
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 37, No. 1 (2021) 26-39

26

Original Article

An Elasticity Framework for Distributed Message Queuing

Telemetry Transport Brokers

Linh Manh Pham*, Xuan Tung Hoang

VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 23 October 2020

Revised 25 February 2021; Accepted 27 February 2021

Abstract: Internet of Things (IoT) applications are increasingly making impact in all areas of

human life. Day by day, its chatty embedded devices have been generating tons of data requiring

effective network infrastructure. To deliver millions of IoT messages back and forth with as few

faults as possible, participation of communication protocols like Message Queuing Telemetry

Transport (i.e., MQTT) is a must. Lightweight blueprint and battery friendly design are just two of

many advantages of this protocol making it become a dominant in IoT world. In real application

scenarios, distributed MQTT solutions are usually required since centralized MQTT approach is

incapable of dealing with huge amount of data. Although distributed MQTT solutions are scalable,

they do not adapt to fluctuations of traffic workload. This might cost IoT service providers because

of redundant computation resources. This leads to the need of a novel approach that can adapt its

volume changes in workload. This article proposes such an elastic solution by proposing a flexible

MQTT framework. Our MQTT framework uses off-the-shelf components to obtain server’s

elasticity while keeping IoT applications intact. Experiments are conducted to validate elasticity

function provided by an implementation of our framework.

Keywords: MQTT broker, Elasticity, Internet of Things, Cloud computing.

1. Introduction *

It is a fact that Internet of Things (IoT) has

been widely spreading in many domains with

different scales from homes, enterprises,

institutions to industries. Behind IoT

application scenarios are millions of connected

devices trying to communicate and deliver data

* Corresponding author.

 Email address: linhmp@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.267

throughout the Internet either with or without

human interventions. At present, 31 billion

devices are connected as IoT devices and it is

predicted that by 2050 this number will surge

pass 170 billion limit [1]. Also, an IoT network

can hold up 50 to 100 trillion connected objects,

and this network can track the movement of

every single of objects. Each people living in

urban areas can be surrounded by 1000 to 5000

tracking IoT things. In the same context,

currently, there are about 4 billion people

connected, more than 25 million applications,

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

27

more than 25 billion embedded and intelligent

systems, which generate 50 trillion gigabytes of

data. The IoT market can bring up to 4 trillion

USD in revenue for its service providers [2].
To support the communication of billions of

IoT devices and delivery of its huge generated

data, the IoT service providers need to implement

and maintain robust and scalable network

infrastructures. Especially, when IoT applications

cross the boundary of home-wide to reach the

skyline of city- or country-wide systems, the

number of IoT devices can increase extremely at

an unpredictable rate. That is a point for

development of not only brawny but also scalable

IoT infrastructures. Such modern IoT infrastructures

nowadays contain an essential component called

Message Queuing Telemetry Transport (i.e., MQTT)

servers (a.k.a. brokers). These brokers are

implemented on MQTT protocol devised since

1999, which is an open Machine-to-Machine

protocol (M2M) originally. It is also an openly

industrial standard released by OASIS and ISO

(ISO/IEC 20922) [3]. With its advantages such as

lightweight blueprint, bandwidth-efficient design,

low power consumption, or spatial/temporal

decoupling, MQTT brokers are dominating the

IoT world indisputably.
Although recent MQTT brokers implement

both centralized and distributed approaches to

be able to handle millions of connected clients

in a short period of time, only a few one

proposed solutions to keep up with fluctuation

of workload generated by IoT clients. This

might happen when number of IoT devices

increase or decrease unpredictably during

certain times. In reality, the city-wide IoT

applications often deal with disperse and

intermittent devices causing a change in the

number of involving clients. For instance, smart

cars often join given connected vehicle networks

in the rush hours rather than regular hours,

generating more IoT data within specific periods.

This leads to the need for development of new

MQTT systems that know not only how to scale

but also keep pace with changes of the workload

generated by the clients. In other words, an

approach makes MQTT brokers elastic.

Elasticity is a native characteristic of Cloud

computing according to NIST [4]. Thanks to

elasticity, cloud resources are not overused or

underused, which not only saves cloud

providers’ money but also improves customer

experience. Many IoT applications have been

being implemented on Cloud or ready to be

moved on it. It is worth mentioning that IoT

resources like MQTT brokers implemented on

Cloud can also benefit from cloud elasticity.
In this article, we propose a framework

making MQTT brokers elastic. To obtain this

goal, the following contributions are made:

i) We propose a novel framework that can

flexibly support elasticity while retain all

features of MQTT protocol;

ii) We make a concrete implementation of

the proposed framework using an open-source

MQTT broker software (EMQX) and a private

cloud platform (OpenStack);

iii) We conduct experiments to validate the

soundness of the proposed approach using the

open-source implementation aforementioned.

The rest of the article is organized as

follows. After highlighting various related work

in Section 2, we describe in detail the overall

architecture of our proposed MQTT framework

in Section 3. The validating experiments and

results are reported in Section 4. Finally, we

conclude in Section 5.

2. Related Work

2.1. Message Queuing Telemetry Transport Brokers

MQTT is a Message Oriented Middleware

(MOM), which follows publish/subscribe

pattern (pub/sub for short) [5]. With lightweight

design in mind, MQTT is suitable for many IoT

applications where various restricting

requirements must be satisfied such as low

bandwidth, low energy, or intermittent sensor

nodes. The pub/sub model brings to the

decoupling in both space and time, where

MQTT clients (i.e. publishers and subscribers)

do not have knowledge about locations of each

other and do not need to be present at the same

time while sending or receiving the messages,

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

28

respectively. This is possible because the

protocol uses an intermediate service called

MQTT brokers to mediate messages among

participants (publishers and subscribers). While

space decoupling characteristic helps IoT

application separate its high volume of

available data from the origin of data, time

decoupling one is a necessity for IoT

applications because of its distributed nature.
The communication mechanism of MQTT is

relatively simple. First, the MQTT clients need to

establish a connection to MQTT broker by

sending a CONNECT message. A CONNACK

message from the broker sent back to the client is

to confirm for a successful connection. After that,

the operations of publishing/subscribing messages

to/from the broker can be done. The publisher

needs to send a PUBLISH message containing a

topic name. A topic (i.e. subject of interest) is a

string used by broker, where subscribers register

to it for getting copies of needed messages. To do

that, the subscriber must send a SUBSCRIBE

message containing its interesting topic to the

broker. Topics can be organized in a hierarchical

way (i.e. topic trie) to take advantage of wildcard

filters such as “#” or “?”. In general, the clients

can publish/subscribe to more than one topic not

using or using these wildcards for convenient.

In MQTT, the communication reliability

can be obtained by specifying the levels of

Quality of Service (QoS). There are three levels

of QoS including “At most one” (0), “At least

one” (1), and “Exactly one” (2). At level 0, the

delivery is not acknowledged and the message

is sent only once in any case. At level 1, if no

acknowledgement is received by the publisher,

it will try to resend the message multiple times.

At level 2, exactly one copy of the message is

received by the subscriber by a two-way

handshake agreement between the publisher

and subscriber. To guarantee no data is lost, IoT

applications obviously need a lightweight and

vigorous solution like the MQTT broker model.

Some of the most widely used MQTT brokers

so far are Mosquitto, HiveMQ, moquette,

VerneMQ, EMQX, etc.

In recent decade, many IoT applications

have implemented MQTT brokers such as

[6-11]. A typical structure of an IoT application

using MQTT brokers deployed with centralized

datacenter remotely (like in the Cloud

environment) is depicted in Figure 1. The goal

of the application is to collect data from many

IoT devices and sensors, then process and store

these data, and at last send notifications and

reports to the final users (using laptop, mobile,

tablet, etc.). In some cases, the gathered data

can be published directly to the topics

subscribed by final users without any data

analysis. Control commands can be published

to the command topic in the broker like any

other type of MQTT messages by the final

users. These messages will be archived in the

cloud storage and transmitted to the IoT devices

or sensors by some scheduling mechanism. In

the case of time-sensitive application, the

command messages can also be sent directly to

the IoT devices without travelling to the Cloud.

We see that IoT devices, end-user interfaces,

and data analyzing system are all MQTT clients

producing and consuming telemetry data.
Many IoT applications often implement a

centralized MQTT broker keeping all

subscribed topics. However, the broker in this

topology is easy to become a bottle neck of the

entire system. To avoid this, some solutions

have been proposed, which can be categorized

into two types of distributed system: bridged

brokers and clustered brokers. In the first

model, two brokers can be bridged to be able to

serve more messages from clients while

keeping separation of both broker’s locations.

Published messages are forwarded from a

broker to its bridged one according to specific

access policy. A full-mesh network needs to be

formed among brokers (i.e. each one pairs with

all others) in order that any MQTT client can

connect to any broker it wishes to. Therefore,

using bridged model to obtain elasticity is too

complex. It is only suitable for networks having

a few MQTT brokers. MQTT brokers support

the bridging method including HiveMQ,

EMQX, JoramMQ, moquette, mosquitto,

VerneMQ, etc. [12]. Some implementations of

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

29

this model are reported in research of Collina et

al., [13], Schmitt et al., [14], and Zambrano et

al., [15]. MQTT brokers following the clustered

model take advantage of subtopics in the

hierarchical trie. One of the brokers (B0) keeps

root topic and subtopics which its subscriptions

involve. Other ones (B1, B2, etc.) only keep

their involved subtopics originating from the

root topic located at B0. The topic branches are

dynamically created in a broker corresponding

to MQTT subscriptions to this broker.

Therefore, the overhead among the brokers is

reduced significantly in comparison to the

bridged model. Moreover, the knowledge of

topic trie and route table are transferred among

brokers, thus any MQTT client can

connect/reconnect to any broker it wants to
establish/resume its sessions. Not many MQTT

brokers support full features of the clustered

topology including EMQX, HiveMQ, RabbitMQ,

VerneMQ [16]. Some research projects in this

trend that can be mentioned are the work of

Jutadhamakorn et al. [17], Thean et al., [18] and

Detti et al., [19].

Figure 1. A typical structure of an IoT application using MQTT brokers.

2.2. Elastic Message Queuing Telemetry

Transport Broker

Elasticity defined as one of essential

characteristic of Cloud Computing. Thanks to

this special feature, cloud resources can be

provisioned or released corresponding to

demand. Nowadays, IoT applications are often

installed in Cloud to take advantage of this

environment like on-demand measured service,

broad network access as well as rapid elasticity.

Multiple solutions try to provide elasticity for

other components of IoT applications rather

than MQTT broker, some of which are Proliot

[20], DOCKERANALYZER [21], ACD [22],

BDAaaS [23].

Very few elastic solutions mentioning

MQTT broker among various types of pub/sub

servers have been proposed such as Brokel [24]

and E-SilboPS [25]. Brokel defines a

multi-level elasticity model for Pub/Sub brokers

(including MQTT) in general, thus many

MQTT-specific tweaks have been simplified or

omitted. E-SilboP is an elastic content-based

publish/subscribe system specifically designed

to support context-aware sensing and

communication in IoT-based services.

Therefore, it also omits many adjustable QoS

parameters of MQTT protocol and only

provides content-based elasticity. It is worth

mentioning that these both research works are

solutions for pub/sub servers in general, which

do not focus only on MQTT broker. One of the

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

30

prerequisite to holistically obtain elastic MQTT

is that the solution must implement one of the

distributed topologies mentioned in the

subsection 2.1.

3. Elastic Message Queuing Telemetry

Transport Framework

This section introduces our new elastic

MQTT framework. The framework is designed

to have flexible architecture containing a set of

representative modules. When an

implementation of the framework is deployed

on the Cloud, each of these representative ones

will be specialized into a concrete component-

off-the-shelf (COTS) one. Therefore, the

modules of framework can be substituted

flexibly to obtain new features, to earn

enhanced performance, or to lower software

licensing fees. We also present a concrete

implementation of each of the modules

constituting the framework. The

implementation mainly targets for cloud-based

IoT applications which require elasticity as an

essential feature. These applications include,

but not limited to, big data analytics, latency-

sensitive ones. With the principle of software

development serving the e-science community

[27], we prefer combining the most pertinent

open-source solutions into our framework. The

overall novel architecture of the framework is

depicted in Figure 2 composing of the

following modules:

i) MQTT broker cluster: A cluster of

MQTT brokers implementing distributed

pub/sub model with customizable QoS

parameters. The cluster consists of a number of

runtime systems called node. Nodes connect to

each other using TCP/IP sockets and

communicate by message passing. Each node

keeps its parts of topic tries and current

subscriptions. This mechanism helps published

messages be routed across the cluster from the

first node receiving the messages to the last one

delivering the messages to the subscribers. The

nodes can join cluster manually or

automatically. With automatic way, node

discovery and autocluster mechanisms such as

IP multicast, dynamic DNS, or ETCD [26] need

to be supported. The nodes can be deployed on

both public or private cloud networks. Public

Cloud providers, such as AWS, Azure, or

private Cloud platforms, such as OpenStack,

CloudStack could be the good candidates.

P

Figure 2. Architecture of Elastic MQTT Framework.

We choose EMQX [28] for our MQTT

brokers. EMQX provides concurrent, fault-

tolerant, and distributed broker nodes. It is one

of few open-source MQTT solutions which

offer clustered brokers. Moreover, EMQX is the

only one implementing all three levels of

MQTT QoS, MQTT protocol for regular

networks, and MQTT-SN protocol for sensor

ones. EMQX supports node discovery and

autocluster with various strategies as in the case

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

31

of IP multicast, dynamic DNS, etcd, and

Kubernetes [29]. By that when a broker node

arrives or leaves according to elastic actions,

the cluster automatically recognizes the changes

and updates its configuration to reflect new

number of nodes;

ii) Load balancer: A Load Balancer (LB) is

often deployed in front of a MQTT cluster to

distribute MQTT connections and traffic from

devices across the MQTT clusters. LB also

enhances the high availability of the clusters,

balances the loads among the cluster nodes, and

makes the dynamic expansion possible. The

links between the LB and cluster nodes are

plain TCP connections. By this setup, a single

MQTT cluster could serve millions of clients.

Thanks to LB, MQTT clients only need to

know one point of connection instead of

maintaining a list of MQTT brokers;

Some commercial LB solutions are

supported by EMQX such as AWS, Aliyun, or

QingCloud. In the terms of open-source

software, HAProxy [30] can serve as a LB for

EMQX cluster and establish/terminate the TCP

connections. Many dynamic scheduling

algorithms can be assigned by HAProxy such as

round robin, least connection, or randomness;

iii) Cloud infrastructure: It manages,

provides, and releases dynamically virtual

resources for gaining elasticity. To obtain

“unlimited” resources, an implementation of

private, public, or hybrid cloud may need to be

carried out. To serve e-science community,

OpenStack [31], an open-source private Cloud

is chosen to provision and release virtual

resources. With world-wide supported user

community and large well-maintained services,

OpenStack is a fit for our goal. Some specific

OpenStack services deployed for our

implementation are Nova, Keystone, Glance,

Horizon, Swift, and Neutron. Since we chose

OpenStack cloud, the following modules should

deploy services supported officially by

OpenStack;

iv) Orchestrator: This module parses a

system-component description in its own

high-level domain specific language (i.e. DSL)

and then deploys, manages, and monitors the

entire life cycle of all involving components.

Those components include resources such as

virtual machines, containers, images, security

groups, alarms, scaling policies, etc. The

grammar of the DSL can be derived from XML,

JSON, or YAML. The main motivation is to

keep the thing simple and user-friendly. In the

framework, the Orchestrator deploys and

manages MQTT brokers as well as resources of

the elastic decision-making block such as

Metering, Metric Storage, and Alarming.

The main orchestrator supported by

OpenStack is Heat service [32] The infrastructure

for a cloud application is described in a Heat

template file. Infrastructure resources that can be

described including servers, volumes, users,

security groups, floating IPs, etc. Heat also

provides an autoscaling service integrating

with sub-modules of Telemetry, so a scaling

group can be included as a resource in the

template. This is a perfect fit for our elasticity

goal. Templates can also delineate the

dependencies between resources (e.g., this

floating IP is assigned to this VM). This helps

Heat to create all of managed components in the

correct order for completely launching

application. Heat manages the entire life cycle

of the application and it knows how to make the

necessarily dynamic changes. Finally, it also

takes care of deletion of all the deployed

resources when the application accomplishes;

v) Telemetry: This module consists of three

sub-modules

Metering: This module’s goal is to

efficiently collect, normalize, and transform

data produced by orchestrated components.

These data are intended to be used to create

different views and help solve various telemetry

use cases. Among them, data of specific metrics

(i.e., measures) is collected and analyzed for

elasticity triggering goal. Alarming and Metric

storage are two modules which directly exploit

these measures.
Alarming: Its goal is to enable the ability of

triggering responsive actions based on defined

rules against sample or event data collected by

Metering module. It consists of two main

sub-modules: “Alarm Evaluator” and “Alarm

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

32

Notifier”. The former evaluates measures of a

given metric stored in Metric storage module

whether they are over or under a threshold. The

latter then triggers a notification and sends to

the Orchestrator who will perform

corresponding elastic actions such as scaling

out or in.
Metric storage: This database mainly stores

aggregated measures of cluster nodes such as

system performance metrics. The metric is a list

of (timestamp, value) for a given managed

resource. The resource can be anything from the

temperature of the nodes to the CPU usage of a

VM. Besides, the database also stores events,

that is a list of things that happens in Cloud

infrastructure: an API request has been

received, a VM has been started, an image has

been uploaded, whatever. Stored measures are

retrieved for monitoring, billing, or alarming,

where events are useful to do audit,

performance analysis, debugging, etc.
Correspondingly, OpenStack supports some

official services for Telemetry module,

including Ceilometer [33] for Metering,

Aodh [34] for Alarm, and Gnocchi [35] for

Metric Storage;

vi) Messaging server: It is needed for

communication between framework’s modules

by exchanging messages. It creates connected

channels using favoured communicating protocols

such as AMQP, CoAP, or even MQTT. In

OpenStack cloud, internal communication among

OpenStack services may be conducted by

RabbitMQ [36]. RabbitMQ is an open-source

message-oriented middleware supporting

popularly communicating protocols such as

AMQP, STOMP, and MQTT.

All modules of the framework are

decoupling. It means the startup order is not

quite important. In spite of that, it makes no

sense for some modules to work independently,

thus requires the power-up of other ones as

prerequisites. Similarly, components and

resources described and managed by the

Orchestrator should be initiated at any given

moment. The Orchestrator must have ability to

resolve dependencies between components and

from there come up with a deployment plan

containing the appropriate order of installment.

From the system description to the deployment

plan, the Orchestrator needs to use a chain of

solvers such as Learning Automata based

allocator, Constraint Programming based

solvers, Heuristics based solvers, and

Meta-Solvers. When an event or combination of

events and conditions occur at runtime, the

Orchestrator generates the corresponding

elasticity plan and conducts the necessary

modifications to convert the current topology to

the expected one described in the elasticity

plan. The modifications include actions

following ECA (event-condition-action) rule

such as resources’ scaling in/out or up/down

when measures of a resource trespass the given

thresholds. Figure 3 depicts one possible

implementation of our framework using the

aforementioned open-source solutions.

4. Validating Experiments

In order to validate functionalities of our

proposed framework, we conducted the

implementation mentioned in Section 3 in our

homegrown infrastructure at VNU University

of Engineering and Technology (VNU-UET).

We also make some discussions after the results

of the experiments.

4.1. Experiment Testbed

The testbed consists of two main parts: one

implementation of our proposed framework,

and one load injector for simulating multiple

MQTT clients and their workloads. The tester

creates test plans with different scenarios using

built-in functions of the load injector. The

simulated publishers generate MQTT messages

and send them to the Load Balancer

(HAProxy). In turn, the LB distributes these

messages to one EMQX broker of the cluster

according to scheduling algorithm. The

simulated subscribers make MQTT

subscriptions to specific topics in the cluster by

connecting to the LB, too. The LB also

distributes connecting requests of the

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

33

subscribers to one of the members of the

cluster. The routing messages from the source

to the right destinations is conducted internally

by the cluster as mentioned in Section 3.
We used Apache JMeter [37] as the load

injector in our experiments. It is an open-source

tools for load test and performance evaluation.

It supports testing of many different protocol

types such as HTTP, HTTPS, SOAP, REST,

FTP, JMS, etc. Other protocols are included

into JMeter using plugins. To support the

experimentation, we have developed a MQTT

plugin for JMeter implementing some features

of MQTT version 5.0 [38]. To do stress test, we

used distributed testing paradigm with one

JMeter master and a couple of slaves to ensure

that there is no side-effect to the performance of

simulated MQTT clients.
Our private OpenStack cloud is installed in

the data center for research at VNU-UET.

EMQX brokers and JMeter load injectors are

virtual machines provisioned by the cloud. Each

EMQX broker instance has 2 vCPU and 2 GB

memory, and each JMeter virtual machines has

8 vCPU and 8 GB memory. We use OpenStack

Train, which was released on 2019. Our

OpenStack cloud is built on 3 physical servers

using Intel processors. Each physical server has

80 CPUs at 2.4 GHz, 256 GB memory and a

storage pool of 1.5 TB. CentOS 7 are installed

on all physical machines as host operating

system. On top of that, KVM is used as a base

virtualization solution. For better resource

isolation, instead of running OpenStack

controller services (e.g. NovaAPI,

NeutronServers, Keystone, etc.) directly on

physical servers, we install those components

on dedicated virtual server instances. Only

hypervisor service (a.k.a. OpenStack

NovaCompute) that takes care of running

virtual instances, will be installed directly on

physical servers. By this way, system services

of OpenStack cloud itself will be completely

separated from virtual server instances created

by users of the cloud. In short, stress tests

conducted by our experiments, which are

running on OpenStack’s virtual servers will not

affect performance of the cloud and vice versa.
I

Figure 3. An implementation of Elastic MQTT Framework.

4.2. Experiment Scenarios

We conducted the experiments with two

common scenarios usually found in IoT

applications using MQTT: Multi-publisher and

Multi-subscriber. Each scenario evaluates the

effectiveness of elasticity with two models:

centralized broker and clustered brokers.

4.2.1. Multi-publisher scenario
This scenario simulates a huge number of IoT

devices, for example smart plugs, publishing

telemetry data to a central smart-home system.

The devices are the publishers and the central

smart-home system is the subscriber. Devices

are structured as a three-level tree. The top level

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

34

represents the smart houses in a district. The

middle level is called households in a smart

house. The access point in each household

enables the smart plugs to reach Internet and

publish data to the smart-home center. The

bottom level is the smart plugs who send to the

access point measures of devices plugged into

them. The three-level tree is mapped to MQTT

topics. A topic level is added below the device

to represent the telemetry parameters, for

instance the power consumption (kWh). The

test scenario defines 40 topic partitions

made of:

i) 1 root topic “SmartHouse”;

ii) 3 topics “Household” each smart house;

iii) 30 topics “SmartPlug” each household

10 topics “Parameter” each smart plug.
Therefore, a topic partition represents 90

smart plugs and each one publishes 10

telemetry parameters. We have 3600 smart

plugs totally in the scenario. The testbed for this

scenario is depicted in Figure 4.

Figure 4. Multi-Publisher Clustered Brokers Scenario.

4.2.2. Multi-subscriber scenario
This scenario also simulates a huge number

of smart plugs, controlled by a central smart-

home system. The smart plugs are the

subscribers and the central system is the

publisher. Smart plugs provide two-way

communications. The final users and smart-

home center can send commands to the plugs.

Besides, the smart-plugs can also respond to

these commands, for example an indicator of an

ON/OFF update. Topics are partitioned in a

couple of levels in the same way as in the

multi-publisher scenario. We also define topic

partitions representing 3600 smart plugs

providing a control interface, which each

partition is composed of:

i) 1 root topic “SmartHouse”;

ii) 3 topics “Household” each smart house;

iii) 30 topics “SmartPlug” each household;

iv) 1 topic “Command” each smart plug.

The testbed for this scenario is depicted in

Figure 5.

Figure 5. Multi-Subscriber Clustered Brokers Scenario.

4.3. Results

The MQTT workloads are prepared using

JMeter test plan. The workload starts with a

short warm-up period and then dramatically

increases when MQTT clients joins steadily to

the simulation. EMQX servers are

preconfigured following suggestions from

EMQX documentation1. We chose IP multicast

method for the node-discovery and autocluster

mechanisms. The scheduling strategy for

HAProxy was set to roundrobin.
The Ceilometer, Aodh, and Gnocchi were

configured to measure and store measurements

of average %CPU utilization and number of

virtual CPUs (vCPU) metrics. Upper and lower

thresholds for average %CPU utilization are set

1 https://docs.emqx.io/en/broker/v3.0/tune.html.

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

35

to 80% and 25% respectively. It means that if

average %CPU utilization breaks these

thresholds and the events caught by Ceilometer

and Aodh, a notification is sent to Heat for

conducting a corresponding elasticity action

such as scaling in or out. Actually, Heat has to

ask other OpenStack services such as Nova,

Keystone, or Glance to get the elasticity actions

done synchronously. Elasticity plan configured

in Heat ensures the number of VMs always in

range of 1 to 3.

We used two JMeter client machines for

distributed tests. In each client machine,

maximum of 5 JVM processes are allowed to

initiate. According to the test scenarios, each

process is responsible for running 3600 MQTT

clients. Therefore, maximum 36000 MQTT

clients can be started and run in two client

machines. To increase saturated probability of

the brokers, QoS level of publishing and

subscribing MQTT messages is fixed to 2 and

“clean session” flag set to FALSE in all

experiments.

4.3.1. Multi-publisher scenario

In the case of using a centralized MQTT

broker, there is only one subscriber per topic

partition. This subscriber listens to all the topics

of the partition by subscribing to

“SmartHouse/#” with wildcard mask “#”

denoting all subtopics of the root topic

“SmartHouse”. One publisher is created for

every topic “SmartPlug” sending messages to

the topics “Parameter” below the topic

“SmartPlug”. Totally, 3600 publishers send

messages to 36000 topics “Parameter” at a

steady rate which is one message/second.

In the clustered case, the multi-publisher

scenario is tested with a cluster of two brokers

B0 and B1 (B1 will be added dynamically when

needed). Publishers (90 each partition) and

subscribers (one each partition) are equally

load-balanced across the two brokers.

Figure 6a shows average %CPU utilization

in both centralized and clustered cases without

elasticity. We see that the MQTT system with

one broker (2vCPU) is easy to be saturated.

Adding one more broker (4vCPU totally) to

form the cluster can help to resolve the

problem. In the centralized case, we see

obviously in Figure 7a that average %CPU

utilization of the broker gets saturation after a

couple of minutes (at the 1st minute). At this

point, dropped message rate starts to increase.

With elasticity, operating cost reduces since

we do not have to always maintain multiple

brokers (clustered brokers). In Figure 8a, we

see an elasticity effort to mitigate the pressure

performed by our system. One virtual machine

of MQTT broker B1 is created to share the

workload. This broker automatically joins the

cluster created beforehand by B0 using

multicast method. The change in the topology is

announced to HAProxy for reloading its

configuration. The reloading process needs to

be used instead of restarting one in order to

lower the server downtime as much as possible.

After reloading, HAProxy recognizes the new

server and distributes messages to all

load-balancing members. At the end, average

%CPU utilization of the broker reduces under

the lower threshold after a period of time. Thus,

we see another elasticity action (scaling in) at

this time of the simulation when MQTT clients

are finished or terminated. At this point when

the workload goes under 25%, number of

VMs is decreased to one for minimizing

operating cost.

4.3.2. Multi-subscriber scenario

In centralized case, there is only one

publisher each topic partition. This publisher

sends messages to all the topics of the partition

at a steady rate. One subscriber is created for

every topic “SmartPlug”. Each subscriber

receives messages from the topic “Command”

under the topic “SmartPlug”. In all partitions,

3600 subscribers receive messages from 3600

topics “Command” at a steady rate.

In the clustered case, the multi-subscriber

scenario is tested with a cluster of two MQTT

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

36

brokers B0 and B1 (B1 is added dynamically

when needed). Subscribers (90 each partition)

and publishers (one each partition) are equally

load-balanced across the two brokers B0

and B1.

Figure 6b shows average % CPU utilization

in both centralized and clustered cases without

elasticity. We see the same behaviors like the

case of multiple publishers. Adding one more

broker to the cluster does not really help, but two

more brokers (6 vCPU) can resolve the problem. In

the centralized case, we also see obviously in Figure

7b that average %CPU utilization of the broker

gets saturation after a couple of minutes (at the

2nd minute). At this point, dropped message

rate also starts to increase.

With elasticity, we also see the same

behaviours shown in Figure 8b like in the case

of multiple publishers. The scaling out action

with two more brokers is triggered later than

the multi-publisher scenario. These two brokers

are added sequentially by Heat. One gap of one

minute is set between broker additions to avoid

elastic oscillation. The average %CPU

utilization stays above the upper threshold

during the time longer than in the multi-

publisher scenario. The reason is that the

combination of QoS level set to 2 and “clean

session” flag set to FALSE keep retained

messages at the brokers longer, thus the more

the subscribers are, the busier the brokers are.
K

(a) Multi-Publisher Scenario. (b) Multi-Subscriber Scenario.

Figure 6. Without Elasticity: Average %CPU Usage of the Centralized and Clustered Brokers.

(a) Multi-Publisher Scenario. (b) Multi-Subscriber Scenario.

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

37

Figure 7. Average %CPU Usage of the Centralized Broker during Experimental Time.

(a) Multi-Publisher Scenario. (b) Multi-Subscriber Scenario.

Figure 8. Average %CPU Usage of the Clustered Brokers with Elasticity.

5. Conclusion

We have presented a flexible framework

that can support elasticity for MQTT broker

service in IoT applications. Our framework

brings elasticity to the service by leveraging

existing off-the-shelf components that are

currently used in cloud environments. Our

elastic MQTT broker service has been

successfully implemented using EMQX as

MQTT broker solution and OpenStack as cloud

environment. Experiments are conducted by

generating traffics to the service at varying load

level to observe changes in number of broker

instances. Our experiment results show that our

MQTT broker service adapts relative well to

user load changes making the service fully

accommodate incoming traffics as well as keep

operating cost low.

Acknowledgements

This work has been supported by VNU

University of Engineering and Technology

under project number CN19.09. We also send

sincere thanks to the staff of Center for

Computer Network and eLearning, VNU-UET

for supporting the implementation of project’s

infrastructure.

References

[1] N. Sharma, D. Panwar, Green IoT: Advancements

and Sustainability with Environment by 2050, In:

8th International Conference on Reliability,

Infocom Technologies and Optimization (Trends

and Future Directions) (ICRITO), Noida, India,

2020, pp. 1127-1132.

[2] V. Turner, D. Reinsel, J. F. Gantz, S. Minton, The

Digital Universe of Opportunities: Rich Data and

the Increasing Value of the Internet of Things,

IDC Report Apr, 2014.

[3] MQ Telemetry Transport, http://mqtt.org/, 2020

(accessed on: October 30th, 2020).

[4] P. Mell, T. Grance, The NIST Definition of Cloud

Computing (Draft), NIST Special Publication,

Vol. 800, No. 145, 2011, pp. 1-3.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui,

A. Kermarrec, The many Faces of

Publish/subscribe, ACM Comput, Surv, Vol. 35,

No. 2, 2003, pp. 114-131.

[6] R. Kawaguchi, M. Bandai, Edge Based MQTT

Broker Architecture for Geographical IoT

Applications, 2020 International Conference on

Information Networking (ICOIN), Barcelona,

Spain, 2020, pp. 232-235.

[7] V. Gupta, S. Khera, N. Turk, MQTT Protocol

Employing IOT Based Home Safety System with

ABE Encryption, Multimed Tools Appl, 2020.

[8] A. Mukambikeshwari, Poojary, Smart Watering

System Using MQTT Protocol in IoT, Advances

http://mqtt.org/

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

38

in Artificial Intelligence and Data Engineering,

Advances in Intelligent Systems and Computing,

Springer, Singapore, 2020.

[9] Y. C. See, E. X. Ho, IoT-Based Fire Safety

System Using MQTT Communication Protocol,

International Journal of Integrated Engineering,

Vol. 12, No. 6, 2020, pp. 207-215.

[10] S. Nazir, M. Kaleem, Reliable Image

Notifications for Smart Home Security with

MQTT, International Conference on Information

Science and Communication Technology

(ICISCT), Karachi, Pakistan, 2019, pp. 1-5.

[11] P. Alqinsi, I. J. M. Edward, N. Ismail,

W. Darmalaksana, IoT-Based UPS Monitoring

System Using MQTT Protocols, 4th International

Conference on Wireless and Telematics (ICWT),

Nusa Dua, 2018, pp. 1-5.

[12] Comparison of MQTT Brokers,

https://tewarid.github.io/2019/03/21/comparison-

of-mqtt-brokers.html”/, 2020 (accessed on: October

30th, 2020).

[13] M. Collina, G. E. Corazza, A. Vanelli-Coralli,

Introducing the QEST Broker: Scaling the IoT by

Bridging MQTT and REST, 2012 IEEE 23rd

International Symposium on Personal, Indoor and

Mobile Radio Communications-(PIMRC),

Sydney, NSW, 2012, pp. 36-41.

[14] A. Schmitt, F. Carlier, V. Renault, Data Exchange

with the MQTT Protocol: Dynamic Bridge

Approach, 2019 IEEE 89th Vehicular Technology

Conference (VTC2019-Spring), Kuala Lumpur,

Malaysia, 2019, pp. 1-5.

[15] A. M. V. Zambrano, M. V. Zambrano, E. L. O.

Mej´ıa, X. H. Calderon, SIGPRO: A Real-Time

Progressive Notification System Using MQTT

Bridges and Topic Hierarchy for Rapid Location

of Missing Persons, in IEEE Access, Vol. 8, 2020,

pp. 149190-149198.

[16] The features that Various MQTT Servers

(Brokers) Support,

https://github.com/mqtt/mqtt.github.io/wiki/server-

support”/, 2020 (accessed on: October 30th, 2020).

[17] P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth,

R. Takano, J. Haga, D. Kobayashi, A scalable and

Low-cost MQTT Broker Clustering System, 2017

2nd International Conference on Information

Technology (INCIT), Nakhonpathom, 2017, pp. 1-5.

[18] Z. Y. Thean, V. V. Yap, P. C. Teh, Container-

Based MQTT Broker Cluster for Edge

Computing, 2019 4th International Conference

and Workshops on Recent Advances and

Innovations in Engineering (ICRAIE), Kedah,

Malaysia, 2019, pp. 1-6.

[19] A. Detti, L. Funari, N. Blefari-Melazzi,

Sub-Linear Scalability of MQTT Clusters in

Topic-Based Publish-Subscribe Applications, in

IEEE Transactions on Network and Service

Management, Vol. 17, No. 3, 2020, pp. 1954-1968.

[20] R. R. Righi, E, Correa, M. M. Gomes, C. A.

Costa, Enhancing Performance of IoT

Applications with Load Prediction and Cloud

Elasticity, Future Generation Computer Systems,

Vol. 109, 2020, pp. 689-701.

[21] M. H. Fourati, S. Marzouk, K. Drira, M. Jmaiel,

Dockeranalyzer: Towards Fine Grained Resource

Elasticity for Microservices-Based Applications

Deployed with Docker, 20th International

Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT), Gold

Coast, Australia, 2019, pp. 220-225.

[22] M. Nardelli, V. Cardellini, E. Casalicchio, Multi-

Level Elastic Deployment of Containerized

Applications in Geo-Distributed Environments,

2018 IEEE 6th International Conference on Future

Internet of Things and Cloud (FiCloud),

Barcelona, 2018, pp. 1-8.

[23] L. M. Pham, A Big Data Analytics Framework for

IoT Applications in the Cloud, VNU Journal of

Science: Computer Science and Communication

Engineering, Vol. 31, No. 2, 2015, pp. 44-55.

[24] V. F. Rodrigues, I. G. Wendt, R. R. Righi, C. A.

Costa, J. L. V. Barbosa, A. M. Alberti, Brokel:

Towards Enabling Multi-level Cloud Elasticity on

Publish/subscribe Brokers, International Journal

of Distributed Sensor Networks, Vol. 13, No. 8,

2017, pp. 1-20.

[25] S. Vavassori, J. Soriano, R. Fernandez, Enabling

Large-Scale IoT-Based Services Through Elastic

Publish/Subscribe, Sensors, 2017.

[26] A Distributed, Reliable Key-value Store,

https://etcd.io/docs/v3.4.0/, 2020 (accessed on:

October 30th, 2020).

[27] D. Roure, C. Goble, Software Design for

Empowering Scientists, IEEE Software, Vol. 26,

No. 1, 2009, pp. 88-95.

[28] EMQX Broker,

https://docs.emqx.io/broker/latest/en/, 2020

(accessed on: October 30th, 2020).

[29] Kubernetes, https://kubernetes.io/, 2020 (accessed

on: October 30th, 2020).

[30] HAProxy, https://www.haproxy.com/solutions/load-

balancing/, 2020 (accessed on: October 30th, 2020).

[31] OpenStack: Open Source Cloud Computing

Infrastructure, https://www.openstack.org/, 2020

(accessed on: October 30th, 2020).

https://tewarid.github.io/2019/03/21/comparison-of-mqtt-brokers.html”/
https://tewarid.github.io/2019/03/21/comparison-of-mqtt-brokers.html”/
https://github.com/mqtt/mqtt.github.io/wiki/server-support”/
https://github.com/mqtt/mqtt.github.io/wiki/server-support”/
https://etcd.io/docs/v3.4.0/
https://docs.emqx.io/broker/latest/en/
https://kubernetes.io/
https://www.haproxy.com/solutions/load-balancing/
https://www.haproxy.com/solutions/load-balancing/
https://www.openstack.org/

L.M. Pham, X.T. Hoang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2021) 26-39

39

[32] OpenStack Heat,

https://docs.openstack.org/heat/latest/, 2020

(accessed on: October 30th, 2020).

[33] OpenStack Ceilometer,

https://docs.openstack.org/ceilometer/latest/, 2020

(accessed on: October 30th, 2020).

[34] OpenStack Aodh,

https://docs.openstack.org/aodh/latest/, 2020

(accessed on: October 30th, 2020).

[35] Gnocchi - Metric as a Service,

https://gnocchi.xyz/, 2020 (accessed on: October

30th, 2020).

[36] RabbitMQ, https://www.rabbitmq.com/, 2020

(accessed on: October 30th, 2020).

[37] Apache Jmeter, https://jmeter.apache.org/, 2020

(accessed on: October 30th, 2020).

[38] L. M. Pham, T. T. Nguyen, M. D. Tran, A

Benchmarking Tool for Elastic MQTT Brokers in

IoT Applications, International Journal of

Information and Communication Sciencesm,

Vol. 4, No. 4, 2019, pp. 59-67.

U

k

https://docs.openstack.org/heat/latest/
https://docs.openstack.org/ceilometer/latest/
https://docs.openstack.org/aodh/latest/
https://gnocchi.xyz/
https://www.rabbitmq.com/
https://jmeter.apache.org/

