

VNU Journal of Science: Computer Science and Communication Engineering

KHOA HOC

Journal homepage: http://www.jcsce.vnu.edu.vn/index.php/jcsce

Original Article Thermal Distribution and Reliability Prediction of 3D Networks-on-Chip

Khanh N. Dang^{1,*}, Xuan-Tu Tran¹, Akram Ben Ahmed², Abderazek Ben Abdallah³

¹VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam ²National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan ³University of Aizu, Aizu-Wakamatsu, Japan

Received 02 April 2020 Revised 02 June 2020; Accepted 06 June 2020

Abstract: This paper investigates the thermal distribution and reliability prediction of 3D-NoCs. The paper proposes a new method to help simulate the temperature (both steady and transient) using traffic values from realistic and synthetic benchmarks and the power consumption from the standard VLSI design flow. In this paper, the thermal behavior and reliability of the Monolithic design and TSV (Through-Silicon Via) based design were compared and the ability to implement the thermal dissipation via a mechanism to help reduce the operating temperature was explored. The experiment results show that the proposed method has an extremely short execution time in comparison to the accelerated lifetime test and that lower index layers have higher operating temperatures and are more critical in terms of reliability.

Keywords: Thermal dissipation, reliability, Through-Silicon Via, 3D-ICs, 3D-NoCs

1. Introduction

3D Networks-on-Chip (3D-NoCs), the result of combining Networks-on-Chip (NoCs) [1] with 3D Integrated Circuit (3D-ICs) [2], is considered as one the most promising technologies for IC design [3]. By applying parallelism and scalability of the NoCs to 3D-ICs, we obtain lower power consumption, shorter wire length while reducing the design area cost by several times. Among several 3D-ICs, Through-Silicon-Via, which constitutes

an inter-layer wire, is one of the near-future technologies. Monolithic 3D ICs is another method to implement the 3D-Ics [4, 5]. With both technologies, we expect to have multiple layers of the system. To support communication within the system, 3D-NoCs offer a router-based infrastructure where the 3D mesh topology is used.

Despite their several advantages, 3D-ICs and 3D-NoCs have to confront the thermal dissipation issue. The temperature variation between the two layers has been reported to reach up to 10°C [6]. *Cuesta et al.*[7] also conducted an experiment of four-layer and 48 cores, which raised the temperature variation up to 10°C within a single layer. The main reason

E-mail address: khanh.n.dang@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.245

^{*} Corresponding author.

for thermal dissipation difficulty in 3D-ICs is that the top layers act as obstacles that prevent the heat from being dissipated by the heatsink. To solve this problem, fluid cooling [7] or thermal cooling TSV [8] has been proposed.

By having higher operating temperatures, it is apparent that 3D-NoCs easily encounter thermal throttling. Moreover, in terms of reliability, there is an expected acceleration in the failure rate (or a reduction in Mean-time-to-failure). For semiconductor devices, one of the most well-known models of thermal impact on reliability is the Black's model [9] where the fault rate acceleration π_T is:

$$\pi_T = A(J)^n \times e^{-\frac{E_a}{k_B T}} \#(1)$$

$$\pi_T = A(J)^n \times e^{-\frac{E_a}{k_B T}} \tag{1}$$

where A is constant, J is the energy, k_B is Boltzmann constant, E_a is activation energy and T is the temperature in Kelvin. It should be noted that the activation energy of Copper is much higher than CMOS material, which makes TSV more vulnerable than the normal gates. Since TSV can act as a cooling device, TSV-based NoC has a lower operating temperature than Monolithic; however, TSV also has lower reliability. Therefore, the reliability differences between Monolithic and TSV-based 3D-ICs need to be investigated.

While the thermal behavior can be extracted by using the real-chip, reliability cannot be directly measured. Most industrial methods are based on Black's model [9] in Equation 1 by baking the chip under high temperature to accelerate the failure [10-12].

This work investigates the impact of the thermal dissipation difficulty of Network on Chip based 3D-ICs by proposing a method to predict the temperature and MTTF of each region of the targeted system. We first use commercial EDA tools to design and analyze the power and energy per data bit of 3D-NoC router. Then, we extract the number of bits and the operating time of synthetic and PARSEC benchmarks to obtain the average power consumption of each router inside the network.

We then use a thermal emulation tool named Hotspot 6.0 [13] to obtain the steady grid temperature of the system. By adopting the Black's model of reliability, the tool is further used for reliability prediction of the system. By following the method, designers can fast extract the potential hotspots inside the 3D-ICs and predict the potential of the vulnerable regions due to high operating temperatures. The results suggest possible mapping of fluid cooling or thermal TSV insertion [7]. This work contributes by:

- Providing a platform to model the power, temperature, and reliability of any NoC system. Here, we specify for 3D-NoCs but the technique is general and can be applied to the traditional planar NoC systems;
- Analysing the reliability of Monolithic and TSV-based NoCs. While TSV-based NoCs have a lower operating temperature, TSV's material (Copper) has lower reliability; and
- Exploring and comparing different layout strategies and cooling methods.

The remaining of this paper is organized as follows: Section 2 overviews the existing works; Section 3 describes the proposed method; Experiment results are discussed in Section 4; and Section 5 concludes this work.

2. Related Works

This section overviews the literature related to the proposed method. Specifically, the works on power model, thermal estimation and the reliability estimations for 3D-NoCs are overviewed.

2.1. Power Modeling for 3D Network-on-Chip

To measure the power consumption of a 3D-IC, the straight forward method is to set up a measuring system [16]. However, it is difficult to obtain such a system because designing and producing the chip are expensive, time-consuming while designers need to estimate its value before having it produced.

Therefore, modeling the power consumption is a necessary step.

To model the power consumption of any digital IC system, two major types of power, static and dynamic, are considered as follows:

 $P = P_{dynamic} + P_{static} = sf_cC_LV_{DD}^2 + I_{off}V_{DD}$ (2) $P = P_{dynamic} + P_{static} = sf_cC_LV_{DD}^2 + I_{off}V_{DD}$ #(2) where s is the switching probability (or activity ratio), f_c is the clock frequency, C_L is the load capacitance, I_{off} is the leakage current and V_{DD} is the supply voltage. Based on Equation 2, common EDA tools can estimate the power consumption based on the parameter of the library and the switching activity. In fact, power estimation tool such as PrimeTime requires switching activity to obtain the most accurate result.

Equation 2 can be used to estimate the power consumption of any circuit; however, for a fast prediction, the power consumption of NoCs can be obtained through its switching activity. The dynamic power consumption can be estimated based on the number of flits going through the router during simulation. Meanwhile, the static power consumption is constant for the same configuration (voltage, frequency, design). For instance, ORION 2.0 [17] models power consumption as dynamic and static power. Physical parameters such as wire length and leakage current are calculated to estimate the static power. In [18], the authors use regression to estimate the power consumption of the system based on the existing values. Other works [19, 20] also consider dynamic voltage frequency scaling in power consumption.

Although these works can help estimate the power consumption of the proposed system, it is observed that their estimates are not quite accurate. Therefore, in this work, we propose our own power extraction method. We use the EDA tools to estimate the dynamic and static power and then combine them with the switching of the routers under the used benchmarks.

2.2. Thermal Behavior Prediction for 3D Network-on-Chip

Once we have obtained the power consumption of the modules within a system, we can estimate the temperature of the chip. HotSpot [13] is one of the ealier tools to help estimate the temperature grid. The 6th version of HotSpot can now estimate the temperature of 3D-ICs. There are also other tools such as 3D-ICE [14] and MTA [15]. While MTA performs a similar task as Hotspot by using the finite element method, 3D-ICE focuses on the potential of liquid cooling. *Cuesta et al.* [7] also explored different layout strategies and liquid cooling for 3D-ICs.

2.3. Reliability Prediction for 3D Network-on-Chip

The possibility of predicting the system's temperature enables the estimation of its potential reliability. As previously metioned, Black's model [9] in Equation 1 is one of the first models for CMOS designs. MIL-HDBK-217F of the US Military [22] also released its own model of reliability acceleration related to temperature. HRD4 from industry [23] and RAMP from academics [24] are the other two models to estimate the reliability of the system.

Among these models, HRD4 considers the reliability as the same for the chip bellow 70°C. The rest of the models follow the exponential acceleration with operation temperature (in Kelvin).

On the other hand, industrial approaches to reliability prediction [10-12] are to bake the chip to high temperature and measure the average time to fail the samples. By using Black's model, the potential lifetime reliability under normal temperature can be estimated.

3. Proposed Method

Figure 1 shows the proposed method for the thermal and reliability prediction of 3D-NoCs. We first built Verilog HDL of 3D-NoC. Then, synthesizing, placing and routing are the following steps to obtain the layout, netlist file, wire length, and physical parameters.

Next, we perform post-layout simulation and use Synopsys PrimeTime to extract the power consumption of the system. Based on the number of data-bits, we further extract the energy per data bit. It is now possible to estimate the power consumption of all benchmarks by multiplying the obtained value with the number of bits per router per time. The power consumption of each router is taken to the temperature estimator tool (Hotspot 6.0) to obtain the temperature map. At the end of this step, we obtain all temperature maps of all benchmarks.

One notable thing in 3D-NoCs is the possibility to have redundant Through-Silicon-Vias (TSVs). TSVs are usually made of Copper and have a larger size than normal wire, which can dissipate heat faster than normal silicon. Monolithic 3D-ICs fail to have the same feature since the via is extremely small. Consequently, we incorporate redundancy mapping into the hotspot prediction.

Once we can predict the temperature, we can obtain the reliability prediction using the Black's model in Equation 1. Note that the activation energy also varies among materials. The output of reliability can also affect redundancies mapping as a close loop. Consequently, designers can further optimize the system to have the most balancing point of temperature, reliability, and area overhead. In the following, each part of the proposed method is explained in detail.

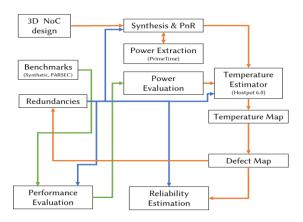


Figure 1. Thermal and reliability prediction method of 3D Networks-on-Chip.

It should be noted that the proposed method reuses and follows the principles of the existing works in academic and industrial approaches [10-12, 22-24].

3.1. Design of 3D Network-on-Chip

In designing a 3D Network-on-Chip, we follow our previous work [3] with some modifications, where the TSVs of a router are divided into four groups and placed in four directions (west, east, north, south) of the router to support sharing and fault tolerance. However, in this work, we provide more flexibility in the design since fault tolerance is not our current objective. Figure 4 shows the architecture of our 3×3×3 Network-on-Chip. Each router can connect to at most six neighboring routers in six directions and one local connection to its attached processing element. The inter-layer connections are TSVs and we support the optional redundant TSV group (yellow TSVs), which can be used to repair a faulty group in the router. Borrowing and sharing mechanisms are other features we support to have high reliability in our system. More details on the fault tolerance method can be referred to in our previous work [3].

Each router receives a header flit of a packet and supports routing inside the network. Based on the destination, it forwards the header flit and the following flits (body and tail flits) to the desired port. Once the tail flit completes its transmission, the router starts to route a new packet.

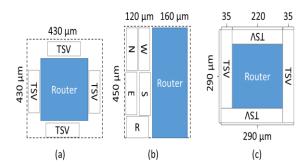


Figure 2. Layout option for 3D-NoC router:
(a) Previous work in [21]; (b) Separated TSV region;
(c) Surround TSV region.

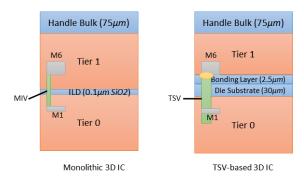


Figure 3. 3D IC layer structure (heat sink on top) of Monolithic 3D IC vs TSV-based 3D IC.

In the router layout of [3], the design is not well optimized since it leases space between routers in layout. Figure 2(a) shows the layout of [3]. In order to optimize it, we use two different floorplans in this work. We first place TSVs and router logics in separated regions as in Figure 2(b). Then, we place TSVs around the router logics as in Figure 2(c). It can be noted that the removing of the empty space reduces the size of the router significantly.

Between the two new layouts, Figure 2(c) provides the best thermal balance because it isolates the logic of a router to the nearby module. Since routers are usually hotspots inside the system, placing them near a hot area can raise their temperature significantly. Here, by surrounding a router with TSVs, we create isolation for it. Furthermore, as Copper has low thermal resistivity, it can dissipate the heat from the router to the upper layers. In other words, the router's heat can soon be transferred to the heatsink.

Figure 3 shows the differences between Monolithic and TSV-based 3D-ICs. While TSV, made of copper, dissipates thermal faster than silicon layers, there are bonding layers between stacking using TSVs, which creates an isolation of thermal disspation between them.

3.2. EDA tools and Power Extraction

In this part, EDA tool is used to extract the power consumption. Apparently, we can use any supported EDA to obtain power consumption. For our experiment, we use Synopsys Design Compiler, ICC and

PrimeTime to perform the physical design and extract the power consumption.

To extract the power consumption, we perform a heuristic transmission benchmark of a single router. Here, we generate two packets of ten flits in all possible directions. Because our router supports the returning of the flit toits sending ports, we have $7 \times 7 = 49$ possible directions. By using PrimeTime, we can obtain both the dynamic and static power.

Here, we also classify the energy into static and dynamic types. While static power consumption is stable, we keep the value as it is. For the dynamic power, we calculate the total energy and the energy per data bit.

3.3. Power and Temperature Estimation

Once we obtain the energy per data-bit, we can obtain the overall power consumption as follows:

$$\begin{split} P &= P_{static} + P_{dynamic} = P_{static} + E_{dynamic} \times \frac{N_{bit}}{time} \ (3) \\ P &= P_{static} + P_{dynamic} = P_{static} + E_{dynamic} \times \frac{N_{bit}}{time} \ \# (3) \end{split}$$

where N_{bit} is the number of data bits in the benchmark. We can also scale the power with the dynamic frequency and voltage if needed. We also support dynamic scaling for voltage and frequency by using Equation 2, where different voltages and frequencies can be converted using the following equations:

$$\frac{P_{static}^{Y_1\Gamma_1}}{P_{static}^{V_2\Gamma_2}} \approx \frac{V_1}{V_2} \tag{4}$$

$$\frac{V_1\Gamma_1}{dynamic} \approx \frac{f_1V_1^2}{f_2V_2^2} \tag{5}$$

where V_1, f_1 and V_2, f_2 are two pairs of supply voltage and frequency.

The power trace and floorplan are taken into Hotspot 6.0 to obtain the thermal map of the design. The results of Hotspot 6.0 are the steady temperature of each router and its TSVs. We can also support transient power and temperature. However, since we consider reliability as the major target, the steady temperature is the most important value.

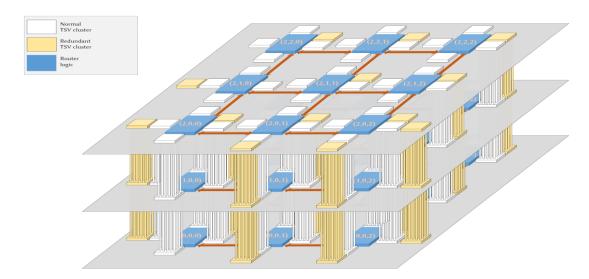


Figure 4. Architecture of the proposed 3D Network-on-Chip with the size of 3x3x3.

3.4. Defect Mapping

After getting the thermal map, we can extract the reliability to obtain the defect map. Figure 6 shows the normalized thermal acceleration model in academics and industry. We illustrate the MIL-HDBK-217F of the US Military[22], HRD4 from industry [23] and RAMP from academics [24]. Notably, we used the Black's model [9] in our work. However, we could also adopt the existing model if needed as in Figure 6. Note that HRD4 uses 70°C as the threshold of reliability concern.

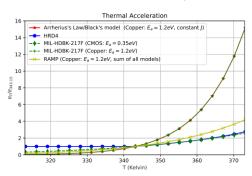


Figure 6. Normalized thermal acceleration of fault rate.

Table 1 shows the fault rate mapping obtained by Black's model [9]. At 30°C, the fault rate is less than 2% at 70°C (343.15K).

However, once the IC operates at 80° C (353.15K), its fault rate is $2.6\times$ at 70° C (343.15K) and $220\times$ at 30° C (303.15K). By mapping to fault rates, we can find the critical part of the 3D-NoCs in terms of reliability.

Table 1. Normalized fault rate of Copper TSV mapping using Black's model [9]

Temperature (K)	Normalized fault rate to 70°C
303.15	0.011537
313.15	0.039174
323.15	0.123317
333.15	0.362371
343.15	1
353.15	2.605435
363.15	6.439561
373.15	13.94691

4. Experiment Results

In this section, we evaluate the 3D Network on Chip [3] using the proposed platform. Furthermore, we explore the idea of the different floorplan and cooling strategies. At first, we extract the power consumption from the synthetic benchmark of a router. Then, we estimate the power consumption of the 3D-NoC

system under various benchmarks. Next, temperature and reliability prediction are illustrated. Finally, we compare different strategies for layout and cooling.

4.1. 3D-NoC Router Power Estimation

We used the router model in our previous work [3] to estimate the power consumption and the energy. Note that we modified the router with some optimizations and further fault tolerances. We use NANGATE 45nm library [25] and NCSU FreePDK TSV [26]. The hardware complexity of the router is shown in Table 2. We perform a heuristic benchmark for this router by sending all possible ports two packets of ten flits of 32 bits. The number of bits is $7 \times 7 \times 2 \times 10 \times 32 = 31360$ bits. The desired injection rate is 1 flit/port/cycle. The final results for static power and energy per data bit are 7.66e-4 W and 9.246e-13 J/bit, respectively.

Table 2. Hardware complexity of the proposed 3D-NoC router

Parameter	Value
Area cost	38,838μm²
Maximum Frequency	537.63 <i>MHz</i>
Operating Frequency	500 MHz
Technology	45nm (NANGATE 45)
Voltage	1.1 V
Static Power (at 500MHz)	7.64e-4 <i>Watt</i>
Dynamic Power (at 500MHz)	1.028e-2 <i>Watt</i>
Simulation time	2.823200e-6second
Energy	2.9022496e-8 <i>Joule</i>
Energy per data bit	9.2546e-13 <i>Joule/bit</i>

4.2. 3D-NoC System Power Estimation

To estimate the power consumption of a 3D-NoC system, we use Equation 3 with the scaling Equation 4 and 5 for different voltage and frequency pairs as needed. Apparently, we need to obtain the number of the bits through

the routing during the system's operation. Here, we perform both synthetic benchmarks (Matrix, HotSpot, Uniform, and Transpose) from [3], and design a 3D-NoC version of garnet 2.0 in gem5 [27] then perform the PARSEC benchmarks suite [28]. PARSEC is one of the most well-known benchmarks for multi-core computing systems. Here, we use 64 core x 64 processors as the processing elements of the PARSEC benchmarks. Note that, we only extract the number of flits that went through the routers to estimate the power consumption. The power consumption of the processing elements can be obtained by using McPAT [29]; however, it is beyond the scope of this work.

Figure 7 shows the power consumption of our 3D-NoC under PARSEC benchmark. Here, we scale the frequency to 2GHz to fit with the configuration of gem5 using Equations 4 and 5. Among these benchmarks, we observe that the benchmark *cannel* has the highest power consumption as well as the highest variation (between the minimum and maximum power of router).

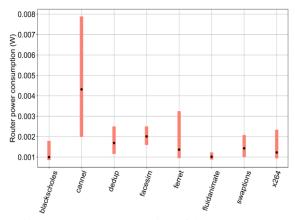


Figure 7. Power consumption of the proposed 3D-NoC under PARSEC benchmarks.

Figure 8 shows the power consumption of the 3D-NoC system under synthetic benchmarks. We keep the frequency as of 500MHz and inject the flit with a maximum inject rate. Note that we apply two Hotspot benchmarks where two nodes are the destination of 5% and 10% of total flits. We can easily observe a significant drop in power

consumption when the number of flits coming to the hotspots increases. This can be explained by the congestion created due to more flits coming to these nodes, which extends the execution time of the system. On the other hand, the matrix benchmark has the lowest router power consumption. We also notice that the synthetic benchmarks have much higher power consumption than the PARSEC benchmarks since no computation is taken in these benchmarks. As a consequence, the execution time is shorter, which makes the power consumption higher than PARSEC.

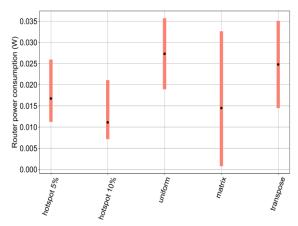


Figure 8. Power consumption of the proposed 3D-NoC under synthetic benchmarks.

4.2. 3D-NoC Thermal Estimation

Based on the power estimation of the previous section, we conduct the thermal estimation using Hotspot 6.0 [13]. Table 3 shows the configurations for thermal estimation using Hotspot 6.0. We modify the thermal resistivity corresponding to our designed TSV (Copper with the size of $4.06\mu m \times 4.06\mu m$) using the following equation [30]:

$$R_{joint} = \frac{Area}{\frac{Area - Area_{TSV}}{R_{TIM}} - \frac{Area_{TSV}}{R_{Copper}}}$$
(6)

where TIM is the thermal interface material. The result of the thermal resistivity of the layout in Figure 2(c) can be found in Table 3. The final TSV area thermal resistivity is 0.0226mK/W.

Table 3. Configurations for thermal estimation.

Parameter	Value
Router floor-plan	290 μm ×290 μm
Floorplan	Figure 2(c)
One TSV area	4.06μm×4.06μm
Router logic area	220 μm ×220 μm
Router logic utilization	80%
TSV area/utilization	35,700 μm² / 10.16%
Copper thermal resistivity	0.0025mK/W
TIM thermal resistivity	0.25mK/W
TSV area thermal resistivity	0.0226mK/W

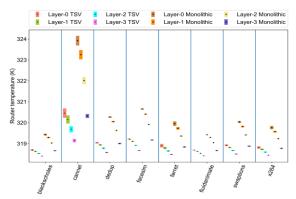


Figure 9. Temperature of the proposed 3D-NoC under PARSEC benchmarks.

To compare the proposed 3D-NoC with Monolithic 3D-IC, we also adopt the method in [32], where we remove the bonding layers between silicon layers. We keep the thickness of the silicon layer for a fair comparison.

Figure 9 shows the router temperature under the PARSEC benchmark. Here, we also compare with the monolithic technology where no TSV is needed [32]. As can be seen in Figure 9, the TSV-based system has a lower operating temperature thanks to the ability to transfer the heat of Copper TSVs. The difference in temperature is around 1K at the bottom layer and even reaches 3.5K in the cannel benchmark.

Figure 10 shows the operating temperature under synthetic benchmarks of the proposed 3D-NoC. We can easily notice that the

operating temperature of Monolithic systems is much higher than TSV ones since we stress the system under its saturation points. The highest temperature of Monolithic 3D-NoC even reaches 351.64 K (78.49°C). The hottest layer of the TSV-based system has the same temperature as the coolest layer of Monolithic 3D-NoC.

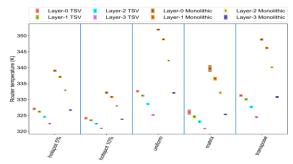


Figure 10. Temperature of the proposed 3D-NoC under synthetic benchmarks.

4.2. 3D-NoC Reliability Estimation

In this section, we use the Black's model to evaluate the MTTF of 3D-NoC. Figure 11 and Figure 12 show the normalized MTTF of each layer to 323.15K (50°C) under PARSEC and synthetic benchmarks. Here, it is observed that the TSV-based 3D-NoC dominates Monolithic in the PARSEC benchmark. With synthetic benchmarks, TSV-based 3D-NoC is slightly better than Monolithic ones.

4.4. Exploring Different Layouts and the Thermal Dissipation Method

This section explores different layouts and their thermal dissipation behaviors for the proposed 3D-NoC. First, we perform thermal and reliability prediction for our layout in Figure 2(b). Then, we insert four thermal TSVs with the size of 15 $\mu m \times 15 \mu m$ in four corners of the router floorplan in Figure 2(c). This size of TSV is still feasible in the existing manufacture process [7]. We also add a 10 μm Keep-out-Zone distance to this thermal TSV to avoid mechanical stress. The thermal TSV went through all layers of TSVs but did not contact with the heatsink. The heatsink and

thermal TSV are separated by a layer of thermal interface material.

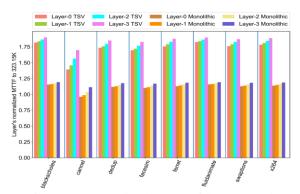


Figure 11. Normalized MTTF of the proposed 3D-NoC under PARSEC benchmarks.

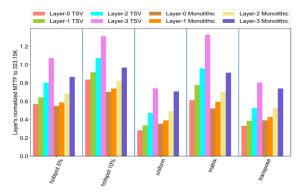


Figure 12. Normalized MTTF of the proposed 3D-NoC under synthetic benchmarks.

Figure 13 and Figure 14 show the thermal behaviors under PARSEC and synthetic benchmarks for different layouts and cooling methods. We can notice that the layout in Figure 2(b) has the worst thermal behavior among the TSV designs. On the other hand, adding thermal TSV can help reduce the operating temperature significantly. By adding four TSVs, we can even reduce the temperature by nearly 1K at the bottom layer in the uniform benchmark, which is the most stressed benchmark. Other benchmarks' results also show a slight improvement in thermal behaviors.

One thing which can be easily noticed here is that the top layer's temperatures do not change. This is due to the fact that the layer is already cooled down by the heatsink and adding

TSV cannot help it further reduce the temperature. Moreover, the heatsink temperature is raised near the top layer temperature which reduces the ability to transfer heat. If the thermal TSV can contact the heatsink, it can significantly cool down the bottom layer. Liquid cooling could also be extremely helpful in this situation.

In comparison to the traditional 2D-ICs, we observe that the TSV-based ICs have higher operating temperatures. The 2D-based 3D-NoCs operate under 319K and 322K with PARSEC and synthetic benchmarks,

respectively. On the other hand, TSV-based system increases at most 10K in maximum temperature with the layout in Figure 2(b).

In summary, different layouts can produce different thermal behaviors. The layout in Figure 2(b) does not surround the router with TSV area, therefore, the routers can heat each other up and reach a higher temperature. On the other hand, adding thermal TSV to cool down the bottom layer is helpful since it can reduce nearly 1 Kelvin in the worst case. By mapping to the reliability, we can easily obtain a $2 \times \sim 3 \times 10^{-5}$ improvement of MTTF.

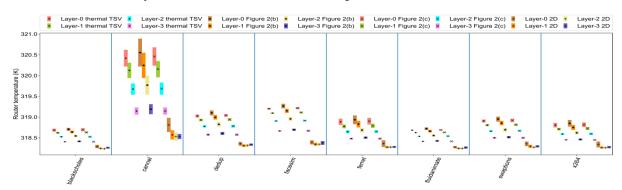


Figure 13. Thermal behaviors of different layouts and cooling methods under the PARSEC benchmarks.

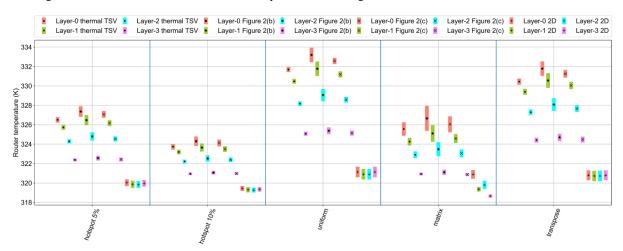


Figure 14. Thermal behaviors of different layouts and cooling methods under the synthetic benchmarks.

4.5. Execution Time

This work evaluates the proposed method using a system with Xeon E5-2620 8 cores 2.1GHz, 16GB RAM and Linux Subsystem and PowerShell under Windows 10. The platform is

written under C++, Python, and Bash. The execution time is measured using command time under Linux and Measure-Command under Windows PowerShell. Here, the simulation times of PARSEC and synthetic benchmarks are not considered because they are separated from

the proposed flow. As shown in Table 4, all the steps in the proposed flow are performed under two seconds. In terms of execution time, the proposed method easily outperforms the fabrication-based methods, which usually take hours regardless of designing, fabrication and assembly time [10-12].

Table 4. Execution time of the proposed flow

Work	Step	Time
Ours	Power extraction (one benchmark)	1.22 s
	Floorplan generation	0.095 s
	Temperature estimation (one benchmark)	81 s
	Reliability estimation (12 benchmarks)	1.12 s
[10]	Reliability test	96h
[11]	The longest step in reliability test	1000h
[12]	Lifetime acceleration test	100-5000h

Although our approach is faster than real-chip testing [10-12], it cannot be as accurate as the baking tests due to the deviations during simulation and the potential of manufacturing variation. However, as for the close-loop design flow, having an understanding of the potential reliability threat is helpful for designers.

4.6. Discussion

This section discusses some technical details of the proposed method as well as its advantages and drawbacks.

The evaluation of Monolithic 3D-ICs shows that it has a higher temperature than TSV-based 3D-NoCs due to two major reasons: i) TSVs act like thermal conduct devices and ii) Monolithic 3D-ICs has a higher density than TSV-based system. However, it should be noted that Monolithic 3D-ICs has lower area cost than TSV-based systems.

Fluid cooling [7] is one of the most advanced methods to reduce the operating temperature of the system. Although we have not explored the ability of this method, it has

shown promising efficiency for 3D-ICs [7]. With a fast velocity of the fluid, we expect the system can be cooled down significantly. However, it should be noted that fluid cooling has unknown reliability, which needs to be carefully investigated before being widely used.

5. Conclusion

This work proposed a platform to quickly estimate the power, thermal behavior, and reliability of 3D-NoC systems; analyzed the simulated reliability of TSV and Monolithic 3D-Ics; and explored and compared different layout strategies and cooling methods. Notably, the proposed method has shown extremely short execution time.

The experiments with 3D-NoC systems realize that lower index layers have higher operating temperatures and are more critical in terms of reliability. Although this finding does not cover all possible cases, this is a consensus of the tested benchmark. Based on these experiments, designers can decide on fault-tolerance or thermal dissipation according to their desired specifications.

In the future, advanced cooling techniques such as liquid ones are expected to be investigated and the impact of DVFS and fault tolerance on the performance and thermal behavior of the expected cooling techniques also need to be studied.

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant 102.01-2018.312.

References

[1] Khanh N. Dang, Akram Ben Ahmed, Xuan Tu Tran, Yuichi Okuyama, Abderazek Ben Abdallah, "A Comprehensive Reliability Assessment of Fault-Resilient Network-on-Chip Using Analytical Model," IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 25(11) (2017) 3099-3112.

- https://doi.org/10.1109/TVLSI.2017.2736004.
- [2] K. Banerjee K. Banerjee, S.J. Souri, P. Kapur and K.C. Saraswat, "3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration," Proc. IEEE. 89(5) (201) 602-633. https://doi.org/10.1109/5.929647.
- [3] Khanh N. Dang, Akram Ben Ahmed, Yuichi Okuyama, Abderazek Ben Abdallah, "Scalable design methodology and online algorithm for TSV-cluster defects recovery in highly reliable 3D-NoC systems", IEEE Transactions on Emerging Topics in Computing, 2017, pp. 1-14 (in-press). https://doi.org/10.1109/TETC.2017.2762407.
- [4] Wong, Simon, et al. "Monolithic 3D integrated circuits" International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), IEEE, 2007.
- [5] Y.J. Park et al., "Thermal Analysis for 3D Multicore Processors with Dynamic Frequency Scaling", in IEEE/ACIS 9th Int, Conf, on Computer and Information Science, Aug 2010, pp. 69-74.
- [6] Van der Plas, Geert, et al., "Design issues and considerations for low-cost 3-D TSV IC technology". IEEE Journal of Solid-State Circuits 46(1) (2010) 293-307.
- [7] D. Cuesta et al., "Thermal-aware floorplanner for 3D IC, including TSVs, liquid microchannels and thermal domains optimization," Applied Soft Computing 34 (2015) 164-177. https://doi.org/10.1016/j.asoc.2015.04.052.
- [8] Park, Changyok, "Dummy TSV to improve process uniformity and heat dissipation", U.S. Patent 10, 181, 454, 15 Jan, 2019. https://patents.google.com/patent/US2011021545 7A1/en (access 16 March 2020).
- [9] J.R. Black, "Mass transport of aluminum by momentum exchange with conducting electrons", in 6th Annual Reliability Physics Symposium (IEEE), IEEE, 1967, pp. 148-159.
- [10] Hamada, M. Dorothy June, J. William, Roesch, "Evaluating device reliability using wafer-level methodology", CS Mantech Conference, 2008.
- [11] Renesas's Semiconductor Reliability Handbook https://www.renesas.com/us/en/doc/products/others/r 51zz0001ej0250.pdf/, 2017 (access 17 March 2020).
- [12] Toshiba's Reliability Handbook https://toshiba.semicon-storage.com/content/dam/toshiba-ss/shared/docs/design-support/reliability/reliability-handbook-tdsc-en.pdf/,2018 (access 17 March 2020).

- [13] Zhang, Runjie, Mircea R. Stan, Kevin Skadron, "Hotspot 6.0: Validation, acceleration and extension", University of Virginia, Tech, Rep, 2015.
- [14] Sridhar, Arvind, et al., "3D-ICE: Fast compact transient thermal modeling for 3D ICs with intertier liquid cooling", 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE, 2010.
- [15] Scott Ladenheim, Yi-Chung Chen, Milan Mihajlović, Vasilis F. Pavlidis, "The MTA: An Advanced and Versatile Thermal Simulator for Integrated Systems", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37(12) (2018) 3123-3136. https://doi.org/10.1109/TCAD.2018.2789729.
- [16] Erdmann, Christophe, et al., "A heterogeneous 3D-IC consisting of two 28 nm FPGA die and 32 reconfigurable high-performance data converters", IEEE Journal of Solid-State Circuits 50(1) (2014) 258-269. https://doi.org/10.1109/JSSC.2014.2357432.
- [17] Kahng, B. Andrew, et al., "ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration", Design, Automation & Test in Europe Conference & Exhibition, IEEE, 2009.
- [18] Lee, Seung Eun, and Nader Bagherzadeh, "A high level power model for Network-on-Chip (NoC) router", Computers & Electrical Engineering 35(6) (2009) 837-845. https://doi.org/10.1016/j.compeleceng.2008.11.023.
- [19] Lee, Seung Eun, Nader Bagherzadeh, "A variable frequency link for a power-aware network-on-chip (NoC)", Integration 42(4) (2009) 479-485. https://doi.org/10.1016/j.vlsi.2009.01.002.
- [20] Lebreton, Hugo, Pascal Vivet, "Power modeling in SystemC at transaction level, application to a DVFS architecture", 2008 IEEE Computer Society Annual Symposium on VLSI, IEEE, 2008.
- [21] Khanh N. Dang Akram Ben Ahmed, Abderazek Ben Abdallah, Xuan-Tu Tran, "TSV-OCT: A Scalable Online Multiple-TSV Defects Localization for Real-Time 3-D-IC systems" IEEE Transactions on Very Large Scale Integration Systems 28(3) (2020) 672 - 685. https://doi.org/10.1109/TVLSI.2019.2948878.
- [22] United States of America: Department of Defense, Military Handbook: Reliability Prediction of Electronic Equipment: MIL-HDBK-217F, 1991.
- [23] J.B. Bowles, "A survey of reliability-prediction procedures for microelectronic devices", IEEE

- Trans, Rel. 41(1) (1992) 2-12. https://doi.org/10.1109/24.126662.
- [24] J. Srinivasan et al., "Lifetime reliability: Toward an architectural solution", IEEE Micro. 25(3) (2005) 70-80.https://doi.org/10.1109/MM.2005.54.
- [25] NanGate Inc., "Nangate Open Cell Library 45nm" http://www.nangate.com/, 2016 (accessed 16 June 2016).
- [26] NCSU Electronic Design Automation, "FreePDK3D45 3D-IC process design kit",http://www.eda.ncsu.edu/wiki/FreePDK3D45 :Contents/, 2016 (accessed 16 June 2016).
- [27] Binkert, Nathan, et al., "The gem5 simulator", ACM SIGARCH computer architecture news 39(2) (2011) 1-7.
- [28] Bienia, Christian, et al., "The PARSEC benchmark suite: Characterization and architectural implications", Proceedings of the 17th international conference on Parallel architectures and compilation techniques, 2008.

- [29] Li, Sheng, et al., "McPAT: an integrated power, area and timing modeling framework for multicore and manycore architectures", Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, 2009.
- [30] J. Meng, K. Kawakami, A.K. Coskun, "Optimizing energy efficiency of 3-d multicore systems with stacked dram under power and thermal constraints", in DAC Design Automation Conference 2012, IEEE, 2012, pp. 648-655.
- [31] Khanh N. Dang, Akram Ben Ahmed, Abderazek Ben Abdallah, Michael Corad Meyer, Xuan-Tu Tran, "2D Parity Product Code for TSV online fault correction and detection", REV Journal on Electronics and Communications (in-press). http://dx.doi.org/10.21553/rev-jec.242.
- [32] Samal, Sandeep Kumar, et al., "Fast and accurate thermal modeling and optimization for monolithic 3D Ics", 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE, 2014.