP4 video, it will check for an apropriate atom
file in its local video cache. If such a file is
found, it will be used as the atom header for
parsing multimedia data retrieved from server. In
case MAC client has to download atom file from
server, the successfully downloaded atom file will
also stored into the local video cache.

At server side, existing HTTP-based solutions
for streaming atom and mdat files of MP4
movies are used. Specifically, files in public
area and publishing area are stream by typical
webserver like nginx [10]. This can be
done simply by configuring those locations as
accessible resources to the webserver and the web
application hosted by the webserver. Additionaly,
a simple web application developed in PHP is
deployed on the webserver for handling both
MAC non-MAC (normal HTTP) MP4 video



38 X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41

Fig. 4: Atom Caching/prefetching algorithm for startup
delay reduction.

Fig. 5: Movie Atom Caching implementation.

streaming. The web application will conceal
atom and mdat files under reference to original
MP4 files and provide a layer for providing
compatibility with both streaming protocols.

Our MAC client is implemented using FFmpeg
[6]. Specifically, we developed a protocol plugin
for FFmpeg. Our plugin simply interfaces with
streaming service and local video cache for
handling atom retrieval, caching and combining
with mdat data from server. Thanks to high
portability of FFmpeg, our MAC implementation
can be built for both Windows and
Linux platforms.

4. Performance Evaluation

In this section, we present our setups for
comparison startup delays between MAC and
other protocols including progressive download,
and HLS. In our experiments, the following
elements are deployed:

• A server machine on which: an FTP service
(vsftpd) is running for allowing MP4 file
uploads. An instance nginx webserver
with supports for PHP 5 over fastCGI
[11] are launched for providing HTTP
streaming capabilities. And MAC daemon
application are running for MAC protocol
file preprocessing. All thosecomponents are
run on a virtual 32-bit CentOS 6.x machine.

• A client machine on which: required
player and its dependencies are installed.
Those software components include ffmpeg
library and MAC protocol plugin. All of
them run on a Ubuntu 14.04 LTS 32-bit
virtual machine.

• And a virtual network setup by GNS3
simulator [12]. In our setup, the virtual
network contains only a virtual Cisco 2691
router and two virtual links connecting the
router with the server and client machines
above. Such a simple virtual network is
sufficient for us to create different values
of end-to-end bandwidth between the client
machine and the server machine.

Our experiments for measuring startup delay
are conducted as follows: Startup delays are
measured on 3 sample videos with the same
settings of bitrate, frame-rate, I-frame rate,
and other parameters related to audio streams.
Table 2 summarizes those parameters. The
three sample movies have durations, respectively,
30, 60, and 90 minutes. The sample videos
are used for streaming with MAC, HLS, and
progressive download protocol under end-to-end
bandwidths of 512 Kbps and 2 Mbps. We believe
that 2 Mbps is the typical access bandwidth
of ADSL subscribers on the internet currently.
And 512 Kbps can be used as a representative



X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41 39

Table 2: Parameters of sample MP4 files

Parameter Value

Video frame rate 30 frames/s

Video Frame size 1280 x 720 pixels

I-Frame rate 1 I-frame per 50 frames

Audio bitrate 192 Kbps

Audio sample rate 48 kHz

Number of audio channels 2 channels

residual bandwidth of such internet subscribers
during normal working conditions. Ones can
say that 512 Kbps is a representative value
for typical network condition, while 2 Mbps is
the representative one for very good network
conditions. For each sample video and a value
of the above bandwidths, 5 runs are performed
and the final result is obtained by averaging over
the 5 results. Since we are interested only in how
startup delay can be reduced thanks to caching
moov atom, we let the the MAC client has moov
atom the requested movie in all those runs. For
the first time of requesting a MP4 video, where
its moov atom is not cached yet, startup delay of
MAC client actually is identical to that of HTTP
progressive download.

Figure 6 and figure 7 show comparisons
between MAC and progressive download in terms
of startup delay under typical access bandwidth of
512 Kbps and large access bandwidth of 2Mbps.
Using results from those figures and models
described in 2 (equation 9, 10), we can conclude
the followings:

• If waiting time threshold T0 that a user
can wait is not higher than 20 seconds,
progressive download is not acceptable to
users in most of the cases. Meanwhile, MAC
provides relatively good user experience
with streaming failure rates are less than
40%, 20%, 10%, 5% for patience factor k
equals 0, 1, 2, 3 respectively.

• If some users are sufficiently patient to wait
until moov atoms are retrieved (T0 is as

large as 60 seconds), MAC results in much
smaller streaming failure rates in all cases.
Specifically, streaming failure rates are less
than 10%, for k = 0, and less than 1%
for k > 0.

• Startup delay of MAC is slidely smaller than
HLS. The reason that HLS has low startup
delay is as follows. HLS is a combination of
smaller segments. Each small segment will
require only small header atom, thus incurs
relatively small delay to start. Although
reencoding the original file into multiple
smaller files help in reducing startup delay,
it incurs more pre-processing cost. Total
data of all segment files are higher than the
original file. And data rate of the video
streaming will also higher.

5. Related Work

In the past, most streaming solutions used
streaming protocols such as RTP as a multimedia
transport protocol and RTSP as session control
protocol. Today, popular video streaming
services are exclusively based on HTTP. Major
advantages of HTTP-based streaming includes
simplicity in deployment, firewall-friendly
traffics, and already available at almost all client
platforms. HTTP progressive download [2]
best illustrates those advantages. A content
provider who wants to provide video streaming
simply host MP4 files on its website, and then
clients can enjoy view video streams only with
web browsers.

For MP4 streaming over HTTP, it is crucial to
download moov atom of MP4 files in the first
place. To achieve that, a couple of methods
exist. Firstly, software tools, such as FFmpeg
[6] and MP4 FastStart [13] can be used to
relocate moov atom to the begining of the file.
When movie files are progressively downloaded
by clients, naturally, moov atoms are downloaded
first and video playback can be started right away.
Another method for downloading moov atoms
in the first place is used by some video players,
e.g. VLC and iOS’s video player. Following this



40 X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41

Fig. 6: Startup delay comparisons (512 Kbps access
bandwidth).

Fig. 7: Startup delay comparisons (2.0 Mbps access
bandwidth).

method, a client opens a http connection with a
standard HTTP Range request [14] to download
the mp4 file from the begining of the file. As
long as it detects that those first bytes are not
moov atom, another HTTP Range request is sent
to server for requesting moov atom at the end of
the file.

Although the two methods improve HTTP
progressive download for MP4 streaming, they
do not solve the long startup delay problem
as pointed out in this paper. By caching
and prefetching moov atoms, MAC can far
more improve user experience over progressive
download while keeping simplicity and ease of
deployment for the system. It is especially true
for streaming of full-length movies.

Apple’s HTTP Live Streaming (or HLS),
Microsoft Smooth Streaming (MSS) [15], and
Dynamic Adaptive Streaming over HTTP (or
DASH) [16] are video streaming procotols that
allows delivery of video content over HTTP.
They can also provide advanced features like
adaptive bitrate streaming [17]. In all those
solutions, the original media is splitted into
segments. Each segment can be seen as a small
file with atom headers and data. Additional
”packaging formats” are introduced to combine
all segments into a playlist to form a complete
video content. In case of Apple HLS, multimedia
segments have MPEG-2 transport stream (TS)
files, and packaging format is simply a text
file whose extension is ”.m3u8”. In MSS

and DASH, a more advance file format called
fragmented MP4 is used for multimedia segments
and XML-based format is used to packaging
segments together. Since segments are small
video chunks with about dozens of seconds in
durations, segment atom headers are small in
size and can be retrieved shortly. Startup delay
is thus not as high as progressive download.
However, those solutions are not as popular as
MP4 format because of their newly introduced
standards and less adopted in existing hardware
and software. Also, a large number of video
chunks could lead to several disadvantages
including difficult in managing multimedia assets
and higher input/output operations on harddisks.

In comparisons with fragmentation approach
(like HLS, MSS, and DASH), MAC provides
a easy-to-use yet efficient improvement to an
already popular scheme. It does not require
reencode video into multi-file media assets, thus,
it produces less complexity and overheads. The
disadvantage is that, it is relatively limited
in providing advanced feature like streaming
with adaptive bitrate. However, we believe
that MAC can be used in combinations with
fragmented streaming solutions, e.g., caching and
prefetching atoms of segments, to improve further
streaming experience.



X. T. Hoang, T. T. Nguyen / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 33–41 41

6. Conclusions

In this paper, we have shown that in streaming
schemes where MP4 files are used as multimedia
assets, time for downloading moov atoms, a
data segment in MP4 files which is important
for decoding process, is noticeable. This
amount of time leads to long startup delays
and poor quality of experience. User behavior
models were presented to show how startup
delay affects the streaming system. Analysis on
the models reveals that reducing startup delay
can greately improve user quality of experience
and keep users using the system service. In
order to cut down startup delay, a caching
mechanism, called MAC, was proposed and
implemented. Our performance evaluations
showed that MAC improves startup delay
significantly in MP4 file streaming applications
and have competitive startup delay with modern
fragmented streaming schemes with very little
complexity and overhead.

Acknowledgments

This work was supported by the project
CN.14.02 funded by VNU University of
Engineering and Technology.

References

[1] N. Färber, S. Döhla, J. Issing, Adaptive Progressive
Download Based on the MPEG-4 File Format, Journal
of Zhejiang University SCIENCE A 7 (1) (2006) 106–
111.

[2] P. Gill, M. Arlitt, Z. Li, A. Mahanti, Youtube
Traffic Characterization: A View From the Edge, in:
Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement, ACM, 2007, pp. 15–28.

[3] Information Technology – Coding of Audio-visual
Objects – Part 14: MP4 File Format (2003).

[4] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph,
A. Ganjam, J. Zhan, H. Zhang, Understanding the
Impact of Video Quality on User Engagement, ACM
SIGCOMM Computer Communication Review 41 (4)
(2011) 362–373.

[5] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, H. Zhang, A Case for a Coordinated
Internet Video Control Plane, in: Proceedings
of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’12, ACM, New York, NY, USA, 2012, pp. 359–370.
doi:10.1145/2342356.2342431.

[6] F. Bellard, M. Niedermayer, et al., Ffmpeg,
http://ffmpeg.org.

[7] V. Organization, VLC Media Player,
http://www.videolan.org/vlc/ (2006).

[8] G. Lawton, LAMP Lights Enterprise Development
Efforts, Computer 38 (9) (2005) 0018–20.

[9] R. Pantos, W. May, HTTP Live Streaming draft-
pantos-http-live-streaming-05, Published by the
Internet Engineering Task Force (IETF).

[10] W. Reese, Nginx: the High-Performance Web Server
and Reverse Proxy, Linux Journal 2008 (173) (2008)
2.

[11] M. R. Brown, FastCGI: A High-performance Gateway
Interface, in: Fifth International World Wide Web
Conference, Vol. 6, 1996.

[12] Y. WANG, J. WANG, Use gns3 to Simulate
Network Laboratory, Computer Programming Skills
& Maintenance 12 (2010) 046.

[13] MP4 FastStart, http://www.datagoround.com/lab/,
Accessed: 2015-12-04.

[14] R. Fielding, Lafon, Y., Ed., and J. Reschke, Ed.,”
Hypertext Transfer Protocol (HTTP/1.1): Range
Requests, Tech. rep., RFC 7233, June (2014).

[15] A. Zambelli, IIS smooth Streaming Technical
Overview, Microsoft Corporation 3.

[16] T. Stockhammer, Dynamic Adaptive Streaming Over
HTTP–: Standards and Design Principles, in:
Proceedings of the Second Annual ACM Conference
on Multimedia Systems, ACM, 2011, pp. 133–144.

[17] Melnyk, Miguel A and Stavrakos, Nicholas J and
Penner, Andrew and Tidemann, Jeremy and Breg,
Fabian, Adaptive Bitrate Management for Streaming
Media Over Packet Networks (2011).


