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Abstract 

In order to make the most of time series present in many various application domains such as finance, medicine, 
geology, meteorology, etc., mining time series is performed for useful information and hidden knowledge. 
Discovered knowledge is very significant to help users such as data analysts and managers get fascinating 
insights into important temporal relationships of objects/phenomena along time. Unfortunately, two main 
challenges exist with frequent pattern mining in time series databases. The first challenge is the combinatorial 
explosion of too many possible combinations for frequent patterns with their detailed descriptions, and the 
second one is to determine frequent patterns truly meaningful and relevant to the users. In this paper, we propose 
a tree-based frequent temporal inter-object pattern mining algorithm to cope with these two challenges in a level-
wise bottom-up approach. In comparison with the existing works, our proposed algorithm is more effective and 
efficient for frequent temporal inter-object patterns which are more informative with explicit and exact temporal 
information automatically discovered from a time series database. As shown in the experiments on real financial 
time series, our work has reduced many invalid combinations for frequent patterns and also avoided many 
irrelevant frequent patterns returned to the users. 
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1. Introduction 

An increasing popularity of time series 
nowadays exists in many domains such as 
finance, medicine, geology, meteorology, etc. 
The resulting time series databases possess 
knowledge that might be useful and valuable 
for users to get more understanding about 
behavioral activities and changes of the objects 
and phenomena of interest. Thus, time series 
mining is an important task. Indeed, it is the 

third challenging problem, one of the ten 
challenging problems in data mining research 
pointed out in [30]. In addition, [10] has shown 
this research area has been very active so far. 
Among time series mining tasks, rule mining is 
a meaningful but tough mining task shown in 
[25]. This task is performed with a process 
mainly including two main phases: mining 
frequent temporal patterns and deriving 
temporal rules representing temporal 
associations between those patterns. In this 
paper, our work focuses on the first phase for 
frequent temporal patterns. 
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At present, we are aware of many existing 
works related to the frequent temporal pattern 
mining task on time series. Some that can be 
listed are [3, 4, 5, 9, 14, 15, 16, 18, 19, 20, 26, 
27, 29]. Firstly in an overall view about these 
related works, it is realized that patterns are 
often different from work to work and 
discovered from many various time series 
datasets. In a few works, the sizes and shapes of 
patterns are fixed, and time gaps in patterns are 
pre-specified by users. In contrast, our work 
would like to discover patterns of interest that 
can be of any shapes with any sizes and with 
any time gaps able to be automatically derived 
from time series. Secondly, there is neither data 
benchmarking nor standardized definition of the 
frequent temporal pattern mining problem on 
time series. Indeed, whenever we get a mention 
of frequent pattern mining, market basket 
analysis appears to be a marvelous example of 
the traditional association rule mining problem. 
Such an example is not available in the time 
series mining research area for frequent 
temporal patterns. Thirdly, two main challenges 
that need to be resolved for frequent pattern 
mining in time series databases include the 
problem of combinatorial explosion of too 
many possible combinations for frequent 
patterns with their detailed descriptions and the 
problem of discovering frequent patterns truly 
meaningful and relevant to the users. 

Based on the aforementioned motivations, 
we propose a tree-based frequent temporal 
inter-object pattern mining algorithm in a level-
wise bottom-up approach as an extended 
version of the tree-based algorithm in [20]. The 
first extension is a generalized frequent 
temporal pattern mining process on time series 
databases with an adapted frequent temporal 
pattern template. As a result, a frequent 
temporal pattern in our work is semantics-based 
temporal pattern that occurs as often as or more 
often than expectation from users determined 

by a minimum support count value. These 
semantics-based temporal patterns are 
semantically abstracted from one or many 
different time series, each of which corresponds 
to a time-ordered sequence of some repeating 
behavioral activities of some objects or 
phenomena of interest whose characteristic has 
been observed and recorded over the time in its 
respective time series. It is also necessary to 
distinguish our so-called frequent temporal 
patterns from motifs which are repeating 
continuous subsequences in an individual time 
series. In contrast, a frequent temporal pattern 
being considered might contain various 
repeating meaningful continuous subsequences 
with many different temporal relationships 
automatically discovered from one or many 
different time series in the time series database. 
As for the second extension, we have 
reconsidered our tree-based algorithm 
employing appropriate data structures such as 
tree and hash table. The modified version of 
this algorithm is defined with a keen sense of 
reducing the number of invalid combinations 
generated and checked for frequent temporal 
patterns. It is also capable of removing many 
irrelevant frequent patterns for the users. 

As shown in the experiments on real 
financial time series, our proposed algorithm is 
more efficient to deal with the combinatorial 
explosion problem. In comparison with the 
existing works, our work is useful for frequent 
temporal inter-object patterns more informative 
with explicit and exact temporal information 
which is automatically discovered from a time 
series database. 

The rest of our paper is structured as 
follows. Section II provides an overall view of 
the related works to point out the differences 
between those works and ours. In section III, 
we introduce a generalized frequent temporal 
pattern mining process on time series databases 
where our proposed algorithm is included. In 
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section IV, we propose an efficient tree-based 
frequent temporal inter-object pattern mining 
algorithm and its evaluation with many 
experiments is presented and discussed in 
section V. Finally, section VI concludes our 
work and states several future works. 

2. Related Works  

In this section, some related works [3-7, 9, 
14-22, 24, 26-29] are examined in comparison 
with our work. Among these related works, [3-
5, 7, 9, 14-16, 18-20, 22, 26, 27] are proposed 
for frequent temporal pattern mining in time 
series, [21, 24, 29] for frequent sequential 
pattern mining in sequential databases, and [6, 
17, 28] for frequent temporal pattern mining in 
temporal databases. 

In the most basic form, motifs can be 
considered as primitive patterns in time series 
mining. There exist many approaches to find 
motifs in time series named a few as [9, 15, 16, 
19, 26, 27]. Our work is different from those 
because the scope of our algorithms does not 
include the phase of finding primitive patterns 
that might be concerned with a motif discovery 
algorithm. We suppose that those primitive 
patterns are available to our proposed 
algorithm. As for more complex patterns, [4] 
has introduced a notion of perception-based 
pattern in time series mining with a so-called 
methodology of computing with words and 
perceptions. [4] reviewed in details such 
descriptions using sign of derivatives, scaling of 
trends and shapes, linguistic interpretation of 
patterns from clustering, a pattern generation 
grammar, and temporal relationships between 
patterns. Also towards perception-based time 
series mining, [14] presented a duration-based 
linguistic trend summarization of time series 
using a few features such as the slope of the 
line, the fairness of the approximation of the 
original data points by line segments and the 

length of a period of time comprising the trend. 
Differently, our work concentrates on 
discovering relationships among primitive 
patterns. It is worth noting that our proposed 
algorithms are not constrained by the number of 
pattern types as well as the meanings and 
shapes of primitive patterns. Moreover, [3] has 
recently focused on discovering recent temporal 
patterns from interval-based sequences of 
temporal abstractions with two temporal 
relationships: before and co-occur. Mining 
recent temporal patterns in [3] is one step in 
learning a classification model for event 
detection problems. Different from [3], our 
work belongs to the time series rule mining 
task. Indeed, we would like to discover more 
complex frequent temporal patterns in many 
different time series with more temporal 
relationships. For more applications, such 
patterns can be used in other time series mining 
tasks such as clustering, classification, and 
prediction in time series. Based on the temporal 
concepts of duration, coincidence, and partial 
order in interval time series, [18] defined 
pattern types from multivariate time series as 
Tone, Chord, and Phrase. Tones representing 
durations are labeled time intervals, which are 
basic primitives. Chords representing 
coincidence are formed by simultaneously 
occurring Tones. Phrases are formed by several 
Chords connected with a partial order which is 
actually the temporal relationship “before” in 
Allen’s terms. Support is used as a measure to 
evaluate discovered patterns. As compared to 
[18], our work supports more temporal 
relationships with time information able to be 
automatically discovered along with frequent 
temporal inter-object patterns. Not directly 
proposed for frequent temporal patterns in time 
series, [22] made use of Allen’s temporal 
relationships (before, equal, meets, overlaps, 
during, starts, finishes, etc.) in their so-called 
temporal abstractions. A temporal abstraction is 
simply a description of a (set of) time series 
through sequences of temporal intervals 
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corresponding to relevant patterns (i.e. 
behaviors or properties) detected in their time 
courses. These temporal abstractions can be 
combined together to form more complex 
temporal abstractions also using Allen’s 
temporal relationships BEFORE, MEETS, 
OVERLAPS, FINISHED BY, EQUALS, and 
STARTS. It is realized that temporal 
abstractions discovered from [22] are temporal 
patterns rather similar to our frequent temporal 
inter-object patterns. However, our work 
supports richer trend-based patterns and also 
provides a new efficient pattern mining 
algorithm as compared to [22]. For another 
form of patterns, [7] aimed to capture the 
similarities among stock market time series 
such that their sequence-subsequence 
relationships are preserved. In particular, [7] 
identified patterns representing collections of 
contiguous subsequences which shared the 
same shape for specific time intervals. Their 
patterns show pairwise similarities among 
sequences, called timing patterns using 
temporal relationships such as begin earlier, end 
later, and are longer. [7] also defined Support 
Count and Confidence measures for a 
relationship but these measures were not 
employed in any algorithms of their work. As 
compared to [7], our work supports more 
temporal relationships with explicit time. More 
recently, [5] has paid attention to linguistic 
association rules in time series which are based 
on fuzzy itemsets stemming from continuous 
subsequences in time series. Each frequent 
itemset in [5] can be considered as a frequent 
pattern discovered in time series. However, 
there is no consideration for temporal 
knowledge in their frequent fuzzy itemsets. As 
for [20], our work is based on their proposed 
work with several extensions to the process and 
tree-based algorithm in order to discover 
frequent temporal inter-object patterns in a time 
series database more efficiently. 

In sequential database mining, [21, 24, 29] 
are among many existing works on frequent 
sequential pattern mining. [24] introduced GSP 
algorithm to discover generalized sequential 
patterns in a sequential database using Apriori 
antimonotonic constraint. Later, [21] proposed 
PrefixSpan algorithm to avoid the weakness of 
[24] in scanning the database many times 
unnecessarily. Indeed, [21] can find frequent 
sequential patterns without generating any 
candidate for them. For a comparison, those 
frequent sequential patterns are not as rich as 
ours in temporal aspects hidden in time series 
which include interval-based relationships and 
their associated time. As for [29], so-called 
inter-sequence patterns are discovered with two 
proposed algorithms which are M-Apriori and 
EISP-Miner. The first algorithm is Apriori-like 
and not as efficient as the second one which is 
based on a tree data structure, named ISP-tree. 
Nevertheless, the capability of both algorithms 
is limited to a user-specified parameter which is 
maximum span, called maxspan. It is believed 
that it is not easy for users to provide a suitable 
value for this parameter as soon as their 
sequential database is mined. This might lead to 
many trial-and-error experiments for maxspan. 

In temporal database mining, [6, 17, 28] 
worked for inter-transaction/inter-object 
patterns/rules which involved one or many 
different transactions/objects. Similarly, our 
discovered frequent temporal patterns are inter-
object patterns. Differently, our patterns are 
mined in the context of time series mining 
where each component in our patterns is trend-
based with more degrees in change than 
“up/down” or “increasing/decreasing” and 
temporal relationships automatically derived are 
interval-based with more time information than 
point-based relationships “co-
occur/before/after”. 
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To the best of our knowledge, the type of 
frequent temporal inter-object patterns defined 
in our work has not yet been taken into 
consideration in the existing works. The 
proposed temporal frequent inter-object pattern 
mining algorithm on a set of various time series 
is designed to be a more efficient version of the 
tree-based algorithm in [20]. 

3. A Generalized Frequent Temporal Inter-
object Pattern Mining Process 

In this section, a generalized frequent 
temporal inter-object pattern mining process on 
a time series database is figured out to elaborate 
our solution to discovering so-called frequent 
temporal inter-object patterns from a given set 
of different time series. This process is mainly 
based on the one in [20]. Each time series is 
considered an object of interest which can be 
some phenomena or some physical objects in 
our real life. We refer to a notion of temporal 
inter-object pattern as temporal relationship 
among objects being considered. This notion of 
“inter-object” is somewhat similar to “inter-
transaction” in [17, 28] and “inter-sequence” in 
[29]. However, our work aims to capture more 
temporal aspects of their relationships so that 
discovered patterns can be more informative 
and applicable to decision making support. In 
addition, interestingness of discovered patterns 
is measured by means of the degree to which 
they are frequent in the lifespan of these objects 
in regard to a user-specified minimum threshold 
called min_sup. This is because we use Support 
Count as an objective measure with the 
meaning intact in [12]. 

Depicted in Figure 1, the detail about the 
pattern mining process will be mentioned 
clearly as follows. Our process includes three 
phases mainly based on the well-accepted 
general knowledge discovery process [12]. 
Phase 1 is responsible for preprocessing to 
prepare for semantics-based time series, phase 2 
for the first step to obtain a set of repeating 
trend-based subsequences, and phase 3 for the 
primary step to fully discover frequent temporal 
inter-object patterns. As compared to the 
process in [20], our generalized process is not 
specific for the input of the proposed algorithm 
by relaxing the use of trend-based time series. 
Instead, so-called semantics-based symbolic 
time series are used so that users can have more 
freedom to express the meaning of each 
component in a resulting frequent pattern via 
the semantic symbols used for time series 
transformation in phase 1. 

3.1. Phase 1 for Semantics-based Symbolic 
Time Series 

The input of this phase is also the one of 
our work, which consists of a set of raw time 
series of the same length for simplicity. 
Formally, each time series TS is defined as TS 
= (v1, v2, …, vn). TS is a so-called univariate 
time series in an n-dimension space. The length 
of TS is n. v1, v2, …, and vn are time-ordered 
real numbers. Indices 1, 2, …, n correspond to 
points in time in our real world on a regular 
basis. Regarding semantics, time series is 
understood as the recording of a quantitative 
characteristic of an object or phenomenon of 
interest observed regularly over the time.

G 
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Figure 1. A generalized frequent temporal inter-object pattern mining process on a time series database.

As previously mentioned, we have 
generalized the pattern mining process 
introduced in [20] for more semantics in 
resulting frequent patterns. Thus, in this paper, 
we do not restrict the meaning of individual 
components in discovered frequent patterns to 
behavioral changes of objects and the degree to 
which they change. Instead, we enable so-called 
semantics-based symbolic time series by means 
of any transformation technique on time series. 
For instance, each time series can be 
transformed into a trend-based time series using 
short-term and long-term moving averages in 
[31] or into a symbolic time series using SAX 
technique in [16].  

The output of this phase is a set of 
semantics-based time series each of which is 
formally defined as (s1, s2, …, sn) where si∈Σ 
for i = 1..n where Σ is a discrete set of semantic 
symbols derived by a corresponding 
transformation technique. For the technique in 
[31], Σ = {A, B, C, D, E, F} where A represents 
the time series in a weak increasing trend; B in 
a strong increasing trend; C starting a strong 
increasing trend; D starting a weak increasing 
trend; E in a strong decreasing trend; and F in a 
weak decreasing trend. For the technique in 
[16], Σ is the word book. If two breakpoints are 
used, Σ = {a, b, c} where a represents 
subsequences with high values, b with average 
values, and c with low values. 

3.2. Phase 2 for Repeating Subsequences 

The input of phase 2 is exactly the output of 
phase 1 which consists of one or many 
semantics-based symbolic time series. The 
main objective of phase 2 is to find repeating 
subsequences in the input symbolic time series. 
Such subsequences are indeed motifs hidden in 
these time series.  Regarding semantics, motifs 
themselves are frequent parts in time series. As 
compared to discrete point-based events in [17, 
28], motifs in our work are suitable for the 
applications where the time spans of an event 
are significant to user’s problems. For example, 
it is more informative for us to know that a 
stock keeps strongly increasing three 
consecutive days denoted by BBB from 
Monday to Wednesday in comparison with a 
simple fact such that a stock increases. As of 
this moment, there are different approaches to 
the motif discovery task on time series as 
proposed in [9, 15, 16, 19, 26, 27]. This task is 
out of the scope of our work. In our work, we 
implemented a simple brute force algorithm to 
extract repeating subsequences which are 
motifs along with their counts, each of which is 
the number of occurrences of the subsequence 
in its corresponding symbolic time series. 
Because of our interest in frequent patterns, we 
consider repeating subsequences with at least 
two occurrences. In short, the output of this 
phase is a set of repeating subsequences with at 
least two occurrences that might stem from 
different objects. 
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3.3. Phase 3 for Frequent Temporal Inter-
object Patterns 

Similar to phase 2, phase 3 has the input 
which is the output of the previous phase, a set 
of repeating subsequences. In addition, phase 3 
also needs a minimum support count threshold, 
min_sup, from users to evaluate the output 
returned to users. As compared to [29], min_sup 
is a single parameter whose value is provided 
by the users along with the input set of time 
series in our process. Using min_sup and the 
input, phase 3 first obtains a set of primitive 
patterns, named L1, which includes only 
repeating subsequences with the counts equal or 
greater than min_sup. All elements in L1 are 
called frequent temporal inter-object patterns at 
level 1. At this level, there is just one object 
involved in each frequent pattern. Differently, 
level is used to refer to the number of 
components in a pattern which will be detailed 
below, not to the number of objects involved in 
a pattern. Secondly, phase 3 proceeds with a 
frequent temporal inter-object pattern mining 
algorithm to discover and return to users a full 
set of frequent temporal inter-object patterns in 
a set of various time series. The rest of this 
subsection will define a notion of frequent 
temporal inter-object pattern and in section 4, 
we will propose an extended version of the tree-
based frequent temporal inter-object pattern 
mining algorithm that makes the frequent 
temporal inter-object pattern mining process 
more effective and efficient. 

In general, we formally define a frequent 
temporal inter-object pattern at level k for k>1 
in the following form: m1-m1.ID<operator 
type1: delta time1> m2-m2.ID….mk-1-mk-1.ID< 
operator typek-1 : delta timek-1> mk-mk.ID. 

In this form, m1, m2, …, mk-1, and mk are 
primitive patterns in L1 which might come from 
different objects whose identifiers are m1.ID, 

m2.ID, …, mk-1.ID, and mk.ID, respectively. 
Regarding relationships between the 
components of a pattern at level k, operator 
type1, …, operator typek-1 are Allen’s temporal 
operators. There are thirteen Allen’s temporal 
operators in [1] well-known to express interval-
based relationships along the time, including 
precedes (p), meets (m), overlaps (o), Finished 
by (F), contains (D), starts (s), equals (e), 
Started (S), during (d), finishes (f), overlapped 
by (O), met by (M), preceded by (P). For their 
converse relationships, our work used seven 
Allen’s temporal operators (p, m, o, F, D, s, e) 
to capture temporal associations between 
subsequences from different objects in phase 3. 
That is, operator type1, …, operator typek-1 are 
in {p, m, o, F, D, s, e}. Moreover, we use delta 
time1, …, delta timek-1 to keep time information 
of the corresponding  relationships. Regarding 
semantics, intuitively speaking, a frequent 
temporal inter-object pattern at level k for k>1 
fully presents the relationships between the 
frequent parts of different objects of interest 
over the time. Hence, we believe that unlike 
some other related works [7, 11, 17, 18], our 
patterns are in a richer and more understandable 
form and in addition, our pattern mining 
algorithm is enabled to automatically discover 
all such frequent temporal inter-object patterns 
with no limitation on their relationship types 
and time information. 

Example 1: Let us consider a frequent 
temporal pattern on a single object NY using 
the transformation technique in [31]: AA-
NY<p:5>BBB-NY {0, 10, 20}. This pattern 
enables us to know that after in a two-day weak 
increasing trend, NY has a three-day strong 
increasing trend and this fact repeats three times 
at positions 0, 10, and 20 in the lifetime of NY. 
Its illustration is given in Figure 2. 
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Figure 2. Illustration of a frequent temporal 

pattern on a single object NY. 

 

 
Figure 3. Illustration of a frequent temporal 

inter-object pattern on two objects: NY and SH. 

Example 2: Let us consider a frequent 

temporal inter-object pattern on two objects NY 

and SH also using the transformation technique 

in [31]: AA-NY<e:2>AA-SH {0, 10}. This 

pattern, whose illustration is presented in Figure 

3, involves two objects NY and SH and 

presents their temporal relationship along the 

time. In particular, we can state about NY and 

SH that NY has a two-day weak increasing 

trend and in the same duration of time, SH does 

too. This fact occurs twice at positions 0 and 10 

in their lifetime. It is also worth noting that we 

absolutely do not know whether or not NY 

influences SH or vice versa in real life unless 

their relationships are analyzed in some depth. 

Nonetheless, such patterns provide us with 

objective data-driven evidence on the 

relationships among objects of interest so that 

we can make other further thorough 

investigations into these objects and their 

surrounding environment. 

4. The Proposed Tree-based Frequent 
Temporal Inter-object Pattern Mining 
Algorithm on Time Series Databases 

As noted in [20], the type of knowledge we 
aim to discover from time series has not yet 
been considered. Hence, in [20], two mining 

algorithms were defined: brute-force and tree-
based. The brute-force algorithm provides a 
baseline for correctness checking and the tree-
based one helps speeding up the pattern mining 
process in the spirit of FP-Growth algorithm 
[13]. The two algorithms followed the level-
wise bottom-up approach. 

Based on [20], we extend the tree-based 
algorithm to a new version that enables us to 
deal with the combinatorial explosion problem 
by using an additional hash table for a detection 
and elimination of irrelevant frequent patterns. 
In particular, the modified tree-based algorithm is 
capable of removing the instances of potential 
candidates pertaining to one single pattern with 
overlapping parts. In the following subsections, 
the tree-based algorithm is detailed. 

4.1. A Temporal Pattern Tree 

In this paper, we remain a so-called 

temporal pattern tree in [20]. Nevertheless, for 

being self-contained, the description of a 

temporal pattern tree is presented as follows. 

 

Figure 4. The structure of a node in the temporal 
pattern tree. 

A temporal pattern tree (TP-tree) is a tree 
that has n nodes of the same structure as shown 
in Figure 4. 

A node structure of a node being considered 
in TP-tree is composed of the following fields: 

- ParentNode: a pointer that points to a 
parent node of the current node. 

- OperatorType: an Allen’s temporal 
operator in the form of <p>, <m>, <e>, <s>, 
<F>, <D>, or <o> to let us know about the 
temporal relationship between the current node 
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and its parent node where p stands for precedes, 
m for meets, e for equal, s for starts, F for 
finished by, D for contains, and o for overlaps.  

- DeltaTime: an exact time interval 
associated with the temporal relationship in 
OperatorType field. 

- Pat.Length: a length of the corresponding 
pattern counting up to the current node. 

- Info: information about the corresponding 
pattern that the current node represents. 

- ID: an object identifier of the object which 
the current node stems from. 

- k: a level of the current node. 

- List of Instances: a list of all instances 
corresponding to all positions of the pattern that 
the current node represents. 

- List of ChildNodes: a hash table that 
contains pointers pointing to all children nodes of 
the current node at level (k+1). Key information 
of an element in the hash table is: [OperatorType 
associated with a child node + DeltaTime + Info 
of a child node + ID of a child node]. 

Each node corresponds to a component of 
some frequent temporal inter-object pattern. In 
particular, the root of TP-tree is at level 0, all 
primitive patterns at level 1 are handled by all 
nodes at level 1 of TP-tree, the second 
components of all frequent patterns at level 2 
are associated with all nodes at level 2 of TP-
tree, and so on. All nodes at level k are created 
and added into TP-tree from all possible valid 
combinations of all nodes at level (k-1). This 
mechanism comes from the idea such that 
candidates for frequent patterns at level k are 
generated just from frequent patterns at level 
(k-1). In addition, only nodes associated with 
support counts satisfying the minimum support 
count are inserted into TP-tree. 

4.2. Building a Temporal Pattern Tree 

Using the node structure defined above, a 
temporal pattern tree is built in a level-wise 
approach from level 0 up to level k 
corresponding to the way we discover frequent 
patterns at level (k-1) first and then use them to 
discover frequent patterns at level k. It is 
realized that a pattern at level k is only 
generated from all nodes at level (k-1) which 
belong to the same parent node. This feature 
helps us much avoid traversing the entire tree 
built so far to discover and create frequent 
patterns at higher levels and expand the rest of 
the tree. A subprocess of building TP-tree is 
shown step by step. 

Step 1 - Initialize TP-tree: Create the root 
of TP-tree labeled 0 at level 0. 

Step 2 - Handle L1: From the input L1 
which contains m motifs from different trend-
based time series with a support count 
satisfying the minimum support count min_sup, 
create m nodes and insert them into TP-tree at 
level 1. Distances between these nodes to the 
root are 0 and Allen’s OperatorType of each of 
these nodes is empty. The resulting TP-tree 
after steps 1 and 2 is displayed in Figure 5 
when L1 has 3 frequent patterns corresponding 
to nodes 1, 2, and 3. 

Step 3 - Handle L2 from L 1: Generate all 
possible combinations between the nodes at 
level 1 as all nodes at level 1 belong to the same 
parent node which is the root. This step is 
performed with seven Allen’s temporal 
operators as follows.  

Let m and n be two instances in L1. With no 
loss of generality, these two instances are 
considered for a valid combination if 
m.StartPosition ≤ n.StartPosition where 

m.StartPosition and n.StartPosition are starting 
points in time of m and n, respectively. A 
combination process to generate a candidate in 
C2 is conducted below. Should any combination 
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has a satisfied support count, it is a frequent 
pattern at level 2 and added into L2. 

 
 
Figure 5. The resulting TP-tree after steps 1 and 2. 

 

Figure 6. The resulting TP-tree after step 3. 

If m and n belong to the same object, m 
must precede n. A combination is in the form 
of: m-m.ID<p:delta>n-n.ID where p stands for 
Allen’s operator precedes, delta (delta > 0) for 
an interval of time between m and n, m.ID and 
n.ID are object identifiers corresponding to 
their time series. In this case, m.ID = n.ID.  

Example 3: Using the transformation 
technique in [31], consider m-m.ID = EEB-
ACB starting at 0 and n-n.ID = ABB-ACB 
starting at 7. A valid combination of m and n is 
EEB-ACB<p:4>ABB-ACB starting at 0. 

If m and n come from two different objects, 
ie. m-m.ID ≠ n-n.ID, a combination might be 
generated for the additional six Allen’s 
operators: meets (m), overlaps (o), Finished by 
(F), contains (D), starts (s), and equal (e). Valid 
combinations of m and n for these operators are 
formed below where d is a common time 
interval in m and n. 

- Meets: m-m.ID<m:0>n-n.ID 

- Overlaps: m-m.ID<o:d>n-n.ID 

- Finished by: m-m.ID<F:d>n-n.ID 

- Contains: m-m.ID<D:d>n-n.ID 

- Starts: m-m.ID<s:d>n-n.ID 

- Equal: m-m.ID<e:d>n-n.ID 

It is noted that a combination in the tree-
based algorithm is associated with nodes in TP-
tree that help us to early detect if a pattern is 
frequent. Thus, if a combination corresponding 
to an instance of a node that is currently 
available in TP-tree, we simply update the 
position of the instance in List of Instances field 
of that node and further ascertain that the 
combination is associated with a frequent 
pattern. If a combination corresponds to a new 
node not in TP-tree, using a hash table, we 
easily have the support count of its associated 
pattern to check if it satisfies min_sup. If yes, 
the new node is inserted into TP-tree by 
connecting to its parent node. The resulting TP-
tree after step 3 is given in Figure 6 where nodes 
{4, 5, 6, 7, 8} are nodes inserted into TP-tree at 
level 2 to represent 5 frequent patterns at level 2.  

 

Figure 7. The resulting TP-tree after step 4. 

Step 4 - Handle L3 from L 2: Using 
information available in TP-tree, we do not 
need to generate all possible combinations 
between patterns at level 2 as candidates for 
patterns at level 3. Instead, we simply traverse 
TP-tree to generate combinations from branches 
sharing the same prefix path one level right 
before the level we are considering. Thus, we 
can reduce greatly the number of combinations. 
For instance, consider all patterns at L2 in 
Figure 6. In a brute-force approach, we need to 
check and generate combinations from all 
patterns corresponding to paths {0, 1, 4}, {0, 1, 
5}, {0, 1, 6}, {0, 3, 7}, and {0, 3, 8}. In 
contrast, the tree-based algorithm only needs to 
check and generate combinations from the 
patterns corresponding to paths sharing the 
same prefix which are {{0, 1, 4}, {0, 1, 5}, {0, 
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1, 6}} and {{0, 3, 7}, {0, 3, 8}}. It is ensured 
that no combination is generated from patterns 
corresponding to paths not sharing the same 
prefix, for example: {0, 1, 4} and {0, 3, 7}, {0, 
1, 4} and {0, 3, 8}, etc. Besides, the tree-based 
algorithm easily checks if all subpatterns at 
level (k-1) of a candidate at level k are also 
frequent by making use of the hash table in a 
node to find a path between a node and its 
children nodes in all necessary subpatterns at 
level (k-1). If a path exists in TP-tree, a 
corresponding subpattern at level (k-1) is 
frequent and handled in TP-tree so that we can 
know if the constraint is enforced. The resulting 
TP-tree after this step is given in Figure 7 
where nodes {9, 10, 11, 12, 13} are nodes 
inserted into TP-tree at level 3 to represent 5 
different frequent patterns at level 3. 

Input: 
- Node root: a pointer that points to the 
root of the output tree 
- min_sup: a minimum support count which is 
a user-specified threshold 
- TSLen: length of each time series 
- L2Dictionary: used to store all frequent 
patterns at level 2 for checking overlapping 
instances  
Output: A pattern tree that contains all 
necessary information to derive frequent 
temporal inter-object patterns  
Algorithm: 
1.  int k = 2; 
2.  L2Dictionary = new 
Dictionary<string, List<Instance>>; 
3.  while (we can still create new 
candidates) 
4.      //Call a procedure which builds 
level k of the output tree  
5.       BuildTree(root, min_sup, TSLen, 
k); 
6.       k = k + 1; 
7.  return;  

Figure 8. The pseudo-code of CreateTree function. 

Step 5 - Handle Lk from L k-1 where k>=2: 
Step 5 is similar to step 4. Once TP-tree has 
been expanded up to level (k-1), we generate 
nodes at level k if all nodes at level (k-1) at the 
end of the branches sharing the same prefix 
path can be combined with a satisfied support 
count. These new nodes are inserted into TP-
tree at level k representing frequent patterns in 

Lk. The routine keeps repeating till no more 
level is created for TP-tree. As compared to FP-
tree [13], TP-tree in our work has no header 
table. Instead, we use a hash table at each level 
to keep track of the support count of each 
combination which is the most potential 
candidate for a frequent pattern. 

 

Input: 
- Node node: a pointer that points to the 
current node of the output tree 
- min_sup: a minimum support count which is 
a user-specified threshold 
- TSLen: length of each time series 
- level: the level of the pattern tree going 
to be constructed  
Output: Construct level k of the pattern 
tree corresponding to L k 
Algorithm: 
1. if (root == node && 
root.ChildNodes.Count == 1 && level == 2)  
2.     
CombineChildNodes(node.ChildNodes, level, 
min_sup, TSLen); 
3.     return; 
4.  if (node.ChildNodes.Count < 2 && 
node != root) 
5.     return; 
6. if (node.k == (level – 2))  
7.     
CombineChildNodes(node.ChildNodes, level, 
min_sup, TSLen); 
8.     return; 
9. for (int i = 0; i < 
node.ChildNodes.Count; i++)  
10.   BuildTree(level, 
node.ChildNodes.ElementAt(i).Value, min_sup, 
TSLen);  

Figure 9. The pseudo-code of BuildTree procedure. 

Input: 
- ChildNodes: a list of nodes that need 
checking for valid combinations 
- min_sup: a minimum support count which is 
a user-specified threshold 
- TSLen: length of each time series 
- level: the level of the pattern tree going 
to be constructed  
Output: Create combinations of nodes at 
level k  
Algorithm: 
1.  for i = 0 to ChildNodes.Count 
2.     for j = i to ChildNodes.Count  
3.          CombineNode(ChildNodes[i], 
ChildNodes[j], min_sup, TSLen, level);  

Figure 10. The pseudo-code  
of CombineChildNodes procedure. 
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Input: 
- firstNode: the first node to be checked 
for combinations 
- secondNode: the second node to be checked 
for combination 
- min_sup: a minimum support count which is 
a user-specified threshold 
- TSLen: length of each time series 
- level: the level of the pattern tree going 
to be constructed  
Output: Create all possible combinations 
from two input nodes and generate child 
nodes at level k if any  
Algorithm: 
1. dictionary = []; 
2. if (firstNode == secondNode) 
3. if (level > 2) return; 
4. for i = 0 to 
firstNode.NumberOfInstances 
5. for j = i + 1 to 
secondNode.NumberOfInstances  
6. OverallCombine(firstNode, i, 
secondNode, j, dictionary)  
7. //Two nodes belong to two different 
objects 
8. else 
9. for i = 0 to 
firstNode.NumberOfInstances 
10.        for j = 0 to 
secondNode.NumberOfInstances 
11. //Check if a combination is valid 
12.           
if( OverallCombine(firstNode, i, secondNode, 
j,dictionary)) 
13. continue; 
14. else  
15. OverallCombine(secondNode, j, 
firstNode, i, dictionary); 
16. //Check if items in the hash table 
have support counts equal to or greater than 
min_sup 
17. for i = 0 to dictionary.item.count 
18. if 
(CheckFrequentPattern(item[i].NumberOfInstan
ces, min_sup, TSLen, item[i].PatternLength) 
19. //Add the newly generated node into 
the tree 
20. item.Parent.AddChild(item); 
21. if (k == 2) 
22. info � Get content information from 
item[i] and parent of item[i] 
23. //Put all frequent patterns in L2 
into L2Dictionary for overlap checking 
24. L2Dictionary.add(info, 
item[i].Value.ListInstances);  

Figure 11. The pseudo-code  
of CombineNode procedure. 

Input: 
-  firstNode: the first node to be checked 

for combination 
-  firstInstancePosition: the position of 

an instance of firstNode 
-  secondNode: the second node to be 

checked for combination 

-  secondInstancePosition: the position of 
an instance of secondNode 

-  dictionary: a hash table to keep nodes 
which have been generated  

Output: true if two input instances are able 
to combine with each other; otherwise, 
false. If a combination is valid, a 
corresponding node will be added into the 
hash table.  
Algorithm: 
1.  firstInstance � 
firstNode.GetInstanceAt(firstInstancePosition); 
2.  secondInstance � secondNode. 
GetInstanceAt(secondInstancePosition); 
3.  if (firstInstace.ParentPosition != 
secondInstance.ParentPosition) 
4.     return false; 
5.  if (secondInstance.StartPosition < 
firstInstance.StartPosition) 
6.  return false; 
7.  Key � Get information for a combination 
between firstInstance and secondInstance 
8.  if (!dictionary.ContainsKey(Key)) 
9.  Node node = CombineInstances(firstNode, 
i,secondNode, j); 
10.  if (node is not null) 
11.  if (firstNode.k >= 2) 
12.  if (!CheckFrequentSubSequence(firstNode, 
node)) 
13.  return false; 
14.  node.ParentNode = firstNode; 
15.  dictionary.Add(Key, node); 
16.  else return false; 
17.  Else 
18.  Node n = dictionary[Key]; 
19.  Instance instance = new Instance(); 
20.  instance � Get information from 
firstNode and secondNode 
21.  //Check overlap if k = 2 
22.  if (n.k == 2) 
23.  //if not overlap 
24.  if (IsOverlap(n.listInstances, instance) 
== false) 
25.  n.add(instance); 
26.  //Check overlap if k > 2 
27.  else if (n.k > 2) 
28.  //Get information from n and n.Parent 
(this is also the two last parts from new 
instance) 
29.  string info = GetInfo(n, n.Parent); 
30.  //Check overlap based on information and 
position of the parent of new instance 
31.  //if not overlap 
32.  if (IsOverlap(L2Dictionary, info, 
instance.ParentPosition) == false) 
33.  n.add(instance); 
34.  return true;  

Figure 12. The pseudo ode of OverallCombine 
function. 

In the figures Figure 8-12, the 
implementation of the tree-based algorithm is 
presented. Figure 8 shows the pseudo-code of 
CreateTree function, which is used to start 
building a TP-tree. In this function, the 
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additional hash table L2Dictionary is initialized 
and BuildTree procedure is invoked to construct 
nodes at level k corresponding to the process of 
generating frequent patterns in Lk. Its pseudo-
code is presented in Figure 9. It then calls 
CombineChildNodes procedure in Figure 10 to 
make combinations between child nodes of a 
current node where child nodes are located at 
level k. For a specific combination between two 
nodes, CombineChildNodes procedure will pass 
control of the tree building process to 
CombineNode procedure whose pseudo-code is 
given in Figure 11. CombineNode procedure is 
responsible for creating all valid combinations 
and inserting them into TP-tree if their support 
counts satisfy min_sup. For checking the validity 
of a combination as earlier explained in steps 3-5, 
it then invokes OverallCombine function whose 
pseudo-code is described in Figure 12. 

As for the extension of the tree-based 
algorithm, we have modified CreateTree 
function at line 2 in Figure 8, the entire 
BuildTree procedure in Figure 9, CombineNode 
procedure at lines 21-24 in Figure 11, and 
OverallCombine function at lines 21-33 in 
Figure 12. The modifications help us to early 
check and remove instances of each pattern that 
have some parts overlapping the others because 
such overlapping parts will lead to self-
similarity and thus, irrelevant frequent patterns. 

4.3. Finding all Frequent Temporal Inter-object 
Patterns from A Temporal Pattern Tree 

As soon as TP-tree is completely 
constructed, we can traverse TP-tree from the 
root to derive all frequent temporal inter-object 
patterns from level 1 to level k by invoking 
FindPatternContentAndPosition function 
presented in Figure 13. This subprocess 
recursively forms a frequent pattern represented 
by each node except the root node in TP-tree 
with no more checks. Thus, TP-tree is nicely 

and conveniently used to discover and manage 
all frequent patterns. 

Input: 
- Node root: the root of TP-tree  
- PatternContent: a text-based content of 
each frequent pattern from information of 
all related nodes in TP-tree  
Output: 

-  listPattern: a list of all frequent 
temporal inter-object patterns  

Algorithm: 

1.  if (root.k == 1)  
2.     PatternContent += root.Info + “-“ + 
root.ID; 
3.  else if (root.k > 1) 
4.  { 
5.     PatternContent += "<" + 
root.OperatorType + ":" + root.DeltaTime + 
">" + root.Info + "-" + root.ID; 
6.      Pattern pattern = new Pattern(); 
7.      pattern.PatternContent = 
PatternContent; 
8.      pattern.k = root.k; 
9.      //Get a list of starting positions 
for this pattern 
10.     Pattern.listStartPosition = 
root.listStartPosition; 
11.     pattern.PatternLength = 
root.PatternLength; 
12.     //Add this pattern to the output list 
13.     listPattern.Add(pattern); 
14.  } 
15. for i = 0 to root.ChildNodes.Count  
16.  FindPatternContentAndPosition(root.Child
Nodes.ElementAt(i).Value, PatternContent, 
listPattern); 
17.  return;  

Figure 13. The pseudo-code of 
FindPatternContentAndPosition function. 

4.4. An Overall Evaluation on the 
Proposed Algorithm 

In this subsection, we discuss an overall 
evaluation on the proposed algorithm in 
comparison with the existing works about the 
reason for not using maxspan constraint and 
other kinds of tree in pattern mining. 

4.4.1 Why our algorithm does not use 
maxspan 

In the existing works, maxspan is used as a 
user-specified parameter to restrict the time 
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span in each frequent pattern and/or association 
rule. Using maxspan might help us narrow 
down the space where potential candidates for 
frequent patterns exist; leading to less 
processing time. However, in our paper, we do 
not use maxspan as previously introduced, we 
want to discover all the patterns hidden in a 
time series database which can be formed from 
many primitive patterns from any possible 
number of objects with any time spans and any 
time gaps in their temporal relationships. 

4.4.2. A comparison between TP-tree and 
other kinds of tree in frequent pattern mining 

Defining and using a tree data structure 
seems to be one of best practices in frequent 
pattern mining. One of the most popular trees is 
FP-tree proposed with FP-Growth algorithm in 
[13]. Other kinds of tree were discussed in [23]. 

Firstly, we give an explanation about the 
differences between our TP-tree approach and 
the FP-tree approach. Our TP-tree is not similar 
to FP-tree in the following points. (1). The 
purpose of TP-tree is not to compress the time 
series unlike the purpose of FP-tree which is to 
compact the transactional database to reduce the 
number of database scans. Instead, TP-tree is 
used for handling the candidates of frequent 
patterns and the real frequent patterns so that 
the tree-based algorithm can save processing 
time on generating and checking combinations 
of candidates and time on forming frequent 
patterns from their components in TP-tree. (2). 
TP-tree does not have any header table so that 
TP-tree is accessed directly from its root while 
FP-tree has a header table and access to FP-tree 
is made via the entries in its header table. (3). 
The level-wise approach in Apriori is embedded 
in TP-tree while FP-tree does not have this 
feature. This is because a node at level k in TP-
tree always contributes to a frequent k-pattern 
while a node at level k in FP-tree might not 
contribute to a frequent k-pattern if its support 

count does not satisfy the minimum support 
count. For space saving in our final version, 
such comparisons are not included. (4). When 
using the traditional FP-Growth algorithm, we 
must create and traverse many projected 
conditional FP-trees along with their header 
tables to get all frequent patterns. With our tree-
based algorithm, after completely built, TP-tree 
is traversed recursively from the root to get all 
frequent temporal patterns. Therefore, we do 
not need further complex computation when 
traversing our TP-tree. 

Secondly, we are aware of other tree 
structures introduced in [23]. As compared to 
their trees, EP-tree and ET-tree, our TP-tree is 
different in the following aspects. (1). EP-tree 
and ET-tree are dedicated to temporal 
transactional databases focusing on reducing 
the number of database scans while TP-tree to 
time series databases concentrating on 
removing non-potential combinations with the 
combinatorial explosion problem. (2). EP-tree 
and ET-tree keep an entire pattern in a node 
while TP-tree keeps only a single component of 
a pattern in a node. This choice enables us to 
obtain a part of a pattern easily and to generate 
combinations at higher levels from the frequent 
patterns at their previous levels efficiently. (3). 
The processing mechanism on EP-tree and ET-
tree is different from one on TP-tree. EP-tree is 
based on a set enumeration framework to 
reorganize the database in a single scan while 
ET-tree is somewhat similar to TP-tree as soon 
as built level by level starting with the set L1 of 
1-itemsets. Further, ET-tree generates all 
patterns at level k, calculates and checks their 
supports, and then removes nodes 
corresponding to infrequent patterns. In contrast 
to ET-tree, TP-tree makes use of shared prefix 
paths in generating each combination, leading 
to not all combinations created and checked for 
frequent patterns. Besides, there is no node 
removal during the TP-tree building process 
because a valid combination will be checked for 
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a satisfying support count and inserted into TP-
tree if truly a frequent pattern. Thus, 
manipulation on TP-tree is minimized. 

5. Experiments 

In order to further evaluate our proposed 
tree-based frequent temporal inter-object 
pattern mining algorithm, we present several 
experiments and provide discussions about their 
results in this section. The experiments were 
prepared using C# programming language and 
carried out on a 3.0 GHz Intel Core i5 PC with 
4.00 GB RAM.  

There are two groups for examining the 
efficiency of the proposed algorithm and how 
much improvement has been made between the 
modified version and the previous one together 
with the brute-force one in [20]. The first group 
was done by varying the time series length and 
the second one by varying the minimum 
support count. Each experiment of every 
algorithm was carried out and its processing 
time in millisecond was reported. In Tables I 
and III, we recorded the processing time of the 
brute-force algorithm represented by BF-time, 
the time of the old tree-based one by oTree-
time, the time of the new tree-based one by 
nTree-time, the ratio of BF-time to oTree-time 
by BF-t/oTree-t, the ratio of oTree-time to 
nTree-time by oTree-t/nTree-t for comparison. 
In addition to processing time, we captured the 
number of combinations generated and checked 
by each algorithm. In the resulting tables II and 
IV, BF-com is used to denote the number of 
combinations in the brute-force algorithm, 
oTree-com the number of combinations in the 
old tree-based one, nTree-com the number of 
combinations in the new tree-based one, BF-
c/oTree-c the ratio of BF-com to oTree-com, 
and oTree-c/nTree-c the ratio of oTree-com to 
nTree-com. 

In the experiments, we used five real-life 
stock datasets of the daily closing stock prices 
available at [8]: S&P 500, BA from Boeing 
company, CSX from CSX Corp., DE from 
Deere & Company, and CAT from Caterpillar 
Inc. Each of them started at 01/04/1982 with 
variable lengths of 20, 40, 60, 80, and 100 days. 
All of the time series in the experiments have 
been unintentionally collected. In each group, 
using the transformation technique in [31], we 
mined a single time series, two different time 
series, …, up to all five time series to obtain 
frequent temporal inter-object patterns if these 
time series really associated with each other 
during a few periods of time, that is their 
changes have influenced each other. 

In the rest of this section, 4 resulting tables 
are provided and discussed. For the first group 
of experiments, Table I contains the results of 
time processed on financial time series with a 
fixed minimum support count = 5 and various 
lengths from 20 to 100 with a gap of 20. Table 
II going with Table I is used to show the 
number of generated combinations of each 
algorithm and a comparison between them. For 
the second group, Table III displays the 
experimental results for time processed with a 
fixed length = 100 and various minimum 
support counts min_sup from 5 to 9. Similar to 
Table II, Table IV goes with Table III to present 
the number of generated combinations of each 
algorithm and a comparison between them. 

Through the results in Table I, the ratio BF-
t/oTree-t varies from 1 to 15 showing how 
inefficient the brute-force algorithm is in 
comparison with the tree-based one. As the size 
of each time series is very small, e.g. 20, the 
processing time of each algorithm is very little. 
As the size of each time series is bigger, each 
L1, the input of our algorithms, has more motifs 
and two versions of the tree-based algorithm 
work better than the brute-force one. However, 
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the efficiency of the new version is better than the old one or the same as the old one.  

Table 1. Time processed on financial time series with various lengths 

Time series Length BF-time oTree-time nTree-time BF-t/oTree-t oTree-t/nTree-t 

S&P500 

20 ≈0 ≈0 ≈0   
40 1.0 1.0 0.7 1 1.43 
60 12.7 7.6 7.8 1.67 0.97 
80 102.7 34.3 29.3 2.99 1.17 
100 316.9 98.0 68.9 3.23 1.42 

S&P500, 
Boeing 

20 ≈0 ≈0 ≈0   
40 2.8 2.4 1.5 1.17 1.6 
60 39.2 25.1 26.4 1.56 0.95 
80 474.5 123.1 91.9 3.85 1.34 
100 1735.5 363.4 252.8 4.78 1.44 

S&P500, 
Boeing, 

CAT 

20 ≈0 ≈0 ≈0   
40 8.5 3.6 2.8 2.36 1.29 
60 232.8 67.0 53.5 3.47 1.25 
80 1764.7 399.0 294.8 4.42 1.35 
100 8203.0 1292.8 932.1 6.35 1.39 

S&P500, 
Boeing, 

CAT, CSX 

20 ≈0 ≈0 ≈0   
40 19.9 10.4 6.3 1.91 1.65 
60 415.0 110.9 95.9 3.74 1.16 
80 3857.3 545.1 589.3 7.08 0.92 
100 19419.7 1794.6 1215.9 10.82 1.48 

S&P500, 
Boeing, 
CAT, 

CSX, DE 

20 ≈0 ≈0 ≈0   
40 36.2 14.8 12.6 2.45 1.17 
60 839.1 221.5 160.8 3.79 1.38 
80 10670.7 1304.3 920.8 8.18 1.42 
100 69482.7 4659.5 2113.6 14.91 2.2 

 
For the number of combinations generated 

for candidates and then for frequent patterns in 
Table II, the brute-force algorithm always 
produces the highest number of such 
combinations, leading to its highest processing 
time as compared to the two versions of the 
tree-based algorithm. Particularly, its number 
of combinations is up to about 8 times higher 
than one of the tree-based algorithm. 
Especially, the tree-based algorithm can early 
abandon a few up to a few million non-
potential combinations in comparison with the 
brute-force algorithm. Besides, the two 
versions of the tree-based algorithm have a 

difference of a few percent in the number of 
combinations. In many cases, the new version 
often generates and checks the smaller number 
of combinations. 

In Table III, the results let us know that the 
tree-based algorithm can improve at least 3 up 
to 15 times the processing time of the brute-
force algorithm. Besides, the larger minimum 
support count, the fewer number of candidates 
need to be checked for frequent temporal 
patterns. Thus, the less processing time is 
required by each algorithm. Once min_sup is 
high, a pattern is required to be more frequent; 
that is, a pattern needs to repeat more during

Table 2. Number of combinations generated from financial time series with various lengths 
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Time series Length BF-com oTree-com nTree-com BF-c/oTree-c oTree-c/nTree-c 

S&P500 

20      
40 325 280 280 1.16 1 
60 4322 3635 3638 1.19 1 
80 18841 14585 14059 1.29 1.04 
100 52814 39887 38450 1.32 1.04 

S&P500, 
Boeing 

20      
40 1089 824 824 1.32 1 
60 12363 9665 9660 1.28 1 
80 69524 42784 41255 1.63 1.04 
100 234731 108366 102886 2.17 1.05 

S&P500, 
Boeing, 

CAT 

20 10 7 7 1.43 1 
40 2120 1479 1468 1.43 1.01 
60 37940 25396 25077 1.49 1.01 
80 248850 124292 120655 2 1.03 
100 1110838 322545 306566 3.44 1.05 

S&P500, 
Boeing, 

CAT, CSX 

20 45 28 28 1.61 1 
40 4394 3251 3240 1.35 1 
60 70976 45985 45555 1.54 1.01 
80 654827 223592 217060 2.93 1.03 
100 3425875 573646 542962 5.97 1.06 

S&P500, 
Boeing, 
CAT, 

CSX, DE 

20 45 28 28 1.61 1 
40 8664 6522 6511 1.33 1 
60 124109 76257 75668 1.63 1.01 
80 1462330 353458 343230 4.14 1.03 
100 7597862 999245 953019 7.6 1.05 

 

the length of time series which is in fact the 
life span of each corresponding object. This 
leads to fewer patterns returned to users. Once 
min_sup is small, many frequent patterns 
might exist in time series and thus, the number 
of candidates might be very high. In such a 
situation, the two versions of the tree-based 
algorithm are very useful to filter out 
candidates in advance and save much more 
processing time than the brute-force one. 

Table IV provides evidence on the findings 
from Table III. Particularly, the number of 
combinations handled by the brute-force 
algorithm is also up to about 8 times higher 
than the one by the two versions of the tree-

based algorithm. In general, the tree-based 
algorithm can efficiently remove a few 
thousand up to a few million non-potential 
combinations from checking and inserting 
patterns into TP-tree while the brute-force 
algorithm takes them all into consideration. 
Different from the previous cases in Table II, 
in Table IV, the new version of the tree-based 
algorithm works much better than the old one 
because of not generating and checking a few 
ten to a few ten thousand non-potential 
combinations. This tells us how efficient the 
newly proposed tree-based algorithm is for 
discovering relevant frequent temporal patterns 
in a time series database. 

 

Table 3. Time processed on financial time series with various values for min_sup 
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Time series min_sup BF-time oTree-time nTree-time BF-t /oTree-t oTree-t /nTree-t 

S&P500 

5 319.8 97.1 78.6 3.29 1.24 
6 169.9 54.9 40.4 3.09 1.36 
7 80.2 28.5 28.9 2.81 0.99 
8 39.5 14.6 14.5 2.71 1.01 
9 14.9 6.5 5.2 2.29 1.25 

S&P500, 
Boeing 

5 1732.2 382.4 215.7 4.53 1.77 
6 698.2 196.3 142.4 3.56 1.38 
7 367.1 109.7 76.1 3.35 1.44 
8 175.3 56.8 53.9 3.09 1.05 
9 95.0 34.6 24.5 2.75 1.41 

S&P500, 
Boeing, 

CAT 

5 8248.6 1303.4 919.4 6.33 1.42 
6 2222.7 574.2 410.2 3.87 1.4 
7 1073.7 294.1 223.4 3.65 1.32 
8 530.3 152.4 111.7 3.48 1.36 
9 294.0 93.6 68.0 3.14 1.38 

S&P500, 
Boeing, 

CAT, CSX 

5 19482.2 1976.2 1213.0 9.86 1.63 
6 4628.6 1080.7 746.4 4.28 1.45 
7 2075.9 546.6 396.0 3.8 1.38 
8 972.4 270.7 193.8 3.59 1.4 
9 519.9 145.9 129.0 3.56 1.13 

S&P500, 
Boeing, 
CAT, 

CSX, DE 

5 69068.7 4600.9 2155.4 15.01 2.13 
6 8985.9 1685.1 1309.8 5.33 1.29 
7 3713.1 880.8 686.4 4.22 1.28 
8 1751.0 437.8 348.4 4 1.26 
9 983.7 256.2 210.2 3.84 1.22 

 

In almost all the cases, no doubt the tree-
based algorithms consistently outperformed 
the brute-force algorithm. Especially, when the 
number of objects of interest increases, the 
complexity does too. As a result, the brute-
force algorithm requires more processing time 
while the two versions of the tree-based 
algorithm also need more processing time but 
much less than the brute-force time. This fact 
helps us confirm our suitable design of data 
structures and processing mechanism in the 
tree-based algorithm to speed up our frequent 
temporal inter-object pattern mining process 
on a time series database. 

 

6. Conclusion 

In this paper, we have proposed a tree-
based frequent temporal inter-object pattern 
mining algorithm to efficiently discover all 
frequent temporal inter-object patterns hidden 
in a time series database. The resulting 
frequent temporal inter-object patterns from 
our algorithm are richer and more informative 
in comparison with frequent patterns 
considered in the existing works in 
transactional, temporal, sequential, and time 
series databases. Especially, irrelevant patterns 
can be early abandoned and not included in the 
result set. The process of the algorithm is more 
efficient by using appropriate data structures 
such as hash tables and trees. Indeed, their 
capabilities of frequent temporal inter-object 
pattern mining in time series have been 
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confirmed with the experiments on real 
financial time series.  

In the future, we would like to examine the 
scalability of the proposed algorithm with 
respect to a very large amount of time series in 
a much higher dimensional space. More 
investigation will also be done for semantics-
related post-processing so that the effect of the 
surrounding environment on objects or 

influence of objects on each other can be 
analyzed in great detail. In addition, strong 
association rules and correlation rules from the 
resulting frequent temporal inter-object 
patterns are going to be considered and then, 
decision makers can make the most of 
discovered knowledge in terms of both 
patterns and rules from their time series. 

 

Table 4. Number of combinations generated from financial time series with various values for min_sup 

Time series min_sup BF-com oTree-com nTree-com BF-c /oTree-c oTree-c /nTree-c 

S&P500 

5 52814 39887 38450 1.32 1.04 
6 29061 22423 22022 1.3 1.02 
7 16529 12080 11957 1.37 1.01 
8 8545 5625 5540 1.52 1.02 
9 4011 2210 2148 1.81 1.03 

S&P500, 
Boeing 

5 234731 108366 102886 2.17 1.05 
6 95446 63382 61989 1.51 1.02 
7 55205 37733 37190 1.46 1.01 
8 30201 18995 18777 1.59 1.01 
9 18863 10760 10599 1.75 1.02 

S&P500, 
Boeing, 

CAT 

5 1110838 322545 306566 3.44 1.05 
6 291584 176691 172247 1.65 1.03 
7 154807 102379 100788 1.51 1.02 
8 82678 51759 51126 1.6 1.01 
9 51917 30516 30281 1.7 1.01 

S&P500, 
Boeing, 

CAT, CSX 

5 3425875 573646 542962 5.97 1.06 
6 580370 308218 301170 1.88 1.02 
7 282326 179901 177413 1.57 1.01 
8 142031 87027 86130 1.63 1.01 
9 83085 47949 47611 1.73 1.01 

S&P500, 
Boeing, 
CAT, 

CSX, DE 

5 7597862 999245 953019 7.6 1.05 
6 1063560 527379 517826 2.02 1.02 
7 497156 311376 307765 1.6 1.01 
8 255860 157586 156364 1.62 1.01 
9 159943 95418 95032 1.68 1 
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