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Abstract 

Reconstruction of a set of genetic sequences (founders) that can combine together to form given genetic 
sequences (e.g. DNA) of individuals of a population is an important problem in evolutionary biology. Such 
reconstruction can be modeled as a combinatorial optimization problem, in which we have to find a set of 
founders upon that genetic sequences of the population can be generated using a smallest number of 
recombinations. In this paper we propose an ant colony optimization algorithm (ACO) based method, equipped 
with some important improvements, for the founder DNA sequence reconstruction problem. The proposed 
method yields excellent performance when validating on 108 test sets from three benchmark datasets. Comparing 
with the best by far corresponding method, our proposed method performs better in 45 test sets, equally well in 
44 and worse only in 19 sets. These experimental results demonstrate the efficacy and perspective of our 
proposed method.  
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*1. Introduction 

Today we have been observing a huge 
amount of biological sequences  
(e.g. DNA/genes, proteins) steadily being 
generated thanks to the unprecedentedly fast 
development of bio-technologies. Having 
genetic sequences of a population, researchers 
are often interested in the evolution history of 
the population, which can be traced back by  
re-constructing such given sequences from a 
small number of not-yet identified ancestors 
(namely founder sequences) using some genetic 
operators. Many biological studies have 
demonstrated the efficacy of this approach [1]. 
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To this end, the main challenge is at the 
problem of determining the plausible number of 
founder (ancestor) sequences and of finding 
themselves for a given finite offspring 
sequences. It is well known as the founder 
sequence reconstruction problem. 

Various methods have been recently 
proposed for reconstructing founder sequences, 
such as those based on dynamic programming 
[2], tree search [3], neighboring search [4] and 
metaheuristics [5]. In this paper we propose a 
ant colony optimization (ACO) based method 
for the founder sequence reconstruction 
problem. The manuscript is structured  
as follows: 

• Section 2 first formulates the problem of 
founder sequence reconstruction and Section 3 
then presents related works that have been 
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successfully applied to the problem with good 
results reported.  

• Our proposed algorithm, experimental 
results and comparisons with previously 
proposed state-of-the-art related methods are 
described in Section 4.  

• Section 5 gives some conclusions for the 
proposed method. It also suggests some potential 
follow-ups to improve the method further.  

2. Problem statement 

Founder Sequences Reconstruction Problem 
(FSRP) is defined as follows: 

Given a set of n  recombinants 

),,,(= 21 nCCCC  , each iC  is a sequence of 

length m  defined over a finite set S , i.e., 

,,= 21 iii CCC  with SCij   (which can be A, 

C, G, T if recombinants of interest are DNA 
sequences), we need to find a set of k  founder 

sequences ,,(= 21 FFF , each of length m  

defined over the set S . A set F  is considered 

valid if the set of recombinants C  can be 
reconstructed from F . This means that, each 

recombinant iC  can be decomposed into ip  

components ( mpi 1 ) 
ipririr

FFF ,,,
21
  so 

that each piece 
ijrF  ( ipj ,1,2,=  ) appears at 

least once at the same position as in iC . 

K 
L

A valid decomposition is considered 
reducible if two consecutive pieces do not 
appear in the same founder sequence. Among 
such reducible ones the FSRP aims to find out 
the optimal decompositions with a minimum 
number of required breakpoints. The number of 
breakpoints for a solution F  can be calculated 

using the formula: mpi

n

i
 1=

. 

In this paper we consider a common 
biological application in that each recombinant 
is a haplotype sequence, i.e. {0,1}=S , where 

0 and 1 are the two possible common alleles. 
On the left side of Figure 1 is an example of 

a set C  of 6  haplotype sequences, which is 
presented in form of a matrix. In the middle part 
is a valid founder sequences ( a , b  and c ) 
assuming that the number of founder sequences 
is set to 3. The optimal decomposition with 8 
breakpoints on the recombinants into sections, 

which are part of the founder sequences, is 
shown on the right-hand side. Breakpoints are 
marked with vertical bars. 

The FSRP was first introduced by Ukkonen 
[2] and has been proven NP-Hard [6] with 

2>k . 

3. Related work 

This section introduces two state-of-the-art 
algorithms proposed for the FSR problem, 
namely Recblock [3] and LNS [4], which have 
achieved excellent results on benchmark 
datasets. 

3.1. RecBlock algorithm 

RecBlock [3] is a FSR algorithm based on 
tree search. Given k  founder sequences each of 
length m , the algorithm encodes them as a 

matrix with k  rows and m  columns. RecBlock 

Figure 1. Haloptye sequences as recombinants, which are supposed to be originated from a set of 3 
predefined founder sequences using a decomposition with 8 breakpoints. 
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reviews the columns of the matrix from left to 

right. Vertex lV  at the depth l  of the search tree 

is part of a solution for the prefix part of the 

founders till the column l . Each vertex lV  is 

labeled with a number of breakpoints BP( lV ) in 

the process of reconstructing recombinants by far. 
Recblock uses some strategies to speed up 

the reconstruction:   
• Only consider the founder sequences in 

the alphabet order to avoid revisiting 
permutations.  

• A vertex is not extended further if its 
breakpoint number greater than that of the best 
solution so far.  

Given two vertices 
1l

V  and 
2l

V  at the depth 

of 1l  and 2l , respectively, if 

nVBPVBP ll  )()(
21

 (where n  is the 

number of recombinants), we may ignore 
1l

V  

for downstream analysis. 

3.2. Large neighborhood search algorithm 

LNS-1c is empirically considered the best 
algorithm proposed by far for solving the FSR 
problem [4]. This algorithm uses the nearest-
neighbor search strategy over a large 
neighborhood of constructed solutions. 

During searching the neighborhood, the 

algorithm picks out a set FFfree   beforehand, 

then uses the algorithm Recblock to search for 

alternative founder sequences in freeFF . 

Whenever a better solution is found out, LNS-
1c performs local search over neighborhood 
from scratch. 

4  Proposed method 

4.1. Ant colony optimization based FSR 

Ant colony optimization [7] (ACO) is a 
metaheuristic method simulating how ants in 
nature find paths from their nest to food 
sources, which turn out to be a reinforcement 
learning method. ACO solves optimization 
problems throughout many episodes, in each of 
which every ant travels to find solutions based 
on heuristic information and pheromone matrix 
  containing information learned. The best 

solution found in the current episode is used to 
learn (tune  ) and go for the next turn. 

Our proposed method for FSR has input and 
output as follows: 

Input: binary matrix C  of size mn*  

representing a recombinant set and k  is the 
number of the founder sequences to be found. 

Output: binary matrix F  of size mk *  
string representing the founder sequences so 
that ),( FCBP  is minimal. Here, ),( FCBP  is 

the number of breakpoints required to obtain C  
from F . 

In general, our ACO based method for FSR 
works as depicted in Algorithm 1: 

 

4.2. Structure graph for the FSR problem 

For the sake of visualization, we simulate 
the FSR problem as the problem of finding 
paths on a corresponding structure graph (see 
Figure 2). 

This structure graph includes a start, an end 

node and m  columns. Each column has k2  
vertices, of which each corresponds to a state of 
the corresponding column in the matrix F  of 
founder sequences. In particularly, each state is 
a binary string of length k . 

Each vertex has edges connecting to all 
ones in the next column. We can see all paths 
starting from the start to the end node has to go 
through every column once, at which one state 
is chosen. Each journey of ants travelling from 
the start to the end node therefore corresponds 
to a complete matrix of founder sequences. 

4.3. How ants travel on the structure graph 

When travelling on the structure graph, ants 
chose a next vertex to visit at random. The 
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algorithm is described in pseudo code in 
Algorithm ??. The probability at which a vertex 
is chosen is proportional to its level of 
compatibility to the matrix constructed by ants 
so far. This level is calculated through heuristic 
and pheromone information   . Particularly, 
the j  vertex in the column i  will be visited by 

an ant with a probability. 
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Where:   

• ja,  is the heuristic value (see 4.3.1).  

• ji ,  is the pheromone information (see 

4.3.2).  
•  ,  are two parameters of an ACO 

determining the correlation between the 
heuristic value and the pheromone information.  

 
4.3.1. Heuristic information 

 
While constructing the optimal solution, 

heuristic information is calculated according to 
the level of compatibility to the matrix that is 
yielded with the next moves of ants. In more 
details, when an ant is going to the j  vertex in 

the column i  the heuristic information is 
calculated as follows. 

),(

1
=,

jFCBP ai

ja



 

where: 

• iC  is the matrix of the first i  columns of 

matrix C .  

• aF  is the solution that ant a  has built 

(with 1i  columns).  

• jFa   is the matrix resulted when ant a  

intends to visit vertex j .  

To give an example, when 3=i  we have 
the structure graph as in Figure 3. 

 
Figure 3. Structure graph when i = 3. 

4.3.2. Pheromone information 

In the FSR problem, we denote ij  as the 

pheromone information of the thj  vertex in the 

column i  in the graph. Vertices being visited in 
the optimal solutions found in every searching 
phase by ants so far will be learnt such that they 
are of high priority to be visited in next phases. 

There are various pheromone updating 
methods that have been proposed for ACO. We 
select the Smoothed Max-Min Ant system [8] 
because it yields the best results in our 
experiments. In this regard, the pheromone 
information is updated after each loop as follows: 

ijijij   )(1=
 

where: 










Tjiif

Tjiif

max

min

ij ),(

),(
=





 
and T  is the optimal solution that ants found 
after the loop and ),( ji  is the vertex j  in the 

column i  of the structure graph.  

4.4. Improved ACO for FSRP 

4.4.1  Ants find solutions synchronously 
Note that the problem solution space is 

extremely large, if working independently with 
Figure 2. Structure graph for the ACO-based 

founder sequence reconstruction. 
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each other ants could hardly to concentrate on 
potential regions of the searching space. We 
therefore propose a search strategy for ants as 
follows: 

We let ants (in the set Ants) find solutions 
in parallel. When moving to the next column, 
instead of letting each ant choose the next 
vertex to go, we create a new ant set (called 
NewAnts) to prolong paths created by ants in 
the set Ants. In particular, if an ant a  prolongs 

the path for an ant a , it means that ant a  will 
go over the similar journey as ant a  before 
moving to the next vertex in the next column. 
When having NewAnts with the same size as 
Ants, we move to the next column and repeat 
such a new ant set building procedure from 
NewAnts until having a complete solution set. 
This procedure is depicted in pseudo code in 
Algorithm 3. 

For more details, when going from the 
column 1i  to the column i , each ant 

NewAntsa   will randomly choose an ant 

Antsa  to prolong its path and a vertex j  in 

the column i  to move forward. The ant a  is 
chosen with a probability also based on the 
heuristic and pheromone information, as 
follows: 
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4.4.2. Other improvements 
Neighborhood search: To lower the 

probability of missing good solutions while 
searching, we recommend using the reduced 
version of the algorithm RecBlock (3.2) to find 
other better solutions within the vicinity of the best 
by far solution found by ants. Instead of browsing 
the whole founder sequences, for each founder in 

the optimal solution found by far we use RecBlock 
to find another alternative better one.  

Searching along two dimensions: With the 
newly proposed search strategy, ants will 
quickly converge onto some solution regions, 
leading to a low diversity of found solutions. To 
improve this problem, apart from searching 
forward from the start to the end vertex, we also 
let ants search backward along the opposite 
direction (i.e. from the end back to start vertex). 
The search direction is periodically changed. 
When searching backward, the complete 
different heuristic information is used, leading 
to the potential of finding new solutions. 

5. Experimental results 

We compare our proposed FSR algorithm 
called ACOFSRP with the best corresponding 
one by far, i.e. LNS-1c [4] on 3 benchmark data 
sets, namely rnd (random), evo and ms (each 
contains 6 test set). All sequences in the first 
data set is randomly generated while those in 
the two latter ones are generated according to 
evolutionary models. All three are used in the 
study of LNS-1c. We do experiments with the 
founder sequence length 105,6,7,8,9,k  for 

each of such 3 test sets, leading to a total of  
108 tests. 

We also do experiments with different 
variants of ACOFSRP by not using either one 
of two improvements or both on the same three 
benchmark sets. Experimental results show that 
ACOFSRP outperforms its two variants, 
demonstrating the power of two proposed 
improvements in ACOFSRP (data not shown). 

Due to the random nature of ACOFSRP, we 
perform each test 20 times and the run time of 
each is limited to 10 hours. These numbers are 
1 and 72, respectively, in the study of LNS-1c 
[4]. The program is run on a CPU with 12GB 
RAM and 4GHz processor. Table ?? shows the 
detailed performance, in terms of the solution 
quality (number of required breakpoints) and 
the running time, of ACOFSRP and LNS-1c on 
three benchmark data sets. Note that the values 
for ACOFSRP are the averages of those from 
20 running times. 
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Table 1. Detailed performance of our ACOFSRP and LNS-1c on three benchmark sets 
 

# founders   ACOFSRP   LNS-1c   ACOFSRP   LNS-1c   ACOFSRP   LNS-1c 
  Value  Time(s)  Value  Time(s)  Value  Time(s)  Value  Time(s)  Value  Time(s)  Value  Time(s) 
  rnd-30_60   evo-30_60   ms-30_60  

5  372   4501   372   48427   145   3996   145   4   124   4520   124   209  
6  324   5695   324   44255   94   5394   94   53   99   5871   100   98859  
7  289   8136   293   906   65   7644   65   86   81   7194   81   17273  
8  263   12361   268   96096   45   12502   45   353   69   11135   70   54798  
9  240  22388   246  175659   36  27293   36   51   59  17377   60   2002  

10  221   34456   229   90559   28   36041   28   1   50   33364   50   38579  
  rnd-30_90   evo-30_90   ms-30_90 

5  585   6753   585   72903   203   6222   203   60   167   8933   167   747  
6  514   8501   516   79754   118   7491   118   52   136   10240   136   768  
7  461   12506   472   55418   69   12225   69   19   114   12369   114   30934  
8  417   19270   426   07173   43   20652   43   3   96   16197   97  126402  
9  382  31562   399  12679   35  35383   35   69   83  32062   85   216  

10  353   36055   370  244167   31   36056   31   28   73   36057   74   1648  
  rnd-30_150   evo-30_150   ms-30_150 

5  976   11244   976  134777   381   10419   381   893   252   11476   251   4986 
6  858   14045   865  216875   230   13178   230   72   189   16279   189   1421  
7  766   20532   778  140918   131   21422   131   72   154   24401   153   25361  
8  698   31618   710  250463   63   30531   63   59   125   32750   125   7590  
9  639  36054   666  87405   39  36071   39   1   103  36050   103  106022  

10  591   36094   619   21046   38   36120   35   12   88   36118   88   22794 
  rnd-50_100   evo-50_100   ms-50_100  

5 1211   9290   1213   65968   368   8644   368   145   310   12258   310   2192 
6 1084   12766   1097   60881   250   12072   250   113   251   16089   251   18039  
7  985   20193   1009   8769   174   21207   174   14706   210   25576   212   442  
8  910   31773   928   44145   123   34994   124   149   177   34846   178   51495  
9  845  36063   875  113792   99  36061   99   2507   156  36056   155  38758 

10  794   36098   830  221118   84   36128   83   3696   138   36137   137   30080 
  rnd-50_150   evo-50_150   ms-50_150  

5 1797   14459   1800  195873   522   12464   522   132   430   18911   429   48449 
6 1606   19572   1622  144474   319   19894   319   109   346   25681   346   26957 
7 1466   31384   1484  221180   205   33503   205   4   287   30661   286   1958 
8 1354   36044   1385   85140   135   36059   135   169   240   36047   241  130741 
9 1262  36130  1320  222181   101  36116   101   108   201  36072   203  170493  

10 1194   36122   1240  244166   83   36174   82   291   175   36120   174   8253 
  rnd-50_250   evo-50_250   ms-50_250  

5 3031   26742   3043  101246   1126   21491   1126   3060   615   23672   613   2171 
6 2698   34085   2725  172785   726   29774   726   1060   482   33887   479   48013 
7 2461   36056   2508  251951   450   36042   450   259   396   36050   396   16430 
8 2276   36090   2330  176486   258   36072   258   603   338   36076   336   23916 
9 2133  36137  2204  244380   141  36186   141  12100   288  36121   283  243608  

10 2012   36256   2097  257557   85   36269   83   275   257   36228   248   7413 
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On the random data set ( rnd ), ACOFSRP 
could procedure solutions better than LNS-1c 
for 32 among total 36 cases. On-par solutions 
are observed in the 4 remaining cases. 
Regarding the running time, ACOFSRP 
requires shorter time than LNS-1c for 32 cases 
while longer only for 4 remaining cases. 

On the data set evo , ACOFSRP is beated 
by LNS-1c in terms of excution time for all 
cases. Nevertheless, solutions yielded by 
ACOFSRP are on-par with those of LNS-1c for 
32 out of 36 cases. For the remaining 4 cases, 
the solution goodness scores by ACOFSRP are 
worse than those by LNS-1c (The small 
differences are observed, i.e. up to 3 
breakpoints). 

On the data set ms , ACOFSRP produced 
solutions are better than and equal to those 
yielded by LNS-1c for 12 and 10 cases, 
respectively. Interestingly, among such 22, 
ACOFSRP requires remarkably shorter runing 
time than LNS-1c for 12 cases. For the 
remaining 14 cases, ACOFSRP produce 
solutions worse than LNS-
1c. ./table_combine_all.tex 

6. Conclusion 

Founder gene sequence reconstruction 
(FSR) for a given population can be modeled as 
a combinatorial optimization problem, which 
has been proven NP-hard. In this paper we 
propose a novel method based on ant colony 
optimization algorithms (ACO) coupled with 
two other important improvements (i.e. local 
search and back forward search) to solve the 
founder gene sequence reconstruction problem. 
Experiments on the benchmark data sets show 
better or equal results for almost sets when 
comparing to the best corresponding method, 
demonstrating the efficacy and future 
perspectives of our proposed method. 
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