
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

59

Ant Colony Optimization based
Founder Sequence Reconstruction

Anh Vu Thi Ngoc1, Dinh Phuc Thai2,
Hoang Duc Nguyen2, Thanh Hai Dang2,∗, Dong Do Duc2

1The Hanoi college of Industrial Economics
2Faculty of Information Technology, VNU University of Engineering and Technology

Abstract

Reconstruction of a set of genetic sequences (founders) that can combine together to form given genetic
sequences (e.g. DNA) of individuals of a population is an important problem in evolutionary biology. Such
reconstruction can be modeled as a combinatorial optimization problem, in which we have to find a set of
founders upon that genetic sequences of the population can be generated using a smallest number of
recombinations. In this paper we propose an ant colony optimization algorithm (ACO) based method, equipped
with some important improvements, for the founder DNA sequence reconstruction problem. The proposed
method yields excellent performance when validating on 108 test sets from three benchmark datasets. Comparing
with the best by far corresponding method, our proposed method performs better in 45 test sets, equally well in
44 and worse only in 19 sets. These experimental results demonstrate the efficacy and perspective of our
proposed method.

Received 11 Sep 2017; Revised 31 Dec 2017; Accepted 31 Dec 2017

Keywords: Founder sequence reconstruction (FSR), Ancestor genes, Ant colony optimization (ACO).

*1. Introduction

Today we have been observing a huge
amount of biological sequences
(e.g. DNA/genes, proteins) steadily being
generated thanks to the unprecedentedly fast
development of bio-technologies. Having
genetic sequences of a population, researchers
are often interested in the evolution history of
the population, which can be traced back by
re-constructing such given sequences from a
small number of not-yet identified ancestors
(namely founder sequences) using some genetic
operators. Many biological studies have
demonstrated the efficacy of this approach [1].

* Corresponding author. E-mail.: hai.dang@vnu.edu.vn
 https://doi.org/10.25073/2588-1086/vnucsce.170

To this end, the main challenge is at the
problem of determining the plausible number of
founder (ancestor) sequences and of finding
themselves for a given finite offspring
sequences. It is well known as the founder
sequence reconstruction problem.

Various methods have been recently
proposed for reconstructing founder sequences,
such as those based on dynamic programming
[2], tree search [3], neighboring search [4] and
metaheuristics [5]. In this paper we propose a
ant colony optimization (ACO) based method
for the founder sequence reconstruction
problem. The manuscript is structured
as follows:

• Section 2 first formulates the problem of
founder sequence reconstruction and Section 3
then presents related works that have been

A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

60

successfully applied to the problem with good
results reported.

• Our proposed algorithm, experimental
results and comparisons with previously
proposed state-of-the-art related methods are
described in Section 4.

• Section 5 gives some conclusions for the
proposed method. It also suggests some potential
follow-ups to improve the method further.

2. Problem statement

Founder Sequences Reconstruction Problem
(FSRP) is defined as follows:

Given a set of n recombinants

),,,(= 21 nCCCC , each iC is a sequence of

length m defined over a finite set S , i.e.,

,,= 21 iii CCC with SCij (which can be A,

C, G, T if recombinants of interest are DNA
sequences), we need to find a set of k founder

sequences ,,(= 21 FFF , each of length m

defined over the set S . A set F is considered

valid if the set of recombinants C can be
reconstructed from F . This means that, each

recombinant iC can be decomposed into ip

components (mpi 1)
ipririr

FFF ,,,
21
 so

that each piece
ijrF (ipj ,1,2,=) appears at

least once at the same position as in iC .

K
L

A valid decomposition is considered
reducible if two consecutive pieces do not
appear in the same founder sequence. Among
such reducible ones the FSRP aims to find out
the optimal decompositions with a minimum
number of required breakpoints. The number of
breakpoints for a solution F can be calculated

using the formula: mpi

n

i
 1=

.

In this paper we consider a common
biological application in that each recombinant
is a haplotype sequence, i.e. {0,1}=S , where

0 and 1 are the two possible common alleles.
On the left side of Figure 1 is an example of

a set C of 6 haplotype sequences, which is
presented in form of a matrix. In the middle part
is a valid founder sequences (a , b and c)
assuming that the number of founder sequences
is set to 3. The optimal decomposition with 8
breakpoints on the recombinants into sections,

which are part of the founder sequences, is
shown on the right-hand side. Breakpoints are
marked with vertical bars.

The FSRP was first introduced by Ukkonen
[2] and has been proven NP-Hard [6] with

2>k .

3. Related work

This section introduces two state-of-the-art
algorithms proposed for the FSR problem,
namely Recblock [3] and LNS [4], which have
achieved excellent results on benchmark
datasets.

3.1. RecBlock algorithm

RecBlock [3] is a FSR algorithm based on
tree search. Given k founder sequences each of
length m , the algorithm encodes them as a

matrix with k rows and m columns. RecBlock

Figure 1. Haloptye sequences as recombinants, which are supposed to be originated from a set of 3
predefined founder sequences using a decomposition with 8 breakpoints.

A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65 61

reviews the columns of the matrix from left to

right. Vertex lV at the depth l of the search tree

is part of a solution for the prefix part of the

founders till the column l . Each vertex lV is

labeled with a number of breakpoints BP(lV) in

the process of reconstructing recombinants by far.
Recblock uses some strategies to speed up

the reconstruction:
• Only consider the founder sequences in

the alphabet order to avoid revisiting
permutations.

• A vertex is not extended further if its
breakpoint number greater than that of the best
solution so far.

Given two vertices
1l

V and
2l

V at the depth

of 1l and 2l , respectively, if

nVBPVBP ll)()(
21

 (where n is the

number of recombinants), we may ignore
1l

V

for downstream analysis.

3.2. Large neighborhood search algorithm

LNS-1c is empirically considered the best
algorithm proposed by far for solving the FSR
problem [4]. This algorithm uses the nearest-
neighbor search strategy over a large
neighborhood of constructed solutions.

During searching the neighborhood, the

algorithm picks out a set FFfree beforehand,

then uses the algorithm Recblock to search for

alternative founder sequences in freeFF .

Whenever a better solution is found out, LNS-
1c performs local search over neighborhood
from scratch.

4 Proposed method

4.1. Ant colony optimization based FSR

Ant colony optimization [7] (ACO) is a
metaheuristic method simulating how ants in
nature find paths from their nest to food
sources, which turn out to be a reinforcement
learning method. ACO solves optimization
problems throughout many episodes, in each of
which every ant travels to find solutions based
on heuristic information and pheromone matrix
 containing information learned. The best

solution found in the current episode is used to
learn (tune) and go for the next turn.

Our proposed method for FSR has input and
output as follows:

Input: binary matrix C of size mn*

representing a recombinant set and k is the
number of the founder sequences to be found.

Output: binary matrix F of size mk *
string representing the founder sequences so
that),(FCBP is minimal. Here,),(FCBP is

the number of breakpoints required to obtain C
from F .

In general, our ACO based method for FSR
works as depicted in Algorithm 1:

4.2. Structure graph for the FSR problem

For the sake of visualization, we simulate
the FSR problem as the problem of finding
paths on a corresponding structure graph (see
Figure 2).

This structure graph includes a start, an end

node and m columns. Each column has k2
vertices, of which each corresponds to a state of
the corresponding column in the matrix F of
founder sequences. In particularly, each state is
a binary string of length k .

Each vertex has edges connecting to all
ones in the next column. We can see all paths
starting from the start to the end node has to go
through every column once, at which one state
is chosen. Each journey of ants travelling from
the start to the end node therefore corresponds
to a complete matrix of founder sequences.

4.3. How ants travel on the structure graph

When travelling on the structure graph, ants
chose a next vertex to visit at random. The

A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

62

algorithm is described in pseudo code in
Algorithm ??. The probability at which a vertex
is chosen is proportional to its level of
compatibility to the matrix constructed by ants
so far. This level is calculated through heuristic
and pheromone information . Particularly,
the j vertex in the column i will be visited by

an ant with a probability.

][][

][][
=

,,

,,

,

lali
l

jaji

jiP

Where:

• ja, is the heuristic value (see 4.3.1).

• ji , is the pheromone information (see

4.3.2).
• , are two parameters of an ACO

determining the correlation between the
heuristic value and the pheromone information.

4.3.1. Heuristic information

While constructing the optimal solution,

heuristic information is calculated according to
the level of compatibility to the matrix that is
yielded with the next moves of ants. In more
details, when an ant is going to the j vertex in

the column i the heuristic information is
calculated as follows.

),(

1
=,

jFCBP ai

ja

where:

• iC is the matrix of the first i columns of

matrix C .

• aF is the solution that ant a has built

(with 1i columns).

• jFa is the matrix resulted when ant a

intends to visit vertex j .

To give an example, when 3=i we have
the structure graph as in Figure 3.

Figure 3. Structure graph when i = 3.

4.3.2. Pheromone information

In the FSR problem, we denote ij as the

pheromone information of the thj vertex in the

column i in the graph. Vertices being visited in
the optimal solutions found in every searching
phase by ants so far will be learnt such that they
are of high priority to be visited in next phases.

There are various pheromone updating
methods that have been proposed for ACO. We
select the Smoothed Max-Min Ant system [8]
because it yields the best results in our
experiments. In this regard, the pheromone
information is updated after each loop as follows:

ijijij)(1=

where:

Tjiif

Tjiif

max

min

ij),(

),(
=

and T is the optimal solution that ants found
after the loop and),(ji is the vertex j in the

column i of the structure graph.

4.4. Improved ACO for FSRP

4.4.1 Ants find solutions synchronously
Note that the problem solution space is

extremely large, if working independently with
Figure 2. Structure graph for the ACO-based

founder sequence reconstruction.

A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65 63

each other ants could hardly to concentrate on
potential regions of the searching space. We
therefore propose a search strategy for ants as
follows:

We let ants (in the set Ants) find solutions
in parallel. When moving to the next column,
instead of letting each ant choose the next
vertex to go, we create a new ant set (called
NewAnts) to prolong paths created by ants in
the set Ants. In particular, if an ant a prolongs

the path for an ant a , it means that ant a will
go over the similar journey as ant a before
moving to the next vertex in the next column.
When having NewAnts with the same size as
Ants, we move to the next column and repeat
such a new ant set building procedure from
NewAnts until having a complete solution set.
This procedure is depicted in pseudo code in
Algorithm 3.

For more details, when going from the
column 1i to the column i , each ant

NewAntsa will randomly choose an ant

Antsa to prolong its path and a vertex j in

the column i to move forward. The ant a is
chosen with a probability also based on the
heuristic and pheromone information, as
follows:

][][

][][
=

,,

,,

,

lxali
lxa

jaji

jaP

4.4.2. Other improvements
Neighborhood search: To lower the

probability of missing good solutions while
searching, we recommend using the reduced
version of the algorithm RecBlock (3.2) to find
other better solutions within the vicinity of the best
by far solution found by ants. Instead of browsing
the whole founder sequences, for each founder in

the optimal solution found by far we use RecBlock
to find another alternative better one.

Searching along two dimensions: With the
newly proposed search strategy, ants will
quickly converge onto some solution regions,
leading to a low diversity of found solutions. To
improve this problem, apart from searching
forward from the start to the end vertex, we also
let ants search backward along the opposite
direction (i.e. from the end back to start vertex).
The search direction is periodically changed.
When searching backward, the complete
different heuristic information is used, leading
to the potential of finding new solutions.

5. Experimental results

We compare our proposed FSR algorithm
called ACOFSRP with the best corresponding
one by far, i.e. LNS-1c [4] on 3 benchmark data
sets, namely rnd (random), evo and ms (each
contains 6 test set). All sequences in the first
data set is randomly generated while those in
the two latter ones are generated according to
evolutionary models. All three are used in the
study of LNS-1c. We do experiments with the
founder sequence length 105,6,7,8,9,k for

each of such 3 test sets, leading to a total of
108 tests.

We also do experiments with different
variants of ACOFSRP by not using either one
of two improvements or both on the same three
benchmark sets. Experimental results show that
ACOFSRP outperforms its two variants,
demonstrating the power of two proposed
improvements in ACOFSRP (data not shown).

Due to the random nature of ACOFSRP, we
perform each test 20 times and the run time of
each is limited to 10 hours. These numbers are
1 and 72, respectively, in the study of LNS-1c
[4]. The program is run on a CPU with 12GB
RAM and 4GHz processor. Table ?? shows the
detailed performance, in terms of the solution
quality (number of required breakpoints) and
the running time, of ACOFSRP and LNS-1c on
three benchmark data sets. Note that the values
for ACOFSRP are the averages of those from
20 running times.

A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

64

Table 1. Detailed performance of our ACOFSRP and LNS-1c on three benchmark sets

founders ACOFSRP LNS-1c ACOFSRP LNS-1c ACOFSRP LNS-1c
 Value Time(s) Value Time(s) Value Time(s) Value Time(s) Value Time(s) Value Time(s)
 rnd-30_60 evo-30_60 ms-30_60

5 372 4501 372 48427 145 3996 145 4 124 4520 124 209
6 324 5695 324 44255 94 5394 94 53 99 5871 100 98859
7 289 8136 293 906 65 7644 65 86 81 7194 81 17273
8 263 12361 268 96096 45 12502 45 353 69 11135 70 54798
9 240 22388 246 175659 36 27293 36 51 59 17377 60 2002

10 221 34456 229 90559 28 36041 28 1 50 33364 50 38579
 rnd-30_90 evo-30_90 ms-30_90

5 585 6753 585 72903 203 6222 203 60 167 8933 167 747
6 514 8501 516 79754 118 7491 118 52 136 10240 136 768
7 461 12506 472 55418 69 12225 69 19 114 12369 114 30934
8 417 19270 426 07173 43 20652 43 3 96 16197 97 126402
9 382 31562 399 12679 35 35383 35 69 83 32062 85 216

10 353 36055 370 244167 31 36056 31 28 73 36057 74 1648
 rnd-30_150 evo-30_150 ms-30_150

5 976 11244 976 134777 381 10419 381 893 252 11476 251 4986
6 858 14045 865 216875 230 13178 230 72 189 16279 189 1421
7 766 20532 778 140918 131 21422 131 72 154 24401 153 25361
8 698 31618 710 250463 63 30531 63 59 125 32750 125 7590
9 639 36054 666 87405 39 36071 39 1 103 36050 103 106022

10 591 36094 619 21046 38 36120 35 12 88 36118 88 22794
 rnd-50_100 evo-50_100 ms-50_100

5 1211 9290 1213 65968 368 8644 368 145 310 12258 310 2192
6 1084 12766 1097 60881 250 12072 250 113 251 16089 251 18039
7 985 20193 1009 8769 174 21207 174 14706 210 25576 212 442
8 910 31773 928 44145 123 34994 124 149 177 34846 178 51495
9 845 36063 875 113792 99 36061 99 2507 156 36056 155 38758

10 794 36098 830 221118 84 36128 83 3696 138 36137 137 30080
 rnd-50_150 evo-50_150 ms-50_150

5 1797 14459 1800 195873 522 12464 522 132 430 18911 429 48449
6 1606 19572 1622 144474 319 19894 319 109 346 25681 346 26957
7 1466 31384 1484 221180 205 33503 205 4 287 30661 286 1958
8 1354 36044 1385 85140 135 36059 135 169 240 36047 241 130741
9 1262 36130 1320 222181 101 36116 101 108 201 36072 203 170493

10 1194 36122 1240 244166 83 36174 82 291 175 36120 174 8253
 rnd-50_250 evo-50_250 ms-50_250

5 3031 26742 3043 101246 1126 21491 1126 3060 615 23672 613 2171
6 2698 34085 2725 172785 726 29774 726 1060 482 33887 479 48013
7 2461 36056 2508 251951 450 36042 450 259 396 36050 396 16430
8 2276 36090 2330 176486 258 36072 258 603 338 36076 336 23916
9 2133 36137 2204 244380 141 36186 141 12100 288 36121 283 243608

10 2012 36256 2097 257557 85 36269 83 275 257 36228 248 7413

A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65 65

On the random data set (rnd), ACOFSRP
could procedure solutions better than LNS-1c
for 32 among total 36 cases. On-par solutions
are observed in the 4 remaining cases.
Regarding the running time, ACOFSRP
requires shorter time than LNS-1c for 32 cases
while longer only for 4 remaining cases.

On the data set evo , ACOFSRP is beated
by LNS-1c in terms of excution time for all
cases. Nevertheless, solutions yielded by
ACOFSRP are on-par with those of LNS-1c for
32 out of 36 cases. For the remaining 4 cases,
the solution goodness scores by ACOFSRP are
worse than those by LNS-1c (The small
differences are observed, i.e. up to 3
breakpoints).

On the data set ms , ACOFSRP produced
solutions are better than and equal to those
yielded by LNS-1c for 12 and 10 cases,
respectively. Interestingly, among such 22,
ACOFSRP requires remarkably shorter runing
time than LNS-1c for 12 cases. For the
remaining 14 cases, ACOFSRP produce
solutions worse than LNS-
1c. ./table_combine_all.tex

6. Conclusion

Founder gene sequence reconstruction
(FSR) for a given population can be modeled as
a combinatorial optimization problem, which
has been proven NP-hard. In this paper we
propose a novel method based on ant colony
optimization algorithms (ACO) coupled with
two other important improvements (i.e. local
search and back forward search) to solve the
founder gene sequence reconstruction problem.
Experiments on the benchmark data sets show
better or equal results for almost sets when
comparing to the best corresponding method,
demonstrating the efficacy and future
perspectives of our proposed method.

Acknowledgments

This work has been supported by Vietnam
National University, Hanoi (VNU), under
Project No. QG.15.21.

References

[1] G. Tyson, J. Chapman, H. Philip, E. Allen, R.
Ram, P. M. Richardson, V. Solovyev, E. M.
Rubin, D. Rokhsar, J. F. Banfield, Community
structure and metabolism through
reconstruction of microbial genomes from the
environment, Nature 428 (2004) 37–43.

[2] E. Ukkonen, Finding Founder Sequences from
a Set of Recombinants, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002,
pp. 277–286.

[3] A. Roli, C. Blum, Tabu Search for the Founder
Sequence Reconstruction Problem: A
Preliminary Study, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, pp. 1035–1042.

[4] A. Roli, S. Benedettini, T. StÃ¼tzle, C. Blum,
Large neighbourhood search algorithms for the
founder sequence reconstruction problem,
Computers Operations Research 39 (2) (2012)
pp. 213–224.

[5] C. Blum, A. Roli, Metaheuristics in
combinatorial optimization: Overview and
conceptual comparison, ACM Comput. Surv.
35 (3) (2003) 268–308.

[6] P. Rastas, E. Ukkonen, Haplotype inference via
hierarchical genotype parsing, in: Proceedings
of the 7th International Conference on
Algorithms in Bioinformatics, WABI’07,
Springer-Verlag, Berlin, Heidelberg, 2007,
pp. 85–97.

[7] M. Dorigo, T. Stützle, Ant Colony
Optimization, Bradford Company, Scituate,
MA, USA, 2004.

[8] D. Do Duc, H. Hoang Xuan, Smooth and three-
levels ant systems: Novel aco algorithms for
solving traveling salesman problem, in: Ad.
Cont. to the International Conference: IEEE-
RIVF 2010, pp. 33–37.

G
g

