
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

An OCL-Based Framework for Model Transformations

Duc-Hanh Dang1,∗, Martin Gogolla2

1VNU University of Engineering and Technology, Hanoi, Vietnam
2University of Bremen, Bremen, Germany

Abstract

Model transformation is an important building block for model-driven approaches. It puts forward a necessity
and a challenge to specify and realize model transformation as well as to ensure the correctness of transformations.
This paper proposes an OCL-based framework for model transformations. The formal foundation of the framework
is the integration of Triple Graph Grammars and the Object Constraint Language (OCL). The OCL-based
transformation framework offers an on-the-fly verification of model transformations and means for transformation
quality assurance.

Received 06 December 2015, revised 25 December 2015, accepted 31 December 2015

Keywords: Model Transformation, OCL, Validation & Verification, Precondition and Postcondition, Invariant.

1. Introduction

Model transformation can be seen as the heart
of model-driven approaches [1]. Transformations
are useful for different goals such as (1) to
relate views of the system to each other;
(2) to reflect about a model from other domains
for an enhancement of model analysis; and
(3) to obtain a mapping between models in
different languages. Within such cases it is
necessary to offer methods to specify and realize
model transformation as well as to ensure the
correctness of transformations. This is really
a challenge because of the diversity of models
and transformations.

Problem. Many approaches to model
transformation have been introduced, as surveyed
in [2]. The works in [3, 4] offer mechanisms
for model transformations in line with the
Query/View/Transformation (QVT) standard [5].
The ideas in [6, 7] focus on the graph
transformation-based approach for unidirectional
transformations. Triple Graph Grammars (TGGs)

∗ Corresponding author. Email: hanhdd@vnu.edu.vn

are proposed in [8] as a similar approach for
bidirectional transformations. In addition to
specification and realization of transformations as
proposed by these works, several papers discuss
how to ensure the correctness of transformations.
In [9] the authors introduce a method to derive
Object Constraint Language (OCL) invariants
from declarative transformations like TGGs
and QVT in order to enable their verification
and analysis. The work in [10] aims to
establish a framework for transformation testing.
To the best of our knowledge, so far there
has not been any suitable approach yet to
support both specification and quality assurance
of transformations.

Contribution. (1) In this paper we focus on the
integration of TGGs and OCL as a foundation
for model transformation. Incorporating
OCL conditions in triple rules of a triple
graph grammar allows us to express better
transformations. (2) Our approach targets
both declarative and operational features
of transformations. Within the approach a
new method to extract invariants for TGG

42

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 43

transformations is introduced. (3) We propose a
specification method of transformations and an
OCL-based framework for model transformation.
We realize the approach in USE [11], a tool
with full OCL support. This offers an on-the-fly
verification of transformations and means for
quality assurance of transformations.

Outline. The rest of this paper is structured
as follows. Section 2 motivates our work by
means of examples. Section 3 introduces a formal
foundation for specification and realization of
transformations. Section 4 proposes an OCL-
based framework for model transformations.
Section 5 explains how the framework could
offer means for transformation quality assurance.
Section 6 shows how the approach is realized in
the USE tool. Section 7 comments on related
work. The paper is closed with a conclusion and
a discussion of future work.

2. Motivating Example

We focus on a transformation situation
between a statechart and an extended
hierarchical automaton. A UML statechart
(state machine) [12] offers a light-weight
notation for describing the system behavior.
In order to model-check statecharts, it is
necessary to transform them and represent them
in a mathematical formalism like Extended
Hierarchical Automata (EHAs). EHAs have been
proposed in [13] as an intermediate format to
facilitate linking new tools to a statechart-based
environment. This formalism uses single-
source/single-target transitions (as in usual
automata), and forbids interlevel transitions.
The EHA notation is a simple formalism with
a more restricted syntax than statecharts which
nevertheless allows us to capture the richer
formalism [13]. Figure 1 presents models for
a traffic supervisor system for a crossing of a
main road and a country road [14]. The lamp
controller provides higher precedence to the main
road as follow: If more than two cars are waiting
at the main road (this information is provided by
a sensor), the lamp will be switched from red
to red-yellow immediately, instead of obeying

a waiting period as usual. A camera allows the
system to record cars running illegally in the
crossing during the red signal period.

The example statechart (Fig. 1) shows two
basic states On and Off, reflecting whether the
system is turned on or off. There is a concurrent
decomposition of the On state. The region on the
left corresponds to the lamp state, and the region
on the right corresponds to the camera state. Each
of these regions is concurrently active. The On

state is referred to as an orthogonal state, i.e., a
composite state containing more than one region.
Note that in our specification the synchronization
between the two regions currently currently is not
reflected. The Off state, which does not have sub-
states, is referred to as a simple state.

The example EHA is another representation of
the example statechart. This EHA consists of four
sequential automata (denoted by rectangles),
each of which contains simple states and
transitions. States can be refined by concurrently
operating sequential automata, imposing a tree
structure on them. The refinement is expressed
by the dotted arrows, e.g., the On state is refined
by two sequential automata. Interlevel transitions
in statecharts are transitions which do not respect
the hierarchy of states, i.e., those that may
cross borderlines of states. The EHA expresses
them using labeled transitions in the automata
representing the lowest composite state that
contains all the explicit source and target states
of the original transition. For example, the
interlevel transition from Count2 to RedYellow

in the statechart is represented by the transition
from Red to RedYellow together with the label
Count2. This label is referred as a source
restriction. The transition is enabled only if its
source and all state in the source restriction set
({Count2}) are active. The interlevel transition
from Off to On is represented by the similar
transition in the corresponding automaton
together with labels Green and CameraOff,
called a target determination. When taking the
transition, the target and all states in the target
determination set ({Green, CameraOff}) are
entered and become active.

44 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

Source Restriction={Count2}

Target Determination

= {Green, CameraOff}

Target Determination

= {Count0}

Statechart of the traffic light example

Extended Hierarchical Automata

 (EHA)

Fig. 1: Statechart and extended hierarchical automaton for the traffic light example. (adapted from [14])

The transformation example motivates
our work with the following requirements:
(1) Specifying and realizing of transformations:
We need to offer means so that transformations
could be specified and performed, as well
as source and target models could be
represented and taken as the input and output of
transformations. (2) Verifying transformations:
We need to check if there are any defects in
a transformation. A transformation can be
considered as a program taking the source
and target model as the input and output. We
could expect several reasonable assumptions
on such a transformation model to be satisfied.
(3) Validating transformations: The aim is to
ensure a transformation is a “right” one by
executing the transformation in various scenarios
and comparing the de facto result with the
expected outcome. The process cannot be fully
automated: The modeler has to define relevant
scenarios, so-called test cases, and then to
compare the obtained and expected result.

3. Foundations for a Model-Driven Approach

This section explains foundations for a model-
driven approach to software engineering.

3.1. Graph Transformation

Definition 1 (Graphs and Morphisms). Let a
set of labels L be given. A directed, labeled graph
is a tuple G = (VG, EG, sG, tG, lvG, leG), where

• VG is a finite set of nodes (vertices),

• EG ⊆ VG×VG is a binary relation describing
the edges,

• sG, tG : EG → VG are source and target
functions mapping graph edges to nodes,
and

• lvG : VG → L and leG : EG → L are
functions that assign a label to a node and
an edge, respectively.

A graph is said to be empty, if the VG and EG

are empty sets.
Let two directed, labeled graphs

G = (VG, EG, sG, tG, lvG, leG) and H =

(VH , EH , sH , tH , lvH , leH) be given. A graph

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 45

morphism f : G → H is a pair (fV , fE), where
fV : VG → VH , fE : EG → EH preserves sources,
targets, and labels, i.e., fV ◦ sG = sH ◦ fE and
fV ◦ tG = tH ◦ fE .

G H

a:X

b:Y

c:Y

p

q c1:Y

b1:Y

d:Z
a1:X

t

s

v

Fig. 2: Two directed, labeled graphs G and H and a graph
morphism G → H (informally speaking, H contains G).

Figure 2 shows two directed, labeled graphs
G and H and a graph morphism G → H. The
mapping is represented by dashed lines between
the nodes and edges of G and H.

Triple graph grammars (TGGs) have been
proposed as a means to specify bidirectional
translations between graph languages. Integrated
graphs obtained by triple derivations are called
triple graphs.

Definition 2 (Triple Graphs and Morphisms).
Three graphs SG, CG, and TG, called source,
connection, and target graph, together with
two graph morphisms sG : CG → SG
and tG : CG → TG form a triple graph

G = (SG
sG
← CG

tG
→ TG). G is said to be empty,

if SG, CG, and TG are empty graphs. A triple
graph morphism m = (s, c, t) : G → H between

two triple graphs G = (SG
sG
← CG

tG
→ TG) and

H = (SH
sH
← CH

tH
→ TH) consists of three graph

morphisms s : SG → SH, c : CG → CH and
t : TG → TH such that s ◦ sG = sH ◦ c and
t ◦ tG = tH ◦ c. It is injective, if the morphisms s,
c and t are injective.

Figure 3 shows a triple graph containing
a statechart together with correspondence
nodes pointing to the extended hierarchical
automata (EHA). References between
source and target models denote translation
correspondences.

:Statechart

refined

eha:EHAs2e:SC2EHA

c2s1:S2SH

s2a1:St2Aut

c2s2:S2SH

s2a2:St2Aut

onStateH:StateH

name = 'On'

lampAut:Automata

name = 'Lamp'

redStateH:StateH

name = 'Red'

counterAut:Automata

name = 'Red'

onState:CompState

isConcurr=true

name='On'

lampState:CompState

isConcurr=false

name='Lamp'

redState:CompState

isConcurr=false

name='Red'

ownerowner
owner

container

refined

owner

owner

container

container

ehasc

Fig. 3: Triple graph for an integrated SC2EHA model.

Definition 3 (Triple Graph Grammar).
A triple rule tr = L

tr
→ R consists of triple graphs

L and R and an injective triple morphisms tr.

(SL

(SR

CL

CR

TL)

TR)

ts

sR tR

tL
s
L

L =

R =

tr c

An application of a triple rule tr = (s, c, t) :
L → R to a given triple graph G to yield a triple
graph H consists of the following steps:

• Choose an occurrence of the LHS L in G
by defining a triple graph morphism m =

(sm, cm, tm) : L→ G, called a triple match.

• Glue the graph G and the RHS R according
to the occurrences of L in G so that new
items that are presented in R but not in L
are added to G. This yields a gluing graph
Z. Formally, we have m(L ∩ R) = G ∩ Z.
Here, graphs can be seen as a set of items
including vertices and edges.

• Remove the occurrence of L from Z as well
as all dangling edges, i.e., all edges incident
to a removed node. This yields the resulting
graph H. Formally, we have H = Z \ m(L).

• The gluing step allows us to obtain the so-
called comatch morphism n = (sn, cn, tn),
where sn = SR → SH, cn = CR → CH, and
tn = TR → TH. The induced morphisms
sH : CH → SH and tH : CH → TH could
be obtained from the comath morphism n.

46 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

(SG

(SH

CG

CH

TG)

TH)

t’s’

sH tH

G =

H =

tr

SL

SR

CL

CR

TL

TR

tmsm

c’

cm

tnsn cn

A triple graph grammar is a structure TGG =

(TG, S ,TR) where TG includes a so-called triple
type graph and a typing function mapping so-
called typed graphs to the type graph, S is an
initial graph, and TR = {tr1, tr2,, trn} is a set
of triple rules. Triple graph language of TGG is
the set {G | G is typed by TG ∧ ∃ triple graph
transformation S ⇒∗ G}.

{new}

{new}

{new}

{new}

{new}

Fig. 4: Triple rule for the SC2EHA transformation.

Figure 4 is part of a triple graph grammar
that generates statecharts and corresponding EHA
models. This rule may create a simple state of
a statechart and its corresponding state of the
corresponding EHA model at any time.

Such an integrated triple graph is often defined
by a triple derivation. Derived triple rules allows
us to compute the triple graph by taking the
source (target or both) model as the input. A
detailed explanation of how to apply derived
triples is shown in SubSect. 3.5.

Definition 4 (Derived Triple Rules). Each
triple rule tr = L → R derives forward,
backward, and integration rules as follows:

(SR

(SR

CL

CR

TR)

TR)

integration rule trI

c id

sR tR

t o t
L

(SR

(SR

CL

CR

TL)

TR)

forward rule trF

tcid

sR tR

tLs o s
L

(SL

(SR

CL

CR

TR)

TR)

backward rule trB

s c id

sR tR

sL
t o t

L

id

s o s
L

where id is the identify function.

3.2. The Object Constraint Language

The Object Constraint Langauge (OCL) [15]
is a formal language to describe expressions
on UML models, e.g., as shown in Fig. 5:
(1) OCL expressions, that might be object
constraints or queries, do not have side effects.
(2) The OCL is a typed language. Each valid
(well-formed) OCL expression has a type,
which is the type of the evaluated value of this
expression. The type system of OCL includes
basic types (e.g., Integer, Real, String,

and Boolean), object types, collection types
(e.g., Collection(t), Set(t), Bag(t),

and Sequence(t) for describing collections of
values of type t), and message types. (3) OCL is
often employed for the following purposes:

Fig. 5: Object model visualized by a class diagram.

• To specify invariants, i.e., conditions that
must be true for all instances of the class in
all system states. Example:

-- The number of cars is

-- greater than 10.

context CarModel inv:
self.car.size() > 10

• To describe pre- and post conditions
on operations.

-- When a car is picked up.

context Rental::assignCar(cr:Car)

pre self.car = null

post self.car = cr

• To describe guards within a statechart.

• As a query language, i.e., to query the given
system state by OCL expressions.

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 47

OCL expressions are developed on the basis
of an object model. The aim is to allow us
to express attribute values and logic conditions
on the structure defined by the object model.
Specifically, the object model structure is
extended with an OCL algebra [16].

Definition 5 (Object Models).
An object model is the structure
M = (CLASS,ATTc,OPc,ASSOC, associates,
roles,multiplicities,≺) where

1. CLASS ⊆ N is a set of names representing a
set of classes, whereN ⊆ A+ is a non-empty
set of names over alphabet A. Each class
c ∈ CLASS induces an object type tc ∈ T.
The values of the type refer to the objects of
the class.

2. ATTc is the attributes of a class c ∈ CLASS,
defined as a set of signatures a : tc → t,
where the attribute name a is an element of
N , tc ∈ T is the type of class c, and t ∈ T is
the type of the attribute.

3. OPc is a set of signatures for user-defined
operations of a class c with type tc ∈ T. The
signatures are of the form ω : tc × t1 × ... ×
tn → t, whereω is the name of the operation,
and t, t1, ... , tn are types in T .

4. ASSOC is a set of association names.
(a) associates : ASSOC → CLASS+ is a
function mapping each association name to
a list of participating classes. This list has
at least two elements.
(b) roles : ASSOC → N+ is a function
mapping each association to a list of role
names. It assigns each class participating
in an association a unique role name.
(c) multiplicities : ASSOC → P(N0)+

is a function mapping each association to
a list of multiplicities. It assigns each
class participating in an association a
multiplicity. A multiplicity is a non-empty set
of natural numbers (an element of the power
set P(N0)+) different from {0}.

5. ≺ is a partial order on CLASS reflecting the
generalization hierarchy of classes.

Figure 5 visualizes an object model in the form
of a UML class diagram.

An interpretation of an object model is referred
to as a snapshot (a system state). A snapshot is
constituted by objects, links, and attribute values.

Fig. 6: A snapshot visualized by an object diagram.

Definition 6 (Snapshots). A snapshot of an
object modelM is the structure
σ(M) = (σCLASS, σATT, σASSOC) such that:

1. For each c ∈ CLASS, the finite set
σCLASS(c) contains all objects of class
c ∈ CLASS existing in the snapshot:
σCLASS(c) ⊂ oid(c).

2. Functions σATT assign attribute values for
each object in the state. σATT(a) :
CLASS(c)→ I(t) for each a : tc → ATT∗c.

3. For each as ∈ ASSOC, there is a set of
current links: σASSOC(as) ⊂ IASSOC(as).
A link set must satisfy all multiplicity
specifications: ∀i ∈ {1, ..., n},∀l ∈

σASSOC(as): |{l′|l′ ∈ σASSOC(as) ∧ (πi(l′) =

πi(l))}| ∈ πi(multiplicities(as))

where

• I(t) is the domain of each type t ∈ T.

• oid(c) is the objects of each c ∈ CLASS. The
set is often infinite. ICLASS(c) = oid(c) ∪
{oid(c′)|c′ ∈ CLASS ∧ c′ ≺ c}.

• ATT∗c is the direct and inherited attributes of
the class c: ATT∗c = ATTc ∪c≺c′ ATTc′ .

• IASSOC(as) = ICLASS(c1) × ... × ICLASS(cn)
interprets the association as, where
associations(as) = 〈c1, c2, ..., cn〉,
as ∈ ASSOC, and c1, c2, ..., cn are the
classes. Each las ∈ IASSOC(as) is a link.

• πi(l) projects the ith component of a list l.

48 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

Figure 6 visualizes a snapshot in the form of
a UML object diagram. The snapshot is the
interpretation of the object model shown in Fig. 5.

3.3. Models and Metamodels

A model is a representation in a certain medium
of something in the same or another medium. The
model captures the important aspects of the thing
being modeled from a certain point of view and
simplifies or omits the rest [12]. The medium to
express models, a convenience for working, can
be 3-D figures in a paper, a computer for models
of buildings, or modeling languages. Our work
focuses on modeling languages, defined using
metamodels, as the means to express models.

Definition 7 (Metamodels). A metamodel is the
structure MM = (M,WFC) where the M is
an object model and the WFC is a set of OCL
conditions, so-called well-formedness conditions,
w.r.t the OCL algebra built on theM.

State

name:String

Statechart
trOwner

Transition* *
*

src

0..1owner

*dst

*

* trigger0..1

1

1

Metamodel - Type graph

On Off

Switch

Model in concrete syntax

:State

name = 'Off'

:State

name = 'On'

:Statechart

:Event

name = 'Switch'

Event
name:String

:Transition

Model in abstract syntax - Typed graph

src

dst

owner

owner trOwner

Fig. 7: The simplified metamodel for statechart models.

Figure 7 shows a simplified metamodel
for statecharts. The graph corresponding
to the metamodel is referred to as a type
graph. The object model M includes 4 classes
(Statechart, State, Transition, and Event) and
5 associations. The WFC includes the invariant
ownsChildState, “Every child state of a
composite state belongs to the same statechart
with the parent state.”

context Statechart inv ownsChildState:

self.state->forAll(p:State|

if p.oclIsTypeOf(CompState) then

p.oclAsType(CompState).content->

forAll(c:State|self.state->includes(c))

else true endif)

Definition 8 (Models). Let a metamodel MM =

(M,WFC) be given. A model that conforms to
the metamodel MM is a snapshot of the M and
the snapshot fulfills all the OCL invariants of
the WFC.

Figure 7 shows a model that conforms to the
statechart metamodel. The graph corresponding
to the model is referred to as a typed graph. The
model might be represented in different forms,
i.e., in abstract syntax or concrete syntax.

3.4. Incorporation of OCL and Triple Rules
Within the context where the underlying

type graph represents a metamodel, we could
employ OCL conditions in order to restrict the
applicability of triple rules. The aim is to increase
the expressiveness of triple rules. For example,
with the rule shown in Fig. 3, we could attach
it with the OCL precondition cps.isConcurr =

f alse and the postcondition s.name <> null ∧
aut1.name <> null. We could define OCL
application conditions for triple rules as follows.

Definition 9 (OCL Application Conditions).
OCL application conditions (BACs1) of a triple
rule consist of OCL conditions in source, target,
and correspondence parts of the triple rule.
BACs within the LHS and RHS of the triple rule
are pre- and postconditions, respectively:

• BACpre = BACS L ∪ BACCL ∪ BACT L,

• BACpost = BACS R ∪ BACCR ∪ BACTR, and

• BAC = [BACpre, BACpost],

where the BACxy with xy ∈

{‘S L′, ‘S R′, ‘CL′, ‘CR′, ‘T L′, ‘TR′} are the
BACs in the LHS and RHS of the source,
correspondence, and target parts of the triple
rule, respectively; the BACpre and BACpost are
the pre- and postconditions, respectively.

1BACs stands for Boolean Application Conditions

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 49

Definition 10 (Application Condition Fulfillment).
A triple rule with BACs is a tuple
tr = (L,R, BAC), where BAC includes OCL
application conditions. A triple graph H is
derived from a triple graph G by a triple rule
tr = (L,R, BAC) and a triple match m iff:

• H is derived by (L→ R,m) and

• BAC is fulfilled in the application G
r
⇒ H,

where r : L → R is the rule which is obtained by
viewing the triple graphs LHS and RHS of the tr
rule as plain graphs.

Definition 11 (Restrictions on Derived Rules).
Let a triple rule tr be given. The preconditions of
its derived triple rules are defined as follows.

• BACtrF
pre = BACtr

S R∗ ∪ BACtr
CL ∪ BACtr

T L,

• BACtrB
pre = BACtr

S L ∪ BACtr
CL ∪ BACtr

TR∗, and

• BACtrI
pre = BACtr

S R∗ ∪ BACtr
CL ∪ BACtr

TR∗

The postconditions are defined as follows.

• BACtrF
post = BACtr

S R∗ ∪ BACtr
CR ∪ BACtr

TR,

• BACtrB
post = BACtr

S R ∪ BACtr
CR ∪ BACtr

TR∗, and

• BACtrI
post = BACtr

S R∗ ∪ BACtr
CR ∪ BACtr

TR∗,

where

• BACtrF
pre, BACtrB

pre, and BACtrI
pre are the

precondition of derived rules for forward,
backward, and integration transformation,
respectively; BACtrF

post, BACtrB
post, and

BACtrI
post are the postconditions,

• BACtr
xy with xy ∈

{‘S L′, ‘S R′, ‘CL′, ‘CR′, ‘T L′, ‘TR′} are
BACs in the LHS and RHS of parts of the
triple rule tr, respectively, and

• BACtr
S R∗, BACtr

CR∗, and BACtr
TR∗ are BACs

excepting ones with ‘@pre’ in S R, CR, and
TR , respectively.

3.5. Model Transformations

The aim of TGGs is to ease the description
of complex transformations. Structural mappings
within triple rules allow us to relate the source,
target, and correspondence parts within a triple
derivation: Once a plain rule derivation for the
source (or target) model is given, we can induce
two derivations corresponding to the remaining
parts. In this way operational scenarios of triple
rules for model transformations are defined.

Let TGG = (TG, S ,TR) be a triple graph
grammar incorporating OCL. Let VL be the
language of TGG, and VLs, VLc, and VLt

be the source, correspondence, and target
language as the result of the projection onto the
source, correspondence, and target part of VL,
respectively.

Definition 12 (Forward Transformation).
Let a graph GS ∈ VLs be given. A forward
transformation from GS to GT is a computation
to define the graph GT ∈ VLt through a triple
derivation S

∗
⇒ (GS ← GC → GT).

Definition 13 (Backward Transformation).
Let a graph GT ∈ VLt be given. A backward
transformation from GT to GS is a computation to
define the graph GS ∈ VLs through a derivation
S
∗
⇒ (GS ← GC → GT).

Definition 14 (Model Integration). Let the
graphs GS ∈ VLt and GT ∈ VLs be given. A
model integration of GS and GT is a computation
to define a derivation S

∗
⇒ (GS ← GC → GT).

Definition 15 (Model Co-Evolution). Let ES ∈

VLs and ET ∈ VLt be graphs as source and
target parts of a triple graph E, respectively. A
model co-evolution from (ES ,ET) to (FS ,FT) is
a computation to define graphs FS ∈ VLs and
FT ∈ VLt through the derivation (ES ← EC →

ET)
∗
⇒ (FS ← FC → FT).

Theorem 1 (Derived Rules for Transformations).
Let TGG = (TG, S ,TR) be a triple
graph grammar incorporating OCL and
(GS ← S C → S T) be a triple graph typed by TG.

50 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

We could obtain the forward transformation from
GS to GT , i.e., S

∗
⇒ (GS ← GC → GT), as the

following conditions are fulfilled.

(i) (GS ← S C → S T)
trF1,m1
=⇒ . . .

trFn,mn
=⇒ (GS ←

GC → GT), where mi = (smi, cmi, tmi) are
triple matches.

(ii) ∀i > 0, 0 < j < i, sn j(SRtr j \ SLtr j) ∩
sni(SRtri \ SLtri) = ∅, where (sni, cni, tni) is
the comatch of mi.

Proof. Suppose that at the ith step of the
transformation in (i), we can define the triple

graph Gi such that S = (S S ← S C → S T)
tr1,m1
=⇒

. . .
tri,mi
=⇒ Gi = (Gi

S ← Gi
C → Gi

T) and G1 ⊂

G2 . . . ⊂ Gi ⊂ GS . Now at the i + 1th step
of the transformation in (i), we have (GS ←

Gi
C → Gi

T)
trFi+1,mi+1

=⇒ (GS ← Gi+1
C → Gi+1

T).
Then, the condition (ii) allows us to define Gi+1

such that Gi ⊂ Gi+1 ⊂ GS and Gi = (Gi
S ←

Gi
C → Gi

T)
tri+1,mi+1

=⇒ Gi+1 = (Gi+1
S ← Gi+1

C →

Gi+1
T). Therefore, by indution there exists a

transformation S = (S S ← S C → S T)
tr1,m1
=⇒

. . .
trn,mn
=⇒ Gn = (GS ← GC → GT). This is what

we need to prove.

For backward and integration transformation,
we can obtain a similar result. The condition (ii)
in these cases is shown respectively as follow.

(S S ← S C → GT)
trB1,m1
=⇒ . . .

trBn,mn
=⇒ (GS ← GC → GT),

(GS ← S C → GT)
trI1,m1
=⇒ . . .

trIn,mn
=⇒ (GS ← GC → GT).

{new}

{new}

{new}

{new}

Fig. 8: A forward transformation step by the forward rule
derived from the rule shown in Fig. 4.

Figure 8 shows a transformation step for the
forward transformation from a statechart to an

EHA model. The forward rule is derived from
the rule shown in Fig. 4.

4. A Transformation Model in OCL

This section focuses on the operational
scenarios derived from triple rules including
OCL. We employ OCL in order to realize the
operational scenarios of triple rules towards an
OCL-based framework for model transformation.
The OCL framework also offers a new operation
for model synchronization.

4.1. Basic Idea

As illustrated in Fig. 9, we consider each
transformation scenario derived from a triple rule
as a special kind of model behavior, namely
behavior of operations. Each transformation
scenario can be mapped to an operation. We
realize the operations by taking two views on
them: Declarative OCL pre- and postconditions
are employed as operation contracts, and
imperative OCL command sequences are taken as
an operational realization.

Fig. 9: Illustration for an OCL transformation.

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 51

4.2. OCL Transformation Operations

Figure 10 depicts the input of transformation
operations derived from triple rules. We use a
sheet including six cells that correspond to six
patterns of the original triple rule in order to
describe the input of each operation. The cell
denoted by ‘I’ means that nodes in this part
belong to the input of the operation. The cell
denoted by ‘?’ represents objects created by
the operation. The cell denoted by ‘U’ means
that part of this cell belongs to the input of
the operation, and this part can be updated by
the operation. The remaining nodes in this cell
correspond to objects created by the operation.

Operational Scenarios Input/Computing

Forward Transformation

Model Integration

Model Synchronization

Model Co−Evolution
I I I

? ? ?

I I I

I ? ?

I I I

I ? I

I I I

U I U

SL CL TL

SR CR TR

I: Input

U: Update

?: Create

maskS=SR\SL

maskT=TR\TL

maskC=CR\CL

Fig. 10: The input and computation for derived triple rules.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Model Co−Evolution

compStateNest_coEvol(

 matchSL:Tuple(sc:Statechart,cps:CompState,_s_name:String),

 matchTL:Tuple(eha:EHA,aut:AutH,_aut1_name:String),

 matchCL:Tuple(s2e:SC2EHA,s2a:St2Aut))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Forward Transformation

compStateNest_forwTrafo(

 matchSR:Tuple(s:CompState,sc:Statechart,cps:CompState),

 matchTL:Tuple(eha:EHA,aut:AutH,_aut1_name:String),

 matchCL:Tuple(s2e:SC2EHA,s2a:St2Aut))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Model Integration

compStateNest_integraTrafo(

 matchSR:Tuple(s:CompState,sc:Statechart,cps:CompState),

 matchTR:Tuple(sH:StateH,aut1:AutH,eha:EHA,aut:AutH),

 matchCL:Tuple(s2e:SC2EHA,s2a:St2Aut))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Model Synchronization

compStateNest_synchTrafo(

 matchSL:Tuple(sc:Statechart,cps:CompState,_s_name:String),

 matchTL:Tuple(eha:EHA,aut:AutH,_aut1_name:String),

 matchCL:Tuple(s2e:SC2EHA,s2a:St2Aut),

 maskS:Tuple(s:CompState),

 maskT:Tuple(sH:StateH,aut1:AutH),

 maskC:Tuple(s2sH:S2SH,s2a1:St2Aut))

RuleCollection

Fig. 11: Transformation operations derived from the triple
rule compStateNest shown in Fig. 4.

Figure 11 presents the derived operations w.r.t
the triple rule depicted in Fig. 4. Note that
when an entry of a mask parameter (maskS,

maskT, or maskC having the Tuple type) in a
synchronization operation is undefined, a new
object corresponding to this entry is newly
created. Otherwise, the entry will be updated.

4.3. Example Transformation Scenarios
We have defined 9 triple rules for the

SC2EHA transformation as summarized in
Table 1. We illustrate transformation scenarios
by explaining informally a transformation step
of each scenario. These example transformation
steps are performed by operations derived from
the triple rule shown in Fig. 4.

4.3.1. Forward Transformation
The transformation step for the forward

transformation from the statechart to the EHA
is illustrated as shown in Fig. 8. The match
for this application includes objects highlighted
in the first object diagram. The part (objects,
nodes) which is newly created includes objects
highlighted in the second object diagram. This
means that all nodes and links in the source side
of the original rule (Fig. 4) are used for matching
the derived triple rule.

Fig. 12: Example model integration step.

52 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

Table 1: Triple rules for the SC2EHA transformation

Triple rule Effect on statechart Effect on EHA

initTop to create the initial state, a simple
state, and the transition between
them, e.g., to create the Off state.

to create the top state, the top
automaton, and its initial state, e.g., to
create the initial state Off.

initNest to create the initial pseudo state,
a simple state, and the transition
between them, e.g., to create the state
Green.

to create the initial state of the non-top
automaton, e.g., to create the initial
state Green.

simpStateNest to create a simple state as the child of
a composite state, e.g., to create the
state Yellow or Count1.

to create a simple state as the child of
an automaton, e.g., to create the state
Yellow or Count1.

concurrStateTop to create a concurrent state at the top
level, e.g., to create the On state.

to create a state (e.g., the On state) of
the top automaton and the automatons
corresponding to the regions of the
composite state. These automatons
refine the state.

compStateNest to create a non-concurrent composite
state as a child of a composite state,
e.g., to create the Red state.

to create a state and an automaton
refining the state, e.g., to create the
Red state and the automaton refining
this state.

transitToSimp to create a non-interlevel transition
to a simple state, e.g., to create the
transition from Green to Yellow.

to create a transition in an automaton,
e.g., to create the transition from
Green to Yellow.

transitToConcurr to create a non-interlevel transition to
a concurrent state, e.g., to create the
transition from Off to On.

to create a transition to a state that
is refined by automatons. This
transition is labeled with the target
determination set. For example, to
create the transition from Off to On.

transitToComp to create a non-interlevel transition
to a non-concurrent composite state,
e.g., to create the transition from
Yellow to Red.

to create a transition together with
labels for the target determination
set, e.g., to create the transition
from Yellow to Red and its target
determination set.

transitUpSimp to create an interlevel transition up
to a state at the next level, e.g., to
create the transition from Count2 to
RedYellow.

to create a transition from a state
refined by automatons and its source
restriction set, e.g., to create the
transition from Red to RedYellow

and its source restriction set.

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 53

4.3.2. Model Integration
The transformation step to integrate the

example statechart and the example EHA is
shown as in Fig. 12. We recognize that new parts
occur only in the correspondence part. The match
for this application includes all nodes and links in
the source and target sides of the original rule.

4.3.3. Model Synchronization
Figure 13 shows the transformation step to

integrate the statechart and the EHA. The effect
of the so-called synchronization step includes:
(1) two objects highlighted in the second object
diagram are created, and (2) the name attribute of
the redStateH object is updated.

Fig. 13: Example model synchronization step.

5. Quality Assurance of Transformations

This section discusses how our OCL-based
transformation framework offers means for
transformation quality assurance.

5.1. Verification of Transformation

We explain it in a formal way: Let MMS

and MMT be metamodels for source and target
models, respectively. Let TGTS = (TG, S ,TR) be
a TGG, which relates source and target models
to each other. Forward operations allows us to
define a corresponding target model MT for each
source model MS . We need to check if the
target model MT is correctly defined. Note that
the verification for other transformation scenarios
can be similarly obtained.

5.1.1. Check Invariants of Transformations
Triple rules can be viewed as templates

establishing mappings between source and target
models. Therefore, the transformation is correct
only if such mappings conform to triple rules. For
example, with the triple rule shown in Fig. 4 a
mapping that conforms to the rule must include
11 objects and 14 links. For the check we aim to
maintain “traces” for such mappings. We propose
to add a new node into the correspondence part of
each rule. The new node represents an instance
of a class whose name coincides with the rule
name. The node is linked to all nodes in the
correspondence part so that from this node we
can navigate to them within an OCL expression.
We can define an OCL condition to represent
the pattern of this rule. For example, the
following OCL invariant of the CompS tateNest
class represents the rule CompS tateNest shown
in Fig. 4. The transformation is correct only if
such an invariant are valid.

context CompStateNest inv isMatch:

let s2e:SC2EHA = self.s2e in

let s2a:St2Aut = self.s2a in

let s2sH:S2SH = self.s2sH in

let s2a1:St2Aut = self.s2a1 in

s2e.isDefined and s2a.isDefined and

s2sH.isDefined and s2a1.isDefined and

s2e.includes(sc) and s2e.includes(eha) and

s2a.includes(cps) and s2a.includes(autH) and

s2sH.includes(s) and s2sH.includes(sH) and

s2a1.includes(s) and s2a1.includes(aut1) and

s2a.aut.includes(sH) and s2a.aut.includes(eha)

and s2a1.aut1.includes(sH) and

s2a1.aut1.includes(eha) and s2a.cps.includes(s)

and s2e.sc.includes(s) and s2e.sc.includes(cps)

54 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

5.1.2. Check Contract Fulfillment
A forward transformation is realized as a

sequence of OCL operation applications: dtr :

(MS ← φ → φ)
trF1,m1
=⇒ . . .

trFn,mn
=⇒ (MS ← MC →

MT), where trFi are forward rules and mi are
triple matches. In order to check the correctness
of the transformation we check if each operation
application realizes correctly a rule application.
By checking the contract of the operation, i.e.,
a pair of pre- and postconditions it allows us to
ensure the correctness of the transformation step.
It offers an on-the-fly verification for different
transformation properties.

5.1.3. Check Model Properties
The declarative language OCL allows us to

navigate and to evaluate queries on models.
Therefore, we can employ OCL to express
properties of models at any specific moment in
time. For example, the following OCL condition
expresses the property “There is a transition from
the ‘Red’ state to the ‘Yellow’ state.”

Trans.allInstances()->exists(t|

t.src.name=’Red’ and

t.dst.name=’Yellow’)

5.1.4. Check Well-formedness of Models
The transformation with triple rules may

maintain the conformance relationship between
a model as a typed graph and its metamodel as
a type graph. However, when the metamodel is
restricted by OCL conditions, models during a
transformation may no longer conform to their
metamodel. A model conforms to the metamodel,
i.e., it is well-formed only if such restricting
invariants are fulfilled. For example, during the
SC2EHA transformation, the following invariant
ownsChildState needs to be valid. The
invariant expresses the condition “Every child
state of a composite state belongs to the same
statechart with the parent state.”

context Statechart inv ownsChildState:

self.state->forAll(p:State|

if p.oclIsTypeOf(CompState) then

p.oclAsType(CompState).content->

forAll(c:State|self.state->includes(c))

else true endif)

5.2. Validation of Transformation

This section focuses on features of the
OCL-based transformation framework that might
provide support for a semi-automated solution to
validate transformations.

5.2.1. Model Integration for Test Cases
Given a test case including the source model

MS and the expected target model MT . To check
the transformation with the test case means we
check if MT coincides with the resulting model
M
′

T . Instead of this, we could employ integration
rules in order to obtain an integration of MS

and MT : A mapping between these models is
established. The derivation is such that (MS ←

φ → MT)
trI1,m1
=⇒ . . .

trIn,mn
=⇒ (MS ← MC → MT),

where trIi are integration rules and mi are triple
matches. In this way the transformation can be
better animated for the modeler.

5.2.2. Animation of Transformation
After each transformation step, we can see

the combination of the source, correspondence,
and target part as a whole model. We could
employ OCL expressions in order to explore
such a model. Mappings within the current rule
application can be highlighted by OCL queries.
This makes it easier for the modeler to check if
the rule application is correct.

6. The RTL Language and Tool Support

Our approach for verification and validation
of transformation is realized with the support of
USE [11], which is a tool for analysis, reasoning,
verification and validation of UML/OCL
specifications. We define the RTL2 language
in order to specify triple rules incorporating
OCL. The declarative specification in textual
form can generate the different operations for
transformation scenarios as illustrated in Fig. 14.

With the full OCL support, USE allows us
to realize transformations and to ensure their
correctness as discussed in Sect. 5: We could

2RTL stands for Restricted Graph Transformation Language

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 55

check class invariants, pre- and postconditions
of operations, and properties of models, which
are expressed in OCL. In USE system states are
represented as object diagrams. System evolution
can be carried out using operations based on
basic state manipulations, such as (1) creating
and destroying objects or links and (2) modifying
attributes. In this way a transformation
framework based on the integration of TGGs
and OCL are completely covered by USE.
Figure 15 shows metamodels for the SC2EHA
transformation in USE.

c
o
n
t
e
x
t

R
u
l
e
C
o
l
l
e
c
t
i
o
n
:
:
s
i
m
p
S
t
a
t
e
T
o
p
_
c
o
E
v
o
l
(

m
a
t
c
h
S
L
:
T
u
p
l
e
(
s
c
:
S
t
a
t
e
c
h
a
r
t
,
_
s
_
n
a
m
e
:
S
t
r
i
n
g
)
,

m
a
t
c
h
T
L
:
T
u
p
l
e
(
e
h
a
:
E
H
A
,
a
u
t
:
A
u
t
H
)
,

m
a
t
c
h
C
L
:
T
u
p
l
e
(
s
2
e
:
S
C
2
E
H
A
)
)

p
r
e

s
i
m
p
S
t
a
t
e
T
o
p
_
c
o
E
v
o
l
_
p
r
e
:

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
m
a
t
c
h
S
L
:
T
u
p
l
e
(
s
c
:
S
t
a
t
e
c
h
a
r
t
,
_
s
_
n
a
m
e
:
S
t
r
i
n
g
)

l
e
t

s
c
:

S
t
a
t
e
c
h
a
r
t

=

m
a
t
c
h
S
L
.
s
c

i
n

l
e
t

_
s
_
n
a
m
e
:
S
t
r
i
n
g

=

m
a
t
c
h
S
L
.
_
s
_
n
a
m
e

i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
m
a
t
c
h
T
L
:
T
u
p
l
e
(
e
h
a
:
E
H
A
,
a
u
t
:
A
u
t
H
)

l
e
t

e
h
a
:

E
H
A

=

m
a
t
c
h
T
L
.
e
h
a

i
n

l
e
t

a
u
t
:

A
u
t
H

=

m
a
t
c
h
T
L
.
a
u
t

i
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
m
a
t
c
h
C
L
:
T
u
p
l
e
(
s
2
e
:
S
C
2
E
H
A
)

l
e
t

s
2
e
:

S
C
2
E
H
A

=

m
a
t
c
h
C
L
.
s
2
e

i
n

-
-
S
_
p
r
e
c
o
n
d
i
t
i
o
n

-
-
T
_
p
r
e
c
o
n
d
i
t
i
o
n

e
h
a
.
a
u
t
H
-
>
i
n
c
l
u
d
e
s
A
l
l
(
S
e
t
{
a
u
t
}
)

a
n
d

a
u
t
.
r
e
f
i
n
e
d
=
e
h
a
.
t
o
p

a
n
d

-
-
C
_
p
r
e
c
o
n
d
i
t
i
o
n

S
e
t
{
s
2
e
.
s
c
}
-
>
i
n
c
l
u
d
e
s
A
l
l
(
S
e
t
{
s
c
}
)

a
n
d

S
e
t
{
s
2
e
.
e
h
a
}
-
>
i
n
c
l
u
d
e
s
A
l
l
(
S
e
t
{
e
h
a
}
)

p
o
s
t

s
i
m
p
S
t
a
t
e
N
e
s
t
_
c
o
E
v
o
l
_
p
o
s
t
:

ru
le

 s
im

p
S

ta
te

T
o

p

c
h

e
c
k
S

o
u

rc
e

(

s
c
:S

ta
te

c
h

a
rt

){
s
:S

im
p

S
ta

te

(s

c
,s

):
O

w
n

s
S

ta
te

[s

.n
a

m
e

<
>

o
c
lU

n
d

e
fi
n

e
d

(S
tr

in
g

)]

[s

.c
o

n
ta

in
e

r=
o

c
lU

n
d

e
fi
n

e
d

(C
o

m
p

S
ta

te
)]

}c
h

e
c
k
T
a

rg
e

t(

e

h
a

:E
H

A

a

u
t:

A
u

tH

(e

h
a

,a
u

t)
:O

w
n

s
A

u
tH

[a

u
t.
re

fi
n

e
d

=
e

h
a

.t
o

p
]

){
s
H

:S
ta

te
H

(a

u
t,
s
H

):
C

o
n

ta
in

s
S

ta
te

H

}c
h

e
c
k
C

o
rr

(

(s

c
,e

h
a

)
a

s
 (

s
c
,e

h
a

)
in

 s
2

e
:S

C
2

E
H

A

){
((

S
ta

te
)s

,s
H

)
a

s
 (

s
c
,e

h
a

)
in

 s
2

s
H

:S
2

S
H

S

2
S

H
:[
s
e

lf
.e

h
a

.n
a

m
e

=
s
e

lf
.s

c
.n

a
m

e
]

}e
n

d (a
)

ru
le

 s
p

e
c
if
ic

a
ti
o

n
 i
n

 R
T

L
(b

)
th

e
 g

e
n

e
ra

te
d

 o
p

e
ra

ti
o

n
 f
o

r
c
o

-e
v
o

lu
ti
o

n

Fig. 14: RTL specification and generated OCL operations.

7. Related Work

Triple Graph Grammars (TGGs) have been
proposed in [8]. Since then, many works have
extended TGGs for software engineering [17].
Here we focus on the incorporation of TGGs
and OCL as a foundation for transformations as
proposed in our previous work [18, 19, 20]. This

work is an extended version of our previous work
with a focus on a formal foundation and an OCL-
based framework for model transformations.

Many approaches have been proposed for
model transformation. Most of them are
in line with the standard QVT [5] such as
ATL [3] and Kermeta [4]. Like our work, they
allow the developer to precisely present models
using metamodels and OCL. The advantage
of our approach is that it is based on the
integration of TGGs and OCL, which allows the
developer to automatically analyze and verify
transformations, and supports for bidirectional
model transformation.

Our approach for model transformation is
based on graph transformation like the work in
VMTS [6] and Fujaba [17]. Many other works
focus on the translation of the transformation to a
formal domain for model checking such as Alloy
in [21], Promela in [22], and Maude in [23].

In the field of Model-Driven Engineering,
testing and analysis of model transformations
has been subject to investigations (see, for
example, [24, 25]). The work [26] proposes a
technique for developing test cases for UML
and OCL models. By guiding the construction
process through so-called classifying terms,
the built test cases in form of object models
are classified into equivalence classes. In [9]
the authors propose a method to derive OCL
invariants from TGG and QVT transformations
in order to enable their verification and
analysis. Our approach targets to support
for both declarative and operational features of
transformations. We also introduce a new method
to extract invariants for TGG transformations.
Several other works focus on verification and
validation of transformations. The proposal
in [27] introduces a method to check semantic
equivalence between the initial model and the
generated code. The approach in [7] verifies
transformation correctness with respect to
semantic properties by model checking the
transition system of the source and target models.
The work in [10] aims at developing frameworks
for transformation testing.

56 D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57

Fig. 15: Metamodels for the SC2EHA transformation.

8. Conclusion

We have introduced an approach for
specifying, realizing, and ensuring the quality of
model transformations: (1) The foundation of the
approach is based on the integration of TGGs
and OCL. We have further formulated operation
contracts for derived triple rules in order to
realize them as OCL operations with two views:
Declarative OCL pre- and postconditions are
employed as operation contracts, and imperative
command sequences are taken as an operational
realization. (2) Both declarative and operational
views are obtained by an automatic translation
from the RTL specification of transformations.
This work also embodies a new method to extract
invariants for transformations. The central idea
is to view transformations as models. (3) An
OCL-based framework for model transformation
has been established. As being realized on a
full OCL support environment like USE, the
framework offers a support for validation and
verification of transformations.

Our future work includes the following issues.
We aim to enhance the technique to extract
invariants for transformation models. A control
structure like sequence diagram for the RTL
specification is also in the focus of our future
work. The goal is to increase the efficiency
of transformations. The technique to generate
test cases from the RTL specification will also
be explored. We will focus on other properties
of transformations such as the determinateness
of transformation. These are efforts towards a
full framework for quality assurance of model
transformations. Larger case studies must give
detailed feedback on the proposal.

Acknowledgement

This work has been supported by the project
QG.14.06, Vietnam National University, Hanoi.
We also thank anonymous reviewers for their
comments on the earlier version of this paper.

D.H. Dang, M. Gogolla / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 42–57 57

References

[1] S. Sendall, W. Kozaczynski, Model Transformation:
the Heart and Soul of Model-Driven Software
Development, IEEE Software 20 (5) (2003) 42– 45.

[2] T. Mens, P. V. Gorp, A taxonomy of model
transformation, Electronic Notes in Theoretical
Computer Science 152 (2006) 125 – 142.

[3] F. Jouault, F. Allilaire, J. Bzivin, I. Kurtev, ATL:
A Model Transformation Tool, Science of Computer
Programming 72 (1-2) (2008) 31–39.

[4] P.-A. Muller, F. Fleurey, J.-M. Jzquel, Weaving
Executability into Object-Oriented Meta-languages,
in: Proc. 8th. Int. Conf. Model Driven Engineering
Languages and Systems (MODELS), Vol. 3713,
Springer Berlin, 2005, pp. 264–278.

[5] OMG, Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Final
Adopted Specification ptc/07-07-07, OMG, 2007.

[6] L. Lengyel, T. Levendovszky, H. Charaf, Validated
Model Transformation-Driven Software Development,
Int. J. Comput. Appl. Technol. 31 (1/2) (2008) 106–
119.

[7] D. Varr, A. Pataricza, Automated Formal Verification
of Model Transformations, in: J. Jrjens, B. Rumpe,
R. France, E. B. Fernandez (Eds.), Proc. 3rd
Workshop on Critical Systems Development in UML
(UML/CSDUML), Technische Universitt Mnchen,
2003, pp. 63–78.

[8] A. Schrr, Specification of Graph Translators with
Triple Graph Grammars, in: M. Schmidt (Ed.), Proc.
20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science (WG), Vol. 903 of LNCS, Springer-
Verlag, 1995, pp. 151–163.

[9] J. Cabot, R. Claris, E. Guerra, J. d. Lara,
Verification and Validation of Declarative Model-to-
model Transformations Through Invariants, Journal of
Systems and Software 83 (2) (2010) 283–302.

[10] Y. Lin, J. Zhang, J. Gray, A Framework for Testing
Model Transformations, in: S. Beydeda, M. Book,
V. Gruhn (Eds.), Model-driven Software Development
- Research and Practice in Software Engineering,
Springer, 2005, pp. 219–236.

[11] M. Gogolla, F. Büttner, M. Richters, USE: A UML-
Based Specification Environment for Validating UML
and OCL, Science of Computer Programming 69 (1-3)
(2007) 27–34.

[12] J. Rumbaugh, I. Jacobson, G. Booch, The Unified
Modeling Language Reference Manual, 2nd Edition,
Addison-Wesley Professional, 2004.

[13] E. Mikk, Y. Lakhnechi, M. Siegel, Hierarchical
automata as model for statecharts, in: Advances in
Computing Science, Vol. 1345, Springer Berlin, 1997,
pp. 181–196.

[14] G. Pintr, I. Majzik, Modeling and Analysis of
Exception Handling by Using UML Statecharts,
in: Scientific Engineering of Distributed Java
Applications, Vol. 3409, LNCS, 2005, pp. 58–67.

[15] J. B. Warmer, A. G. Kleppe, The Object Constraint
Language: Precise Modeling with UML, 1st Edition,
Addison-Wesley Professional, 1998.

[16] M. Richters, A Precise Approach to Validating UML
Models and OCL Constraints, Ph.D. thesis, Universitt
Bremen, Fachbereich Mathematik und Informatik
(2002).

[17] J. Greenyer, E. Kindler, Reconciling TGGs with
QVT, in: G. Engels, B. Opdyke, D. C. Schmidt,
F. Weil (Eds.), Proc. 10th Int. Conf. Model Driven
Engineering Languages and Systems (MoDELS), Vol.
4735 of LNCS, Springer, 2007, pp. 16–30.

[18] D. Dang, M. Gogolla, An approach for quality
assurance of model transformations, in: D. V. Hung,
H. T. Vo, J. Sanders, L. T. Bui, S. B. Pham (Eds.), Proc.
4th Int. Conf. Knowledge and Systems Engineering
(KSE), IEEE Computer Society, 2012, pp. 223–230.

[19] D.-H. Dang, M. Gogolla, Precise Model-Driven
Transformation Based on Graphs and Metamodels, in:
D. V. Hung, P. Krishnan (Eds.), Proc. 7th Int. Conf.
Software Engineering and Formal Methods (SEFM),
IEEE Computer Society Press, 2009, pp. 307–316.

[20] D.-H. Dang, M. Gogolla, On Integrating OCL and
Triple Graph Grammars, in: M. Chaudron (Ed.),
Models in Software Engineering, Workshops and
Symposia at MODELS. Reports and Revised Selected
Papers, Vol. 5421, Springer, 2009, pp. 124–137.

[21] K. Anastasakis, B. Bordbar, J. M. Kster, Analysis
of Model Transformations via Alloy, in: Proc. 4th
Workshop on Model-Driven Engineering, Verification
and and Validation (MoDeVVA), 2007, pp. 47–56.

[22] D. Varr, Automated Formal Verification of Visual
Modeling Languages by Model Checking, Software
and Systems Modeling 3 (2) (2004) 85–113.

[23] J. E. Rivera, E. Guerra, J. d. Lara, A. Vallecillo,
Analyzing Rule-Based Behavioral Semantics of Visual
Modeling Languages with Maude, in: Software
Language Engineering, Vol. 5452, LNCS, 2008, pp.
54–73.

[24] L. A. Rahim, J. Whittle, A survey of approaches for
verifying model transformations, Software and System
Modeling 14 (2) (2015) 1003–1028.

[25] G. M. K. Selim, J. R. Cordy, J. Dingel, Model
transformation testing: The state of the art, in:
Proc. 1st Workshop on the Analysis of Model
Transformations, ACM, 2012, pp. 21–26.

[26] M. Gogolla, A. Vallecillo, L. Burgueño, F. Hilken,
Employing classifying terms for testing model
transformations, in: T. Lethbridge, J. Cabot,
A. Egyed (Eds.), Proc. 18th Int. Conf. Model Driven
Engineering Languages and Systems (MoDELS),
IEEE, 2015, pp. 312–321.

[27] H. Giese, S. Glesner, J. Leitner, W. Schfer, R. Wagner,
Towards Verified Model Transformations, in:
D. Hearnden, J. G. S, B. Baudry, N. Rapin (Eds.), Proc.
3rd Int. Workshop on Model Development, Validation
and Verification (MoDeVVA), Le Commissariat
l’Energie Atomique - CEA, 2006, pp. 78–93.

