
Towards Model-Checking Probabilistic Timed Automata against
Probabilistic Duration Properties

Dang Van Hung
Faculty of Information Technology

University of Engineering and Technology, VNU
email: dvh@vnu.edu.vn

Miaomiao Zhang
School of Software Engineering

Tongji University
email: miaomiao@mail.tongji.edu.cn

Pham Dinh Chinh
Faculty of Information Technology

University of Engineering and Technology, VNU
email: pdchinh@gmail.com

Abstract

In this paper, we consider a subclass of Probabilistic Du-
ration Calculus formula called Simple Probabilistic Dura-
tion Calculus (SPDC) as a language for specifying depend-
ability requirements for real-time systems, and address the
two problems: to decide if a probabilistic timed automa-
ton satisfies a SPDC formula, and to decide if there exists a
strategy of a probabilistic timed automaton satisfies a SPDC
formula. We prove that the both problems are decidable
for a class of SPDC called probabilistic linear duration in-
variants, and provide model checking algorithms for solv-
ing these problems.

1. Introduction

In 1992, Chaocen Zhou, Hoare C.A.R and Anders Ravn
introduced Duration Calculus [4] as a logic for reasoning
about real-time systems. The calculus has attracted a great
deal of attention, and was then developed further in many
other works because of its rich meanings. Many of those
works have been summarized in the monograph [18]. For
specifying the dependability of real-time systems, a kind
of probabilistic extension of Duration Calculus has been
introduced in [16, 9]. No rigorous syntax has been intro-
duced in these papers, and the authors just focused on the
development of techniques for reasoning instead of the ones
for checking. A version with a proof system of Probabilis-
tic Duration Calculus with infinite interval was then devel-
oped by Dimitar Guelev [6], and in [7] we have shown that
the calculus is useful for reasoning about QoS contracts in
component-based realtime systems.

For Duration Calculus, some techniques for checking if a
timed automaton satisfies a duration calculus formula writ-
ten in the form of linear duration invariants have been devel-
oped [17, 14, 13, 15, 3, 14]. However, to our knowledge, not
many works have been done for checking if a probabilistic
real-time system satisfies a PDC formula. This is, perhaps,
because in the model of probabilistic systems, there is too
much randomization and nondeterminism, and this makes
model checking too complicated.

Kwiatkowska et al in [11, 12] proposed a variant of prob-
abilistic timed automata that allows probabilistic choice
only at discrete transitions. To resolve the nondeterminism
between the passage of time and discrete transitions they
used the concept of strategy which is essentially a deter-
ministic schedule policy. Then, the set of executions of a
probabilistic timed automaton according to a strategy forms
a Markov chain, and hence the satisfaction of a probabilis-
tic timed CTL formula by this set can be defined, and then
based on the region graph of the timed automaton the satis-
faction of a probabilistic timed CTL formula by the timed
automaton can be also verified. The idea of fixing a strategy
when studying the probabilistic behavior of a probabilis-
tic timed automaton restricts the scope of the verification
problem significantly, making the checking problem more
tractable. Then, verifying the set of all strategies against
a given probabilistic property can be done by searching
for the “worst case” strategy according to the probabilis-
tic property and then apply the verification technique to it.
This idea is a motivation for us to reconsider the problem
of checking a probabilistic timed automaton for a PDC for-
mula that we gave up before.

In this paper, we introduced a simple probabilistic exten-
sion of DC called Probabilistic Duration Calculus for speci-

fying dependability requirements of real-time systems. The
extension is conservative in the sense that a formula of DC
is also a formula of PDC with semantics adapted to proba-
bilistic domain. PDC also consists of formulas representing
the constraints for the probability of the satisfaction of a DC
formula by a strategy for an interval. We use the behavioral
model proposed by Kwiatkowska et al to define the seman-
tics of our logic. Since probabilistic timed CTL and PDC
are not comparable, and since for many probabilistic prop-
erties PDC is more convenient to specify, a model checking
technique for checking probabilistic timed automata against
PDC properties is useful. To solve this problem, we first
develop a technique to decide if a strategy in a probabilistic
timed automaton satisfies a PDC formula of a certain form.
This technique is essentially an extension of our technique
developed earlier in [15, 13] to check if a timed automa-
ton satisfies a DC formula in the form of linear duration
invariants or discretisable DC formulas based on searching
in the integral reachability graph of the timed automaton.
Then, we generalize this technique to achieve our goal with
a model-checking algorithm.

The first version of this paper was published in [10]. In
this extended version, in addition to the problem of verifi-
cation, we formulate also the problem of strategy synthesis,
i.e. to decide if there is a strategy for a probabilistic timed
automaton that satisfies a probabilistic linear duration in-
variant and show that this problem is also solvable. We pro-
vide all proof details and algorithms for doing modelcheck.

Our paper is organized as follows. In the next section
we present the Probabilistic Timed Automata model. Sec-
tion 3 presents syntax and semantics of our PDC. Our main
results is presented in Section 4 where we formulate our
model checking problem and give our solution to it. The
last section is the conclusion of the paper.

2. Probabilistic Timed Automata

In this section, we recall the concepts of probabilistic
timed automata model and probabilistic timed structure as
its semantics from [2, 11]. We use a simple model of gas
burners to illustrate the concepts as its requirement specifi-
cation is a typical example for time duration properties.

Probability distributions and Markov decision processes
A discrete probability distribution over a set S is a mapping
p : S → [0, 1] such that the set {s | s ∈ S and p(s) >
0} is finite, and

∑
s∈S p(s) = 1. The set of all discrete

probability distributions over S is denoted by µ(S).
A Markov decision process is a tuple (Q, Steps), where

Q is a set of states, and Steps : Q → 2µ(Q) is a function as-
signing a set of probability distributions to each state. The
intuition is that the Markov decision process traverses the
state space by making transitions determined by Steps: in

a state s, the process selects nondeterministically a proba-
bility distribution p in Steps(s), and then makes a proba-
bilistic choice according to p as to which state to move to.
As in [11] we label the action selecting a probability distri-
bution with a letter from Σ, and assume that Steps : Q →
2Σ×µ(Q) and Σ is a set of actions. The intuition now be-
comes that the Markov decision process traverses the state
space by making transitions determined by Steps: in a state
s, the process performs an action a ∈ Σ selecting nonde-
terministically a probability distribution p in Steps(s), and
then makes a probabilistic choice according to p as to which
state to move to. So, a transition is of the form s

a,p−→ s′,
where (a, p) ∈ Σ × µ(Q) is the label of the transition. We
also assume a labeling function L : Q → 2AP , where AP
is a set of atomic propositions, that associates a state s with
the set of atomic propositions that hold at state s. Then, a
labeled Markov decision process is a tuple (Q, Steps, L).

Labeled paths (or execution sequences) are nonempty fi-
nite or infinite sequence of consecutive transitions of the
form

ω = s0
l0−→ s1

l1−→ s2
l2−→ . . . ,

where si are states and li are labels for transitions. For a
path ω, let first(ω) denote the first state of ω, and if ω
is finite then let last(ω) denote the last state of ω. |ω| is
the length of ω and is defined as the number of transition
occurrences in ω which is ∞ if ω is infinite. For k ≤ |ω|,
let ω(k) denote the kth state of ω, and step(ω, k) denote the

label of the kth transition in ω. For two paths ω = s0
l0−→

s1
l1−→ s2

l2−→ . . . sn and ω′ = s′0
l′0−→ s′1

l′1−→ s′2
l′2−→ . . .

such that sn = s′0, the concatenation of ω and ω′ is defined

as ωω′ = s0
l0−→ s1

l1−→ s2
l2−→ . . . sn

l′0−→ s′1
l′1−→ s′2

l′2−→
. . ..

Clocks, clock valuations, clock constraints: Let R≥0

denote the set of non negative real numbers. A clock is a
real-valued variable which increases at the same rate as real
time. Let C = {x1 . . . , xn} be a set of clocks. A clock val-
uation is a function ν : C → R≥0 that assigns a real value
to each clock. Let (R≥0)

C denote the set of all clock val-
uations, and 0 denote the clock valuation that assigns 0 to
each clock in C. For a set of clocks X ⊆ C we denote by
ν[X := 0] the clock valuation that assigns 0 to all clocks
in X and agrees with ν on all other clocks. For t ∈ R≥0,
we write ν + t for the clock valuation that assigns ν(x) + t
to each clock x ∈ C. A constraint over C is an expression
of the form xi ∼ c or xi − xj ∼ c, where i ̸= j, i, j ≤ n
and ∼∈ {<,≤, >,≥} and c ∈ N. A clock valuation ν sat-
isfies a clock constraint xi ∼ c (xi − xj ∼ c) iff ν(xi) ∼ c
(ν(xi) − ν(xj) ∼ c). A zone of C is a convex subset of
the valuation space (R≥0)

C described by a conjunction of
constraints. For a zone ζ and a set of clocks X ⊆ C the

set {ν[X := 0] | ν ∈ ζ} is also a zone, and is denoted by
ζ[X := 0]. Let ZC denote the set of all zones of C.

Probabilistic timed automata and probabilistic timed
structures Timed automata were introduced in [1] as a
model of real-time systems. They are extended with dis-
crete probability distribution to model probabilistic real-
time systems.

Definition 1 A probabilistic timed automaton (PTA) is a tu-
ple G = (S,L, s̄, C, inv, prob, ⟨τs⟩s∈S) consisting of

• a finite set S of nodes, a start node s̄ ∈ S, a finite set
C of clocks,

• a function L : S → 2AP assigning to each node of the
automaton a set of atomic propositions that are sup-
posed to be those that are true in that node, a function
inv : S → ZC assigning to each node an invariant
condition,

• a function prob : S → 2µ(S×2C) assigning to each
node a set of discrete probability distributions on S ×
2C ,

• a family of functions ⟨τs⟩s∈S where, for any s ∈ S ,
τs : prob(s) → ZC assigns to each p ∈ prob(s) an
enabling condition.

The last item in the definition says that all the probabilis-
tic choices according to a probabilistic distribution (selected
at a node) have the same enabling condition. The proba-
bilistic timed automaton behaves nearly in the same way as
a timed automaton does, except that it has to select a prob-
ability distribution at each discrete step.

We denote by ZC(G) the set of all clock zones occurring
in G,

ZC(G) = {inv(s) ∈ ZC | s ∈ S}∪
∪{τs(p) ∈ ZC | s ∈ S and p ∈ prob(s)}.

Example 1 Fig. 1 shows a probabilistic timed automaton
for a simple gas burner.

The system starts at the node s1, with the gas valve is
opened without flame being on, hence gas is leaking. At
this state, there are two nondeterministic choices. The first
choice denoted by transition a is that with the probability
1, the flame is turned on within one second (x ≤ 1) and
the system moves to node s3 for which gas is not leaking.
The second choice denoted by transition b is as follows:
with the probability 0.8, the flame is turned on within one
second and the system moves to node s3 for which gas is
not leaking, and with probability 0.2 the flame fails to be
on within one second, and the system moves to node s2 for
which gas is still leaking. In state s2, with probability 1, the

x>=30
x:=0

x<=2

x:=0

1

1

Nonleak
s3

x<=1
Leak

s1

Leak
x<=2

s2

x<=1

0.20.8

x:=0

x<=1 1x:=0
a

c

d

b

Figure 1. A probabilistic timed automaton for
a simple gas burner

gas valve is closed successfully within 2 seconds since the
time the system entered s1 last time, and the system moves
to node s3. At state s3, the gas burner will move to the
state s! only after it has stayed there at least 30 seconds.
Formally, in this example, the function prob is given as:
prob(s1) = {p0, p1}, prob(s2) = {p2}, prob(s3) = {p3},
where p0(s3, {x}) = 1, p1(s3, {x}) = 0.8, p1(s2, ∅) =
0.2. p2(s3, {x}) = 1, p3(s1, {x}) = 1, and τs1(p0) =
τs1(p1) = {x ≤ 1}, τs2(p2) = {x ≤ 2} and τs3(p3) =
{x ≥ 30}. The function inv is defined as inv(s1) = {x ≤
1}, inv(s2) = {x ≤ 2} and inv(s3) = true. The labels of
states are given by function L defined as L(s1) = L(s2) =
leak, and L(s3) = nonleak.

As in [11] we use probabilistic timed structures as un-
derlying semantics model for PTA.

Definition 2 A probabilistic timed structure M is a labeled
Markov decision process (Q, Steps, L) where Q is a set of
states, Steps : Q → 2R

≥0×µ(Q) is a function which assigns
to each state q ∈ Q a set Steps(q) of pairs of the form
(t, p), where t ∈ R≥0 and p ∈ µ(Q), and L : Q → 2AP is
a state labeling function.

Function Steps specifies the set of transitions that M
can choose nondeterministically at each state. Therefore, if
at state q ∈ Q, M chooses (t, p) ∈ Steps(q), then after t
time units have elapsed, a probabilistic transition is made to
state q′ with probability p(q′). A path of M is a nonempty
finite or infinite sequence:

ω = q0
t0,p0−→ q1

t1,p1−→ q2
t2,p2−→ . . .

where qi ∈ Q, (ti, pi) ∈ Steps(si), and pi(qi+1) > 0 for
all 0 ≤ i ≤ |ω|. For a given probabilistic timed structures

M we denote by Pathfin (Pathinf) the set of finite (in-
finite) paths, and by Pathfin(q) (Pathinf (q)) the set of
paths in Pathfin (Pathinf) that start from state q. Let ω
be infinite. A position of ω is a pair (i, t), where i ∈ N and
t ∈ R≥0 such that 0 ≤ t ≤ ti. The state at position (i, t)
is denoted by stateω(i, t). Given two positions (i, t) and
(j, t′) of ω, we say (j, t′) precedes (i, t) (in ω, written by
(j, t′) ≺ (i, t)) if j < i or j = i and t′ < t.

Definition 3 For any path ω of a probabilistic timed struc-
ture M and 0 ≤ i ≤ |ω| we define Dω(i), the elapsed time
until the ith transition, as follows: Dω(0) = 0 and for any
1 ≤ i ≤ |ω|:

Dω(i) =
∑i−1

j=0 tj .

An infinite path ω is said to be divergent iff for any t ∈ R≥0,
there exists j ∈ N such that Dω(j) > t. Let ω be infinite.
For each state q ∈ Q, we define a {0, 1}-valued function
qω : R≥0 → {0, 1} as

qω(t) =


1 iff there exists a position (i, t′) such

that t′ > 0, stateω(i, t′) = q and
t = Dω(i) + t′,

0 otherwise.

Intuitively, qω(t) = 1 means that in the path ω, state q is
present in an interval (t−δ, t] for some δ > 0, and otherwise
qω(t) = 0.

The concept of strategy was introduced in the literature
(see, e.g. Kwiakowska [11]) as a schedule for resolving
all the nondeterministic choices of the model. Note that
we have restricted ourselves to discrete probability distribu-
tions only.

Definition 4 A strategy (or scheduler) of a probabilistic
timed structure M = (Q, Steps, L) is a function A map-
ping every nonempty finite path ω of M to a pair (t, p) such
that A(ω) ∈ Steps(last(ω)), and the empty path ϵ to a
state in Q. Let A be the set of all strategies of M.

Let us denote a prefix of length i of ω by ω(i), and define
for a given strategy A

PathA
fin =

ω ∈ Pathfin

∣∣∣∣∣∣
A(ϵ) = ω(0), and
step(ω, i) = A(ω(i))
for 0 ≤ i < |ω|


PathA

inf =

ω ∈ Pathinf

∣∣∣∣∣∣
A(ϵ) = ω(0), and
step(ω, i) = A(ω(i))
for 0 ≤ i


Recall that step(ω, i) returns the label of the itransition in
ω. From Definition 4, all ω in PathA

fin and PathA
inf start

from the same state defined by A(ϵ), and intuitively they
represent the behaviors of M according to the scheduler A,

A sequential Markov chain MCA = (PathA
fin,PA) is

associated with a strategy A in a natural way to express the
executions of M according to A, where PA is defined as

PA(ω, ω′) =


p(q) if A(ω) = (t, p) and

ω′ = ω
t,p−→ q,

0 otherwise.

Let FA
Path be the smallest σ-algebra on PathA

inf

which for all ω′ ∈ PathA
fin contains the sets

{ω | ω ∈ PathA
inf and ω′ is a prefix of ω}. Let ProbAfin :

PathA
fin → [0, 1] be the mapping defined inductively on

the length of paths in PathA
fin as follows. If |ω| = 0

then ProbAfin(ω) = 1. Let ω′ ∈ PathA
fin be a finite

path of A. If ω′ = ω
t,p−→ q for some ω ∈ PathA

fin,
then we let ProbAfin(ω

′) = ProbAfin(ω)P
A(ω, ω′). The

measure ProbA on FA
Path is the unique measure such

that ProbA({ω | ω ∈ PathA
inf and ω′ is a prefix of ω}) =

ProbAfin(ω
′). In this paper, we assume that the strategies

under consideration are divergent in the probabilistic sense,
i.e. we assume that for any strategy A,

ProbA({ω | ω ∈ PathA
inf and ω is divergent}) = 1.

We now define the behavior of probabilistic timed automata
by associating every probabilistic timed automaton with a
probabilistic timed structure. A state of the structure con-
sists of a state of the automaton, and a valuation for the
clock variables.

Definition 5 For any probabilistic timed automaton G as in
Definition 1, define the probabilistic timed structure MG =
(QG, StepsG, LG) as follows.

• QG = {⟨s, ν⟩ | s ∈ S, ν ∈ (R≥0)
C}

• The function StepsG : QG → 2R
≥0×µ(QG) assigns

to each state in QG a set of transitions, each of which
takes the form (t, p̄) where t ∈ R≥0 and p̄ is a discrete
probabilistic distribution on Q, and is defined as:

– (t, p̄) ∈ StepsG(⟨s, ν⟩) if there exists p ∈
prob(s) such that (a) the valuation ν + t sat-
isfies τs(p) and ν + t′ satisfies inv(s) for all
0 ≤ t′ ≤ t, and (b) for any ⟨s′, ν′⟩ ∈ QG:
p̄(⟨s′, ν′⟩) =

∑
X⊆C∧(ν+t)[X:=0]=ν′ p(s′, X).

For convenience, we refer to p̄ as having type p,
denoted by type(p̄) = p.

– Let (t, p̄) ∈ StepsG(⟨s, ν⟩) if (a) the valuation
ν + t′ satisfies inv(s) for all 0 ≤ t′ ≤ t, and
(b) for any ⟨s′, ν′⟩ ∈ QG: p̄(⟨s′, ν′⟩) = 1 if
⟨s′, ν′⟩ = ⟨s, ν + t⟩, and p̄(⟨s′, ν′⟩ = 0 oth-
erwise. We refer to p̄ as having type ⊤, i.e.
type(p̄) = ⊤.

• The labeling function L : Q → 2AP is defined as:
LG(⟨s, ν⟩) = L(s) for all ⟨s, ν⟩ ∈ QG.

The second item of the definition of the function Steps
allows the automaton to stay in a state forever from a time
if the invariant for the state is never violated from that time,
and the corresponding path is infinite.

Any strategy for the timed structure MG is also called
strategy for probabilistic timed automaton G.

Example 2 The following path is a path of (a strategy of)
the timed structure of the timed automaton in Fig. 1:

ω = ⟨s1, 0⟩ .9,.8−→ ⟨s3, 0⟩ 31,1−→ ⟨s1, 0⟩ .7,.2−→
⟨s2, .7⟩ 1.2,1−→ ⟨s3, 0⟩

30,1−→ ⟨s3, 30⟩ 100,1−→
⟨s3, 130⟩ 100,1−→

For a given infinite divergent path ω of MG, for an
atomic proposition P ∈ AP , let us define a {0, 1}-
valued function Pω : R≥0 → {0, 1} by Pω(t) =
max{qω(t) | q = ⟨s, ν⟩ ∈ QG and P ∈ L(s)} (note that
there can be several regions ⟨s, ν⟩ in the path ω for which
P ∈ L(s)). So, Pω(t) = 1 means that there is an semi-
interval (t− δ, t] in which P holds. Otherwise, Pω(t) = 0.
Since we have assumed that ω is divergent, Pω has the fi-
nite variability, i.e. it has only finite number of discontinuity
points within any finite interval.

3. Probabilistic Duration Calculus

In this section we introduce a simple form of Probabilis-
tic Duration Calculus. A complete probabilistic interval
logic (which DC is based on) with a proof system has been
introduced in [6]. However the definition of the semantics
in that paper for the calculus is rather complicated and less
intuitive. The calculus introduced in this paper has an intu-
itive semantics based on probabilistic timed automata, and
has a simple grammar that allows to write formulas to rea-
son about the probability of the satisfaction of a duration
formula by a probabilistic timed automaton as well as to
specify real-time properties of the system itself.

Definition 6 Let R stand for relations (e.g. ≤,=), and F
stand for functions (e.g. +, −). The syntax of Probabilistic
Duration Calculus is defined as follows.

Φ ::= Ψ | [Ψ]⊒λ | ¬Φ | Φ ∧ Φ,
Ψ ::= R(η, . . . , η) | ¬Ψ | Ψ ∧Ψ | Ψ;Ψ,
η ::=

∫
S | F (η, . . . , η),

S ::= 1 | P |¬S | S ∧ S,

where Φ stands for Probabilistic Duration Calculus formu-
las, Ψ stands for Duration Calculus formulas, η stands for
duration terms, S stands for state expressions, and P is a
symbol in the set of atomic proposition AP .

We will use a probabilistic timed automaton G as under-
lying model to define the semantics for Probabilistic Du-
ration Calculus formulas as well as for Duration Calculus
formulas. Let Intv denote the set of all intervals on R≥0.

Given a path ω of MG according to a strategy A. The
interpretation of state expression S is a {0, 1}-valued func-
tion IωS : R≥0 → {0, 1} defined inductively as: Iω1 (t) = 1

for all t ∈ R≥0, IωP = Pω where Pω is defined as in the pre-
vious section, Iω¬S = 1−IωS , and IωS1∧S2 = min{IωS1, I

ω
S2}.

(Note that the operations on functions is defined point-
wise.) The interpretation of a term η is a function Iωη :

Intv → R≥0 defined as Iω∫
S
([a, b]) =

∫ b

a
IωS (t)dt, and

Iωf(η1,...,ηk)([a, b]) = f(Iωη1([a, b]), . . . , I
ω
ηk([a, b])) for any

interval [a, b] ∈ Intv.
A model for DC formulas is a pair (ω, [a, b]) of a diver-

gent path ω and an interval [a, b]. The semantics of Duration
Calculus formulas is essentially the satisfaction relation |=
between a model (ω, [a, b]) and a DC formula Ψ which is
defined as follows.

• (ω, [a, b]) |= R(η1, . . . , ηk) iff
R(Iωη1([a, b]), . . . , I

ω
ηk([a, b])),

• (ω, [a, b]) |= ¬Ψ iff (ω, [a, b]) ̸|= Ψ,

• (ω, [a, b]) |= Ψ1 ∧ Ψ2 iff (ω, [a, b]) |= Ψ1 and
(ω, [a, b]) |= Ψ2,

• (ω, [a, b]) |= Ψ1;Ψ2 iff (ω, [a,m]) |= Ψ1 and
(ω, [m, b]) |= Ψ2 for some m ∈ [a, b].

The probability measure ProbA will come to play role in
the definition of semantics of PDC formulas. A model for
a PDC formula consists of a strategy A of MG and a time
point t (recall that A defines an “initial” state, not necessary
to be ⟨s̄, 0⟩; to be meaningful, we may need the restriction
that the “initial” state of A is ⟨s̄, 0⟩, we will assume this
whenever necessary). The satisfaction relation |=PDC be-
tween PDC models (A, t) and PDC formulas Φ is defined
as:

• For a DC formula Ψ, (A, t) |=PDC Ψ iff
ProbA({ω | ω ∈ PathA

inf and ω is divergent and
(ω, [0, t]) |= Ψ}) = 1,

• For a DC formula Ψ, (A, t) |=PDC [Ψ]⊒λ iff
ProbA({ω | ω ∈ PathA

inf and ω is divergent and
(ω, [0, t]) |= Ψ}) ≥ λ,

• (A, t) |=PDC ¬Φ iff (A, t) ̸|=PDC Φ

• (A, t) |=PDC Φ1 ∧ Φ2 iff (A, t) |=PDC Φ1 and
(A, t) |=PDC Φ2.

The reason for a using a strategy to define a model of
PDC formulas is clear since the probability is defined just

for subsets of paths induced by A, not for a single path.
But the reason for selecting an interval of the form [0, t] in-
stead of [a, b] is just for convenience. The computation of
ProbA(B) for a set B of paths satisfying a DC formula Ψ
in an interval [a, b] needs the prefixes in the whole interval
[0, b] of paths in B. Intuitively, a strategy A of probabilistic
timed automaton G satisfies a DC formula Ψ in the prob-
abilistic setting at a time t iff the set of infinite divergent
paths ω produced by A that satisfy Ψ in the interval [0, t]
has the probability 1.

A DC formula Φ is said to be valid iff (ω, [a, b]) |= Φ
holds for any probabilistic timed automaton G, any path ω
of G, and any time interval [a, b]. A PDC formula Φ is said
to be valid iff (A, t) |=PDC Φ holds for any probabilistic
timed automaton G, strategy A of G, and t ∈ R≥0. In
[8, 18] a proof system for DC for deriving valid formulas
has been presented. It follows directly from the definition
of semantics that PDC is a conservative extension of DC.
Besides, some obvious properties of the probabilities can
be translated into valid formulas in PDC easily.

These observations are formulated in the following the-
orem.

Theorem 1 For any DC formulas Φ, Φ1 and Φ2

• [Φ]⊒1 ⇔ Φ is a a valid PDC formula,

• If Φ is a valid DC formula, then it is a valid PDC for-
mula,

• ((Φ1 ⇒ Φ2) ∧ [Φ1]⊒λ) ⇒ [Φ2]⊒λ is a valid PDC
formula

• ¬(Φ1∧Φ2)∧ [Φ1]⊒λ1∧ [Φ2]⊒λ2 ⇒ [Φ1∨Φ2]⊒λ1+λ2

is a valid PDC formula.

Proof: Straightforward from the definition of semantics of
DC and PDC.

As usual in DC, we use the following abbreviations:
ℓ=̂

∫
1, True=̂ℓ ≥ 0, 3Ψ=̂True; Ψ;True (there exists

a subinterval for which Ψ is satisfied), 2Ψ=̂¬3¬Ψ (for all
subintervals Ψ is satisfied), ⌈S⌉=̂

∫
S = ℓ ∧ ℓ > 0.

Note that PDC can express the safety and bounded live-
ness properties, but not unbounded liveness properties. For
example, PDC formula 2(⌈P ⌉; ℓ > b ⇒ ℓ ≤ b; ⌈Q⌉) says
that it is almost certain that whenever P becomes true for
non-zero time period, Q must become true for non-zero
time period within b time units.

Example 3 Let us consider the simple gas burner in Ex-
ample 1 (see Fig. 1). Let one of the requirements for the
gas burner is that for any observation interval the length
of which is not shorter than 60 seconds, the accumulated
leakage time is not longer than 4% of the length of the ob-
servation interval. This requirement is formalized as a DC

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s2,1)

(s2,2)
1

1

(s1,1)

(s3,0)

0.8 0.2

(s3,0)

(s3,30)

(s1,0)
1

1

30

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s2,1)

(s2,2)
1

1

(s1,1)

(s3,0)

0.8 0.2

(s2,1)

(s2,2)
1

(s3,0)

(s3,0)

(s3,30)

(s1,0)
1

1

30

1

1
(s1,1)

(s1,0)

0.20.8

(s3,0)

Figure 2. A part of a strategy A for the simple
gas burner

formula R =̂ 2(ℓ ≥ 60 ⇒
∫
leak ≤ 4% ∗ ℓ). (=̂ stands

for “being by definition”). Let ω be given as in Example 2.
Then, (ω, [0, 60]) ̸|= (ℓ ≥ 60 ⇒

∫
leak ≤ 4% ∗ ℓ). This

is so because the accumulated time for the leakage in the
interval [0, 60] is .9 + .7 + 1.2 = 2.8 which is longer than
4% ∗ 60 (= 2.4).

Let strategy A that schedules the system producing the
paths be as shown by the tree in Fig. 2 in which the dashed
edges represent discrete transitions labeled with probabil-
ity, and the non-dashed edges represent time advance transi-
tions labeled with their corresponding amount of time units.
Only those paths that have a prefix represented by the left-
most branch of the tree, satisfy the requirement R in the
interval [0, 60]. The set of these paths has the probability
0.8 ∗ 0.8 = 0.64. Hence, (A, 60) |= [R]⊒.6 (note that this
example is for the sake of illustrating the concepts only).

4. Model checking probabilistic timed au-
tomata against PDC properties

Duration Calculus formulas are highly undecidable, only
a very small class of chop free formulas is decidable (see
[5]). In this section, we develop a technique to verify
if a set of all PDC models generated by a probabilistic
timed automaton G satisfies a PDC formula in discrete time.

Namely, we consider the problem to decide A, t |=PDC

[Ψ]⊒λ for all A ∈ A and all t ∈ R≥0, where A is the set af
all integral strategies of a timed automaton G.

Depending on different forms of model sets we can have
different model checking problems as:

1. Single strategy single time: given a strategy A, given
a time t, to decide A, t |=PDC [Ψ]⊒λ. This prob-
lem is decidable. It is so because the fact that a
path ω satisfies Ψ in [0, t] or not depends only on the
smallest prefix ω(i) such that Dω(i) ≥ t. The set
{ω′ | ω′ ∈ PathA

fin and Dω′(|ω′|) ≥ t and Dω′(|ω′|−
1) < t} is finite, and computable if A is com-
putable. From the assumption, the set {ω′ | ω′ ∈
PathA

fin and Dω′(|ω′|) ≥ t and Dω′(|ω′| − 1) <
t and (ω′, [0, t]) |= Ψ} is computable, and finite.
Hence, ProbA({ω ∈ PathA

fin | (ω, [0, t]) |= Ψ}) is
computable, and therefore, A, t |=PDC [Ψ]⊒λ is de-
cidable.

2. Multiple strategy single time: Given a set of strategies
A which have a finite representation, given a time t,
decide A, t |=PDC [Ψ]⊒λ for all A ∈ A. If A is finite,
the problem is decidable. Hence the decidability of the
problem depends on the form of the computable set A
of strategies.

3. Single strategy with arbitrary time: Given a strategy A
which has a finite representation, decide if A, t |=PDC

[Ψ]⊒λ for all t ∈ R≥0. This problem in general is
undecidable even for λ = 1 because DC is undecidable
in general.

4. Multiple strategy with arbitrary time: Given a set of
strategies A which have a finite representation, decide
A, t |=PDC [Ψ]⊒λ for all A ∈ A and all t ∈ R≥0. This
problem is most general, and undecidable because DC
is undecidable in general.

5. Strategy synthesis: To find a strategy A such that
A, t |=PDC [Ψ]⊒λ for a given t or for all t.

In this section, We will restrict ourselves to some in-
stances of the problems mentioned in the items 3 and 4.

We are interested specially in the PDC formulas of the
form [Ψ]⊒λ, where Ψ has the form 2(a ≤ ℓ ≤ b ⇒∑k

i=1 ci
∫
Pi ≤ M) called linear duration invariants (LDI)

[17], where M , a and b are integers, b could be ∞. A de-
pendability requirement for the simple gas burner could be
expressed as [2(ℓ ≥ 60 ⇒

∫
leak ≤ 4% ∗ ℓ)]⊒.99 which

says that with the probability .99, the accumulated time for
gasleaking is not more than 4% of the observation time
whenever the observation time is longer than 60 seconds.
So, the (A, [0, 105]) |= [2(ℓ ≥ 60 ⇒

∫
leak ≤ 4%∗ℓ)]⊒.99

for any strategy A says about the reliability of the gas

burner: its requirement is satisfied with the probability .99
whenever it is operated for less than 105 seconds.

For simplicity and as motivated by the discretisability of
LDI [13] (i.e. an LDI is satisfied by all models if and only if
it is satisfied by all integral models), we restrict ourselves to
those strategies in which each transition is of the form (t, p)
where t ∈ N only.

Now, we recall a very important technique from timed
automata with some adaptations to probabilistic timed au-
tomata. Let, in the sequel, G be a PTA.

Integral Region Graph The key idea for reducing the
state space of timed automata to a finite space is the clock
equivalence relation introduced in [1]. In this subsection we
recall this standard notions restricted to the set NC of inte-
gral clock valuations. Let c be the max of integers occurring
in clock constraints in G.

Definition 7 The valuations ν, ν′ ∈ NC are clock equiva-
lent, denoted by ν ∼= ν′ iff

1. ∀x ∈ C, either ν(x) = ν′(x), or both ν(x) > c and
ν′(x) > c,

2. ∀x, x′ ∈ C, either ν(x) − ν(x′) = ν′(x) − ν′(x′), or
both ν(x)− ν(x′) > c and ν′(x)− ν′(x′) > c

One important property of the clock equivalence relation
∼= is that it has finite index and the valuations from the same
equivalence class satisfy the same set of clock constraints
as formulated as the following lemma (taken from [1, 13]):

Lemma 1 Let ν, ν′ ∈ NC , X ∈ 2C , and ν ∼= ν′. Then

1. ν[X := 0] ∼= ν′[X := 0]

2. for any zone ζ ∈ ZC(G) appearing in the description
of G, ν satisfies ζ if and only if ν′ satisfies ζ.

Let G be the set of all equivalence classes of ∼=. An
equivalence class α ∈ G satisfies a clock constraint ζ ∈
ZC(G) iff ν satisfies ζ for some ν ∈ α. From the item 2
of Lemma 1, it follows that α satisfies a clock constraint ζ
if and only if ν satisfies ζ for any ν ∈ α. An equivalence
class β is said to be the successor of an equivalence class α,
denoted by succ(α) iff for each ν ∈ α, there exists t ∈ N
such that ν + t ∈ β and ν + t′ ∈ α ∪ β for all t′ ≤ t
and t′ ∈ N. Let dα = sup{t ∈ N | ν ∈ α and ν + t ∈
succ(α) and ν + t′ ∈ α ∪ β for all t′ ≤ t and t′ ∈ N}. It
follows from the definition of succ(α) that either dα = 1 or
dα = ∞. The latter happens only when succ(α) satisfies
x > c for all x ∈ C. The nondeterministic discrete time be-
haviors of PTA G can now be described by the region graph
R(G) defined as follows.

Definition 8 The region graph R(G) is the Markov deci-
sion process (V ∗, Steps∗, L∗), where

• the vertex set V ∗ =̂ {⟨s, α⟩ | s ∈ S and α ∈ G and α
satisfies inv(s)}, and

• the transition function Steps∗ : V ∗ → 2N×µ(V ∗) is
defined as follows. For each vertex ⟨s, α⟩ ∈ V ∗:

1. If the invariant condition inv(s) is satisfied by
succ(α) then for any ⟨s′, β⟩ ∈ V ∗, let

ps,αsucc(⟨s′, β⟩) =
{

1 if ⟨s′, β⟩ = ⟨s, succ(α)⟩,
0 otherwise.

Then (t, ps,αsucc) ∈ Steps∗(s, α) for any t ∈ N,
0 < t ≤ dα. In this case, we say type(ps,αsucc) =
⊤.

2. If there exists p′ ∈ prob(s) such that α satis-
fies the enabling condition τs(p

′), then for any
⟨s′, β⟩ ∈ V ∗ let:

ps,αp′ (⟨s′, β⟩) =
∑

X⊆C,α[X:=0]=β

p′(s′, X)

Then, (0, ps,αp′) ∈ Steps∗(⟨s, α⟩). In this case,
we say type(ps,αp′) = p′.

In the definition of Steps∗ the item (1) represents the
time transitions, and the item (2) represents the discrete
transitions.

Definition 9 A strategy A∗ on the region graph is a func-
tion mapping every nonempty finite path ω∗ of R(G) to a
pair of integral time t and distribution p such that (t, p) ∈
Steps∗(last(ω∗)), and mapping ϵ to ⟨s̄, 0⟩.

By the definition of transition function Steps∗, the num-
ber of the (time) transitions of R(G) between a node (s, α)
and (s, succ(α)) is infinite when dα = ∞. In the graph,
those transitions are combined into one transition which
is labeled by (∗, 1), where 1 is the probability distribu-
tion assigning probability 1 to the transition from (s, α) to
(s, succ(α)). This transition expresses that we can choose
nondeterministically an arbitrary integer for time step, and
then with the probability 1, move to the region (s, succ(α)).
Therefore, a strategy A of R(G) will replace ∗ by an integer
each time it travels through this transition. From the defini-
tion of the region graph R(G) and the timed structure MG,
the paths in R(G) and the paths in MG are closely related.
Namely, if in MG there is a transition ⟨s, ν⟩ t,p̄−→ ⟨s′, ν′⟩,
where type(p̄) = p′ and t ∈ N then in R(G) there is

a path ⟨s, α0⟩
t1,p1−→ . . .

tk,pk−→ ⟨s, αk⟩
0,p

s,αk
p′−→ ⟨s′, β⟩ such

that type(pi) = ⊤, αi = succ(αi−1) for 1 ≤ i ≤ k,
type(ps,αk

p′) = p′, ν ∈ α0, ν′ ∈ β, inv(s) is satisfied
by all αi, t = t1 + . . . + tk, and αk satisfies τs(p

′). Fur-
thermore, if in MG there is a transition ⟨s, ν⟩ t,p̄−→ ⟨s, ν′⟩

where type(p̄) = ⊤ and t ∈ N then in R(G) there is a path
⟨s, α0⟩

t1,p1−→ . . .
tk,pk−→ ⟨s, αk⟩ such that type(pi) = ⊤, for

1 ≤ i ≤ k, αi = succ(αi−1) and satisfies inv(s), ν ∈ α0,
ν′ ∈ αk, t = t1 + . . .+ tk.

Conversely, for each transition in R(G) of the form

⟨s, α⟩ t,ps,α

−→ ⟨s′, β⟩, for any ν ∈ α there is a transition
⟨s, ν⟩ t,p̄−→ ⟨s′, ν′⟩ in MG with type(p̄) = type(ps,α)
and ν′ ∈ β.

From this observation each strategy A∗ of R(G) corre-
sponds one-to-one with an integral strategy A of MG in a
sense that will be made precise soon.

With each strategy A∗ of R(G) we can associate
a Markov chain MCA∗

= (PathA∗

fin,PA∗
) where for

ω∗, ω′∗ ∈ PathA∗

fin and ⟨s, α⟩, ⟨s′, α′⟩ such that
last(ω∗) = ⟨s, α⟩

PA∗
(ω∗, ω′∗) =


ps,α if A∗(ω∗) = (t, ps,α) and

ω′∗ = ω∗ (t,ps,α)−→ ⟨s′, α′⟩,
0 otherwise

Then, the probabilistic measure ProbA
∗

on the small-
est σ-algebra FA∗

Path on PathA∗

inf containing the sets of the
forms {ω∗ | ω∗ ∈ PathA∗

inf and ω′∗ is a prefix of ω∗} for
any ω′∗ ∈ PathA∗

fin is defined as before for a probabilistic
timed structure. Recall that from probabilistic timed au-
tomaton G, we have defined a probabilistic timed structure
MG which generates the probabilistic measure ProbA on
the smallest σ-algebra FA

Path on PathA
inf . From the rela-

tionship between strategies A∗ of R(G) and strategies A
of MG observed earlier we can derive a relationship for
ProbA

∗
and ProbA which plays key role in model check-

ing PDC formulas. The relation between R(G) and MG is
expressed formally as:

Lemma 2 Let A be an integral strategy of probabilistic
timed automaton G (i.e. an integral strategy of MG).
Then, there exists an strategy A∗ of the integral region
graph R(G) and an one-to-one mappings γ : PathA

inf →
PathA∗

inf such that:

1. ProbA(Ω) = ProbA
∗
(γ(Ω)) for all Ω ∈ FA

Path,

2. Pω(t) = Pγ(ω)(t) almost everywhere in R≥0 for all
ω ∈ PathA

inf

Proof. Let γ be the homomorphism defined from the re-
lation between transitions in MG and R(G) observed as
above. Given strategy A, strategy A∗ is defined based on
mapping γ which simulates A by splitting one step (t, p)
into several time steps (1, 1), . . . , (1, 1), (0, p) as given by
mapping γ. Item 2 follows directly from the construc-
tion of A∗, and Item 1 follows from the fact that for all

ω ∈ PathA
fin, ProbAfin(ω) = ProbA

∗

fin(γ(ω)). The de-
tailed proof is omitted here. 2

Item 2 of Lemma 2 implies that (ω, [a, b]) |= Ψ if and
only if (γ(ω), [a, b]) |= Ψ for any DC formula Ψ, for any
ω ∈ PathA

inf and interval [a, b]. Combined with Item 1, this
implies that A, t |=PDC Φ if and only if A∗, t |=PDC Φ for
any PDC formula Φ and t ∈ R≥0.

Depending on how integral strategy A of G is given,
the corresponding strategy A∗ of R(G) can be found easily
based on A. For simplicity, firstly we consider the problem
to decide if A, t |=PDC Φ for t ∈ R≥0. Now consider the
following case for PDC formula Φ:

Φ = [Ψ]⊒λ, Ψ = 2Ψ1 (1)

where Ψ1 is a DC formula (to be more general Ψ is not
necessary to be LDI). We have that{

ω

∣∣∣∣ ω ∈ PathA∗

inf and ω is divergent and
(ω, [0, n]) |= Ψ for all n ∈ N

}
=

∩
n≥0

{
ω

∣∣∣∣ ω ∈ PathA∗

inf and ω is divergent and
(ω, [0, n]) |= Ψ

}
.

Because the set sequence

{ω | ω ∈ PathA∗

infand ω is divergent and (ω, [0, n]) |= Ψ}

is decreasingly monotonic (according to the set inclusion
relation) when n increases, we have that ProbA

∗
({ω | ω ∈

PathA∗

inf and ω is divergent and (ω, [0, n]) |= Ψ for all
n ∈ N}) = infn∈N{ProbA

∗
({ω | ω ∈ PathA∗

inf and ω is
divergent and (ω, [0, n]) |= Ψ}).

Hence, if we can compute ProbA
∗
({ω | ω ∈ PathA∗

inf

and ω is divergent and (ω, [0, n]) |= Ψ for all n ∈ N}), we
can solve the problem to decide if A∗, t |= Φ for all t ≥ 0.

Let P be a path in the region graph R(G) that gener-
ates a DC model not satisfying Ψ1. Assume that a path in
PathA∗

inf that does not satisfy DC formula Ψ in an interval if
and only if it has a prefix that includes P . Then all the paths
in PathA∗

inf that satisfy Ψ for any interval are those that do
not include P . From integral graph R(G), we can find all
such paths P that can generate a DC model not satisfying
Ψ1, and can construct a graph that generate all the paths in
PathA∗

inf that do not include any such path P (i.e. those
paths that satisfy Ψ for any interval). We assume that any
two paths in P are not nested (if for two paths in P , one is
nested in the other, we can remove the later without chang-
ing the meaning of P). From the labels of the constructed
graph, the probability of the set of paths can be calculated.
To apply this procedure we need: (a) a technique to con-
struct the finite set of paths P in R(G) that correspond to
all DC models that do not satisfy Ψ1, (b) the set of paths
in PathA∗

inf that do not include any such path P are finitely
representable by a graph, and (c) a technique to compute the

probability of the set of infinite paths resulting from item
(b).

Regarding Item (a), the following lemma is from [13,
15], which says that given a linear duration invariant Ψ, the
set of paths that do not satisfy Ψ is computable by searching
in R(G).

Lemma 3

1. Given a path ω ∈ PathA∗

inf . A linear duration invari-
ant Ψ is satisfied by model (ω, [a, b]) for any interval
[a, b] if and only if it is satisfied by model (ω, [m,n])
for any integral interval [m,n].

2. The set of paths of integral region graph R(G) that
correspond to a DC integral model that does not satisfy
Ψ is constructable.

Regarding Item (b), we have to restrict ourselves to the
class of so-called finitely representable strategies A∗ of the
region graph R(G). a strategy A∗ of R(G) is finitely rep-
resentable iff for any path ω∗ of R(G) the value of A∗(ω∗)
depends only on the suffix of the length k of ω∗ for a fixed
k. An finitely representable strategy A∗ of R(G) for the
case k = 1 is called simple strategy. Such a finitely rep-
resentable strategy will be represented by a graph with no
nondeterminism, complete probabilistic choices, and fully
embedded in R(G).

Definition 10 Given a finitely representable strategy A∗. A
graph representation of A∗ is a deterministic Markov deci-
sion process G(A∗) = (VA∗ , StepsA∗ , LA∗) which is em-
bedded in the region graph R(G) = (V ∗, Steps∗, L∗) by a
mapping ρ, where ρ : VA∗ → V ∗, and the following condi-
tions are satisfied:

• There is an initial node called v0, and ρ(v0) = ⟨s̄, 0⟩,.

• G(A∗) is deterministic, i.e. StepsA∗(v) has only one
element, denoted by StepsA∗(v) itself,

• LA∗(v) = L∗(ρ(v)) for all v ∈ VA∗

• Let StepsA∗(v) = (t, p), where p is a distribution in
µ(VA∗). The restriction of ρ on {v′ ∈ VA∗ | p(v′) >
0} is an one-to-one mapping, and the distribution ρp
defined by ∀s ∈ V ∗ •ρp(s) = max{p(v′) | ρ(v′) = s}
(by our convention, max ∅ = 0) is a distribution in
µ(V ∗), and (t, ρp) ∈ Steps∗(ρ(v)).

Figure 3 shows the integral region graph of Simple Gas
Burner in Fig 1 and graph representations for finitely repre-
sentable strategies A∗

1 and A∗
2. The embedding mapping ρ

maps a node in A∗
1 and A∗

2 to the node with the same label
in the integral region graph.

Regarding Item (c) of the condition for applying the
checking procedure, we have

Lemma 4 Given a graph representation of a finitely rep-
resentable strategy A∗, G(A∗) = (VA∗ , StepsA∗ , LA∗).
Given a finite set P of finite paths of G(A∗). Let Ω be the
set of all infinite paths of G(A∗) starting from v0 which do
not include any path in P . The probability ProbA

∗
(Ω) is

computable.

Proof. Let ∆(v) be the set of all infinite paths of G(A∗)
starting from v which do not include any path in P , A∗

v be
the strategy represented by G(A∗) with v as initial node,
and P (v) = ProbA

∗
v (∆(v)). Let for each v, P(v) =

{ω′′|ω′′ ∈ P and ω′′ starts from v}. Let v+ be the set of
one-step paths formed by outgoing edges of v. Then, ∆(v)
satisfies: ∆(v) = (∪e∈v+(e∆(last(e))))\
(∪eω∈P(v)eω∆(last(ω))).

Although all paths in P are not nested in one
another, but some of them may overlap some suf-
fixes of ω for a given finite path ω. Let Pω be
the set of those such paths of P , Pω = {ω′ ∈
P|ω′ = xz and ω = yx for some paths x ̸= ϵ, y, z}. Then
ω∆(last(ω)) \∆(last(e)) =
∪ω′∈Pω (ω ⊖ ω′)ω′∆(last(ω′)), where for ω = yx (x ̸= ϵ)
and ω′ = xz ∈ Pω we define ω ⊖ ω′ = y. From the defini-
tion of the functions ProbA

∗
v , v ∈ VA∗ it follows

ProbA
∗
last(e)(∆(last(e)) \ ω∆(last(ω)))

= ProbA
∗
last(e)(∆(last(e)))−

ProbA
∗
last(e)(ω∆(last(ω)))+

ProbA
∗
last(e)(∪ω′∈Pω (ω ⊖ ω′)ω′∆(last(ω′)))

Because all paths in P are not nested in one another, for
eω, eω′′ ∈ P(v) with ω ̸= ω′′, we have ω∆(last(ω)) ∩
ω′′∆(last(ω′′)) = ∅. For simplicity, we assume that for
ω′
1, ω

′
2 ∈ Pω with ω′

1 ̸= ω′
2, (e(ω ⊖ ω′

1)ω
′
1∆(last(ω′

1))) ∩
(e(ω ⊖ ω′

2)ω
′
2∆(last(ω′

2))) = ∅. (without this assumption,
we have to modify the technique a little). Therefore, the
definition of ProbA

∗
n , n ∈ VA∗ implies

ProbA
∗
v (∆(v))

=
∑

e∈v+ ProbA
∗

fin(e)ProbA
∗
last(e)(∆(last(e)))

−
∑

eω∈P(v) ProbA
∗

fin(eω)ProbA
∗
last(ω)(∆(last(ω))))

+
∑

eω∈P(v)

∑
ω′∈Pω

(ProbA
∗

fin(e(ω ⊖ ω′)ω′)×
ProbA

∗
last(ω′)(∆(last(ω′))))

Let us denote ProbA
∗
v (∆(v)) by P (v). This means that

P (v), v ∈ VA∗ satisfy:

P (v) =

=
∑

e∈v+ ProbA
∗

fin(e) ∗ P (last(e))−∑
ω∈P(v) ProbA

∗

fin(ω) ∗ P (last(ω))+∑
eω∈P(v)

∑
ω′∈Pω

ProbA
∗

fin(e(ω ⊖ ω′)ω′)P (last(ω′))

and P (v) = 1 if no path in P is reachable from v. These
conditions form a linear equation system for P (v), v ∈

VA∗ . Solving it, we can find the value of P (v0) which is
the value of ProbA

∗
(Ω). 2

The following theorem follows immediately from these
lemmas.

Theorem 2 For a PDC formula Φ of the form (1) where
Ψ is a linear duration invariant, it is decidable whether
a finitely representable integral strategy A of probabilistic
timed automaton G satisfies Φ at any time point t.

Decision Procedure 1. Given a PTA G, given a finitely
representable strategy A of MG, our procedure to decide if
A, t |=PDC Φ for all t ∈ R≥0, where Φ = [Ψ]⊒λ, Ψ =
2Ψ1 and Ψ1 is an LDI, consists of the following steps:

1. Construct the integral region graph R(G) for G.

2. Construct the finitely representable strategy A∗ of
R(G) corresponding to A according to Lemma 2.

3. Construct the set P of all paths R(G) that corresponds
to a a DC model that does not satisfy Ψ1 (using the
technique mentioned in Lemma 3.

4. Find a graph representation of A∗ as mentioned in Def-
inition 10.

5. Let Ω be the set of all infinite paths of G(A∗) starting
from v0 which do not include any path in P . Com-
pute the probability ProbA

∗
(Ω) using the technique in

Lemma 4.If this probability is greater than λ, then the
answer is positive. Otherwise, give the negative an-
swer.

Note that using the same techniques, the model checking
problem mentioned in Item 3 at the beginning of this section
is solvable for a PDC formula Φ of the form (1) where Ψ is a
formula expressing the bounded liveness 2(⌈P ⌉; ℓ > b ⇒
ℓ ≤ b; ⌈Q⌉). In general, the problem is solvable for the
case that the set of paths of integral region graph R(G) that
correspond to a DC integral model that does not satisfy Ψ
is constructable. In [15] we proposed some form for such
formulas.

Example 4 Fig. 3 shows the integral region graph R(G)
of the simple gas burner in Fig. 1 and a two strategies A∗

1

and A∗
2 of the region graph. We will decide which one

among A∗
1 and A∗

2 satisfies the requirement R in Example
2 with a probability not lower than 0.6 using the technique
mentioned above.

Any infinite path ω of strategy A∗
1 that goes through the

path
P1 = (s1, 0)(s1, 1)(s2, 1)(s2, 2) contains a model that
does not satisfy R. Indeed, ω containing P1 should con-
tain an interval with length 60 for which the accumulated

1,1 1,1

0,1 0,1

1,1

0,0.8

0,1

s3,1 s3,2 s3,30 s3,>30

s1,0

s1,1

0,0.2

s2,1s2,2

0,1
1,1

*,1

1,1

0,0.8

s3,1 s3,2 s3,30

s1,0

s1,1

s2,2

0,1
1,1

1,1

0,1

1,1
0,1

s3,1 s3,2 s3,30

s1,0

s1,1

0,1

adversary A*2

0,0.2

1,1

1,1

0,0.8

s3,1 s3,2 s3,30

s1,0

s1,1

s2,2

0,1
1,1

1,1

0,1

1,1
0,1

s3,1 s3,2 s3,30

s1,0

s1,1

0,1

adversary A*2

0,0.2

1,1

1,1

0,1

1,1

0,0.8

s3,1 s3,2 s3,30

s1,0

s1,1

0,0.2

s2,1s2,2

0,1
1,1

s2,1

adversary A*1

(1)

(1)

(1) (1) (1)

Figure 3. Integral Region Graph for Gas Burner and Strategies A∗
1 and A∗

2

leakage time is at least 3 (3 > 2.4 = 4% ∗ 60). Any infi-
nite path ω of strategy A∗

1 that does not contain P1 as a sub
path satisfies R in any interval. Using the technique in the
proof of Lemma 4, we have the following system of linear
equations

P (⟨s1, 0⟩) = P (⟨s1, 1⟩ − 1 ∗ 0.2 ∗ 1 ∗ P (⟨s2, 2⟩
P (⟨s1, 1⟩) = 0.8P (⟨s3, 1⟩) + 0.2P (⟨s2, 1⟩)
P (⟨s2, 1⟩) = P (⟨s2, 2⟩) = P (⟨s3, 1⟩) = . . .

= P (⟨s1, 0⟩)

Solving this system, we get P (⟨s1, 0⟩) = 0. Hence, we can
conclude that A∗

1 does not satisfies requirement [R]⊒0.6.
Now consider strategy A∗

2. The linear equation system
for this case is:

P (⟨s1, 0⟩) = P (⟨s1, 1⟩ − 1 ∗ 0.2 ∗ 1 ∗ P (⟨s2, 2⟩
P (⟨s1, 1⟩) = 0.8P (⟨s3, 1⟩) + 0.2P (⟨s2, 1⟩)
P (⟨s2, 1⟩) = P (⟨s2, 2⟩) = P (⟨s3, 1⟩) = . . .

= P (⟨(s1, 0)(1)⟩) = 1

Solving this equation system, we have P (⟨s1, 0⟩) = 0.8.
Hence, (A∗

2, t) |=PDC [R]⊒0.8 for all t ∈ R≥0.
Now we return to our general problem mentioned at the

beginning of this section. We will solve this problem by
analyzing the graph R(G). Let A be the set of all strategies
of R(G). For A ∈ A let ∆A be the set of all infinite paths
of A starting from the initial vertex of R(G) that do not
include any path in P . Recall that in general a strategy A∗

is represented as a tree, and is embedded in the graph R(G)
in the same way as in Definition 10. Hence, we can identify
a node and a path in A∗ with a node and a path in R(G)
respectively.

For any strategy A∗ a node v of A∗ is said to be k-similar
to a node v′ of A∗ iff any outgoing path with the length k
of v is the same (when embedded to R(G)) as an outgoing
path with the length k of v′ and vice-versa. Since R(G) is a
finite graph, the number of subtrees representing probabilis-
tic choices with the height k is finite. Hence the k-similarity
relation between nodes of A∗ has finite index.

Let PA∗(v) be the probability of the set of all infinite
paths of A∗ starting from the node v of the tree representa-
tion of A∗ which do not include any path in P (with con-
dition that the current node is v). Let for each node v in
A∗, P(v) and Pω be defined as in the proof of Lemma 4.
Let v+A∗ be the set of one-step paths of A∗ formed by out-
going edges of v in the graph R(G). Similar to the proof of
Lemma 4, PA∗(v) satisfies:

PA∗(v) =∑
e∈v+

A∗
ProbA

∗

fin(e) ∗ PA∗(last(e))−∑
ω∈P(v) ProbA

∗

fin(ω) ∗ PA∗(last(ω))+

ProbA
∗
v (∪eω∈P(v) ∪ω′∈Pω (e(ω ⊖ ω′)ω′)∆(last(ω′)))

Let k = 1 + max{1, 2|ω| |ω ∈ P}. From these con-
ditions, we have that if nodes v and v′ are k-similar then
PA∗(v) = PA∗(v′). Hence, we can replace v by its equiva-
lence class of the k-similarity relation, and get a finite equa-
tion system which is the same as the one for some k-finitely
representable strategy B∗. Therefore, PA∗(v0) = PB∗(v′0)
where v0 and v′0 are the root of A∗ and B∗ respectively.
Consequently, for any strategy A∗, there is a k-finitely rep-
resentable B∗ such that PA∗(v0) = PB∗(v′0). This ensures
that inf{ProbA(∆A) | A ∈ A} = min{ProbA(∆A) | A ∈
Ak} where Ak denotes the set of all k-finitely representable
strategies in A.

Because Ak is a finite set, we can use the technique in
Lemma 4 to find ProbA(∆A) for all A ∈ Ak, and then
compute min{ProbA(∆A) | A ∈ Ak}. We formulate this
result as the following theorem.

Theorem 3 For a PDC formula Φ of the form (1) where Ψ
is a linear duration invariant, it is decidable whether Φ is
satisfied by all integral strategies of a probabilistic timed
automaton G at any time point.

The decision procedure of this theorem is formulated as
follows.

Decision Procedure 2. Given a PTA G, our procedure
to decide if A, t |=PDC Φ for all finitely representable
strategies A of MG, for all t ∈ R≥0, where Φ = [Ψ]⊒λ,
Ψ = 2Ψ1 and Ψ1 is an LDI, consists of the following steps:

1. Construct the integral region graph R(G) for G.

2. Construct the set P of all paths R(G) that corre-
sponds to a a DC model that does not satisfy Ψ1 (us-
ing the technique mentioned in Lemma 3. Let k =
1 +max{1, 2|ω| |ω ∈ P}.

3. Construct the finite set Ak of all k-finitely repre-
sentable strategies in A.

4. For each A ∈ Ak, find ProbA(∆A) using Lemma 4,
where ∆A be the set of all infinite paths of A starting
from the initial vertex of R(G) that do not include any
path in P .

5. Compute min{ProbA(∆A) | A ∈ Ak}. If this prob-
ability is greater than λ, then the answer is positive.
Otherwise, give the negative answer.

This procedure also helps to solve the strategy synthesis
problem. Namely, if we can find a strategy A ∈ Ak such
that ProbA(∆A) is greater than λ, then such a strategy is a
solution for the strategy synthesis problem. Therefore, we
have:

Theorem 4 Given a PTA G and a PDC formula Φ =
[Ψ]⊒λ, where Ψ = 2Ψ1 and Ψ1 is an LDI, we can decide
if there exists a finitely representable strategy A such that
A, t |=PDC [Ψ]⊒λ for all t, and in the case such a strategy
exists, we can find it.

5. Conclusion

We have presented the problem of checking probabilistic
timed automata against probabilistic duration calculus for-
mulas. The problem is decidable for a class of PDC formu-
las of the form [Ψ]⊒λ where Ψ is a linear duration invariant,

or a DC formula for bounded liveness. The technique for
model checking is an extension of our techniques for check-
ing if a timed automaton satisfies a linear duration invariant
using a searching method in the integral region graph of the
timed automaton. The complexity of the decision procedure
is high in general. Since the problem possesses a potential
high complexity, we have not implemented the technique
yet. Hope that with the increasing computing power in the
future, we can develop an effective tool for model-checking
based on the technique. At the mean time, we are looking
for some special cases of the problem which are simpler and
still useful for which our technique can work well, and then
implement it as a tool to assist checking the dependability
for embedded systems.

References

[1] R. Alur and D. Dill. A Theory of Timed Automata. Theo-
retical Computer Science, pages 183–235, 1994.

[2] C. Baier and M. Kwiatkowska. Model Checking for a Prob-
abilistic Branching Time Logic with Fairness. Distributed
Computing, 11(3):125–155, 1998.

[3] C. Changil and D. V. Hung. On verification of linear occur-
rence properties of real-time systems. Electr. Notes Theor.
Comput. Sci., 207:107–120, 2008.

[4] Z. Chaochen, C. Hoare, and A. P. Ravn. A calculus of dura-
tions. Information Processing Letters, 40(5):269–276, 1992.

[5] Z. Chaochen, H. M. R., and S. P. Decidability and Unde-
cidability Results in Duration Calculus. In Proc. of the 10th
Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 93), number 665 in LNCS. Springer Verlag,
1993.

[6] D. P. Guelev. Probabilistic interval temporal logic and du-
ration calculus with infinite intervals: Complete proof sys-
tems. Logical Methods in Computer Science, 3(3), 2007.

[7] D. P. Guelev and D. V. Hung. Reasoning about qos contracts
in the probabilistic duration calculus. Electr. Notes Theor.
Comput. Sci., 238(6):41–62, 2010.

[8] M. R. Hansen and C. Zhou. Duration calculus: Logical
foundations. Formal Aspects of Computing, 9:283–330,
1997.

[9] D. V. Hung and Z. Chaochen. Probabilistic duration calculus
for continuous time. Formal Asp. Comput., 11(1):21–44,
1999.

[10] D. V. Hung and M. Zhang. On verification of probabilis-
tic timed automata against probabilistic duration properties.
In 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA
2007), 21-24 August 2007, Daegu, Korea, pages 165–172,
2007.

[11] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.
Automatic verification of real-time systems with discrete
probability distributions. Theoretical Computer Science,
282(1):101–150, 2002.

[12] M. Kwiatkowska and D. Parker. Automated verification and
strategy synthesis for probabilistic systems. In D. V. Hung

and M. Ogawa, editors, Automated Technology for Verifi-
cation and Analysis, 11th International Symposium, ATVA
2013, volume 8172 of LNCS, pages 5–22, Hanoi, Vietnam,
October 15-18, 2013, 2013. Springer.

[13] P. H. Thai and D. V. Hung. Verifying linear duration con-
straints of timed automata. In Z. Liu and K. Araki, edi-
tors, Theoretical Aspects of Computing - ICTAC 2004, First
International Colloquium, Guiyang, China, September 20-
24, 2004, Revised Selected Papers, volume 3407 of Lecture
Notes in Computer Science, pages 295–309. Springer, 2004.

[14] M. Zhang, D. V. Hung, and Z. Liu. Verification of linear
duration invariants by model checking CTL properties. In
J. S. Fitzgerald, A. E. Haxthausen, and H. Yenigün, edi-
tors, Theoretical Aspects of Computing - ICTAC 2008, 5th
International Colloquium, Istanbul, Turkey, September 1-3,
2008. Proceedings, volume 5160 of Lecture Notes in Com-
puter Science, pages 395–409. Springer, 2008.

[15] J. Zhao and D. V. Hung. Checking timed automata for linear
duration properties. J. Comput. Sci. Technol., 15(5):423–
429, 2000.

[16] L. Zhiming, A. Ravn, E. Sorensen, and Z. Chaochen. To-
wards a Calculus of Systems Dependability. Journal of High
Integrity Systems, 1(1):49–65, 1994.

[17] C. Zhou. Linear duration invariants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, Third International
Symposium Organized Jointly with the Working Group Prov-
ably Correct Systems - ProCoS, Lübeck, Germany, Septem-
ber 19-23, Proceedings, pages 86–109, 1994.

[18] C. Zhou and M. R. Hansen. Duration Calculus: A Formal
Approach to Real-Time Systems. Springer-Verlag, February
2004.

