
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 37, No. 2 (2021) 1-19

1

Original Article

Estimate the Memory Bounds Required by Shared Variables

in Software Transactional Memory Programs

Nguyen Ngoc Khai1,2 , Truong Anh Hoang1,*, Dang Duc Hanh1

1VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
2Hanoi University of Natural Resources and Environment, 41A Phu Dien, Nam Tu Liem, Hanoi, Vietnam

Received 01 December 2020

Revised 07 June 2021; Accepted 31 July 2021

Abstract: Estimating memory required by complex programs is a well-known research topic. In this

work, we build a type system to statically estimate the memory bounds required by shared variables

in software transactional memory (STM) programs. This work extends our previous works with

additional language features such as explicitly declared shared variables, introduction of primitive

types, and allowing loop body to contain any statement, not required to be well-typed as in our

previous works. Also, the new type system has better compositionality compared to available type

systems.

Keywords: Type system, software transactional memory, memory bound.

1. Introduction *

Usually, the programmers have to take care

of the resource usage of the program. However,

this task is more difficult when multi-threaded

programs are written. Synchronizing threads in

multi-threaded programs is often handled by

lock-based mechanism [1]. However, this

mechanism is often error-prone with lock errors

such as deadlock or livelock.

As an alternative approach for lock-based

mechanism, the STM [2, 3] makes it easier for

multi-threaded programming since the

*Corresponding author.

E-mail address: hoangta@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.280

programmer does not have to pay attention to the

lock errors and the management of locks, so they

can focus on the business functions of the

programs.

However, there is a disadvantage of the STM

mechanism that consumes more memory than

the traditional mechanisms. The results of the

experiment in [4] have shown that the STM

program can consume more resources than

conventional programs up to 22 times (3 times

on average). This is due to when a thread is

spawned, it will duplicate shared variables from

the parent thread so it can use these variables

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

2

independently. These variables will be released

when the thread is synchronized with its parent

thread. Therefore, estimating the memory used

by shared variables in the STM programs is

necessary to optimize the program and reduce

the risks of being out of memory runtime

exceptions.

Due to the implicit synchronization between

threads, and nesting of transactions (detailed in

Sections 2.1, 3.2), estimating maximum memory

for shared variables is a non-trivial problem. The

current work on this problem often uses dynamic

methods [4]. That is, they execute the program

and use tools to measure the resources consumed

by the program. They do this several times, then

take the average or maximum value of the

measurements. This method is easy to do, but it

gives only approximate results. The method that

we propose in this work is a static method based

on type theory. The results are proven

mathematically to ensure correctness, so our

results are reliable.

In the previous works, we have developed

several type systems to estimate the resource

usage of the STM programs [5-8], in which we

assume that the resources are the parameters

provided by the user. Users still have to calculate

manually the resources of each transaction, so

this work is still generalized, not completely

automated.

This work is extended from our previous

work [6], in which we add more features to the

language to make it less abstract than our

previous works and closer to programming

languages available. We offer some basic

features of the STM mechanism in practical

programming languages. Specifically, we

adjusted some of the syntax and semantics as

follows: i) Shared variables are explicitly

declared. Expressions and values are more

strictly expressed; ii) Expressions in the loop

body can contain any statement and are not

required to be a well-typed expression.In the

previous language [6], the loop body expression

must be a well-typed one and contain no spawn

statement. This improvement makes the

language much stronger but leads to many

challenges and difficulties for typing; iii) The

formula to calculate the resource consumption of

the program and the auxiliary functions such as

onacid, new have also been changed to be more

suitable; iv) The semantic rules of language,

environment, and status of the program are

redefined in more details. This makes their

implementation easier in practice.

We prove that the bound is sharp for all

statements except the conditional statement.

Formally, we adapt the type rules defined in

our previous works [5, 6] to the new STM

language in order to make the typing more

accurate. Several rules such as T-NEW and T-

BOOL are combined to make them more general.

We adjusted the rules T-COND and T-WHILE to

type better conditional and loop expressions. The

main contributions of this paper are summarized

as follows:

• An improved STM language whose features

are closer to current practical language;

• A type system to estimate the memory

bound required by shared variables in the

STM programs and discusses the sharpness

of these boundaries.

The rest of the article is organized as follows:

In the next section, we present an overview of

the STM mechanism with an illustrative

example of a research context, and discuss

related works. In Section 3, we describe our

STM language. Section 4 is about the type

system. In Section 6, we discuss the sharpness of

the type system and typing for the example

program. Section 7 provides the conclusion and

future works.

2. Preliminary

To describe the problem more clearly, in this

section, we explain some of the typical features

of STM programs and illustrate our context

research with an example. We survey related

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

3

works on the STM mechanism and the

estimation of resources used by the programs.

2.1. Characteristics of STM-based Programs

The STM mechanism is an alternative to

lock-base mechanism to control concurrency

programs. It has several typical features as

follows:

• Complex nested transactions: A

transaction can be spawned within another open

transaction. When a transaction is spawned

within another transaction, we call the first

transaction a parent transaction, the latter a child

transaction. Child transactions must be

committed before the parent transaction. Within

a thread, if a transaction commits without

referring to other threads we call local commit.

When a transaction commits, the threads

spawned within it also have to be synchronized.

We call this joint commit.

• Duplicate shared variables: When a

new thread is spawned, it copies the shared

variables of the parent thread into their own

variables for use independently. After the

transaction is completed, these threads compare

the values of these shared variables to

synchronize. If there is no conflict, they are

synchronized, otherwise, they are canceled or

roll-back. This depends on the design of the

programming language. When using this

mechanism, the program does not need to use

locks so it avoids lock errors. However, copying

shared variables of threads causes the program to

consume more memory.

• Implicit synchronization: For some

actual programming languages, the programmer

may not need to write statements to synchronize

between threads, their compiler automatically

adds those statements during the execution. This

is called implicit synchronization. It is

convenient for the programmer because they do

not care about synchronization between threads.

However, this also creates other constraints, we

will analyze more in detail in section 3.2.

Because of this implicit synchronization, we

need to analyze the program at the semantic level

of the language rather than at the source code

level. In addition, these programs have some

nested transactions, threads run in parallel but

are not independent. This makes estimating the

memory consumed by these programs really

complex. Our solution to this problem is to build

a type system. This is a static program analysis

method that has been used in many works [9].

The main purpose of this type system is to

estimate the maximum memory required by

shared variables in STM programs. However,

users can develop them to suit their purpose, for

example, the calculation of the cost of memory,

CPU, network bandwidth resources, or the

number of gases required for smart contracts in

Ethereum, etc.

2.2. An Illustrative Example

To describe the problem, we consider an

STM program segment as shown in Listing 1.

In this code, the statement onacid is used

to open a transaction; The statement commit is

used to commit a transaction or joint commit

transactions between the parent thread and its

child threads. The statement spawn is used to

spawn a new thread; The variables declared with

the keyword shared in front are shared

variables between the parent and child threads.

Under the STM mechanism, these variables

are cloned by child threads from their parent

threads to become their own variables; the

remaining statements such as declaring and

initializing variables, conditional statement, loop

statement are similar to other common

languages.

The behavior of this program is described in

the Figure 1. The symbol [describes the

operations that open a transaction; the symbol]

as the closing of a transaction or joint commit

between the parent thread and child threads;

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

4

The dashed square i) represents the joint

commits of the parent and child threads; The

point marked by the symbol ♦ represents the

branch of the conditional statement: they can

turn to branch e1 or branch e2; the dashed square

ii) represents the closing of the transaction

outside of the conditional statement. Visually we

realize that the maximum memory the program

needs to consume by the STM mechanism can

be at points ①, ②, or ③.

Assuming that a bool variable needs 1

memory unit, an integer variable needs 2

memory units, the maximum memory required

for shared variables in this program at each time is:

• At point ①, the maximum memory

required is 12 units as follows:

− Thread 0 requires 4 units in which 2

units are for the variable x1 in the first

transaction, another 2 units for the

variable x2 in the 2nd transaction.

− Thread 1 requests 8 units in which 2

units are required because thread 1

clones variable x1 from thread 0 by

STM mechanism, 6 units for variables

y1, y2, and y3.

• At point ②, the maximum memory

required is 10 units as follows:

− Thread 0 requires 4 units for the

variables x1 and x2.

− Thread 1 requires 6 or 5 units as follows:

+ 2 units for the variable x1, which is

cloned from thread 0 by the STM

mechanism.

+ If the statement if turns to branch

p1: 4 units for the variables y4, y5,

and y6.

In this case, at point ② the program

consumes 10 units.

+ If the statement if turns to branch

p2: 3 units for variables y7, y8, and

y9.

In this case, at point ② the program

consumes 9 units.

• At point ③, the maximum memory

required is 8 units as follows:

− Thread 0 requires 4 units for the

variables x1 and x2.

− Thread 1 requires 6 or 4 units:

+ 2 units for the variable x1 (it is cloned

from thread 0).

+ If the statement if turns to branch p1:

4 units for the variables y4, y5, and

y10.

In this case, at point ③, the program

consumes 10 units.

+ If the statement if turns to branch p2:

2 units for the variables y7 and y10.

Listing 1. Example of a multi-threaded

program

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

5

Figure 1. Describe the behavior of the program in Listing.

In this case, at point ③ the program

consumes 8 units. According to the above

analysis, we realize that the maximum memory

required by the program is 12 units at point ①.

2.3. Related Works

STM mechanism: The STM mechanism has

been studied for a long time, in which [10] can

be considered as the first proposal of this

approach. In this work, there are limits that

transactions are static, the data set is already

known. In work [13], Herlihy et al. have

overcome the limits on the above static

transactions by dynamic transactions in libraries

of the Java language. Then there are many

studies that continue to be developed and

implemented in practice, such as in Java

language [11-14], Haskell language [15], C++

language [16]. The above works showed that the

STM mechanism is very potential and practical.

The estimation of resources used by the

program: Estimating resources used by the

program is an important issue, and it has been of

interest to many scientists. In [17], the authors

present an overview of resource estimation

issues in software engineering. In [18], the

authors present a method to find the upper

bounds for the size of permutation codes via

linear programming. In [19] Jan Hoffmann et al.

propose a method of automatic resource bound

analysis for the OCaml program. He used

techniques to parameterize resources to deduce

the time, memory, and energy needed by the

program. In [4], Klein et al. found that the energy

consumption of the software transactional

memory mechanism was higher than the lock-

based mechanism of up to 22 times (average

more than 3 times).

In [20], the authors introduce the first

automatic analysis for deriving bounds on the

worst-case evaluation costs of parallel first-order

functional programs. The analysis is performed

by a novel type system for amortized resource

analysis. The main innovation is a technique that

separates the reasoning about sizes of data

structures and evaluation cost within the same

framework. In recent years, for the Ethereum

blockchain platform, in [21], the authors design

and implement a tool to automatically infer

sound gas upper bounds for smart contracts. In

Ethereum, gas (in Ether, a cryptographic

currency like Bitcoin) is the execution fee

compensating the computing resources of

miners for running smart contracts [22]. In [22],

the authors analyzed the Solidity language and

its compilation. Then they propose a tool for

automatically locating gas-costly patterns by

analyzing smart contracts’ bytecodes.

Our work focuses on multi-threaded

languages, using STM mechanisms. We focus

on solving the problems of complex nested

transactions, implicit synchronization between

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

6

threads. Our method is static program analysis,

based on the type system.

In works [7, 23], we have built a type system

for core STM language, which only contains the

most basic statements. This type system can

calculate the maximum number of transactions

that an STM program requires in the worst case.

These works help us make basic rules and prove

the attributes of the type system conveniently.

The type system in our work [5] was developed

from the type system in our previous works [7,

23], in which we have improved the type system

to calculate the maximum resource that the

program needs to use rather than just count the

maximum number of transactions as in the

previous works.

In [5], each transaction is provided a

parameter. These parameters represent the

resource that the transaction requires. Our type

system calculates the maximum log memory that

the program needs to use based on those

parameters.

The results of those works are generalized so

that users can develop them to suit their

purposes, such as calculating the cost of memory

resources, CPU, network bandwidth, time, or the

number of gas required for smart contracts in

Ethereum. However, the calculation of the

consumed resource of each transaction (the

parameter of the transaction) is manual, so this is

still semi-automatic. Then, in [24], we have

improved the language and type system to

calculate the log memory from the program’s

shared variables in a completely automated way.

In [6], our type system is developed from our

works [5, 8], in which we expanded the

language, so that it was closer to the actual

language, and we have also improved the type

system for more convenient calculations.

The main feature of the type system in this

work is the ability to composition. This means

that it is possible to type any term of the

program, then we combine them to get the type

of the program.

3. Transactional Language

In this section, we present our STM

language. This language is developed from [6],

where we improve some syntax and semantics

rules so that it is closer to the actual language as

introduced in Section 1. Specifically, we add the

S-ASSIGN rule, improve the S-WHILE, S-NEW, S-

TRANS rules, and add some auxiliary functions to

make the presentation of the rules more detailed.

We explain these improvements in each rule in

more detail.

3.1. Syntax

The syntax of the language is presented in

Table 1.. At line 1., P represents threads or

processes, which can be an empty thread,

denoted by ∅, or multiple parallel threads P||P,

or a thread p executing expression e. At line 2.,

T represents primitive types, which can be the

integer or boolean type. D at line 3. is a list of

variable declarations, which can be the shared

variables or local variables. O at line 4.

represents the operators, which can be arithmetic

operations such as +, –, ×, ÷ (denoted by •);

relational operations such as =, >, ≥, <, ≤

(denoted by ■); logical operations such as AND,

OR (denoted by ♦), NOT (denoted ▲).

At lines 5., 6., vi, vb are integer and logic

values respectively. At line 7., v is values which

can be integer values or logical values. At line 8.,

ei is an integer expression or an integer value;

At line 9., eb is a boolean expression or a logic

value.

From line 10. to line 14., an expression e can

be a statement declaring and initializing new

variables, assignment, sequencing (denoted by e;

e), branch statements, loop statements, the

statement spawn{e} to create a new thread that

executes e, the statement onacid is for opening

a new transaction, the commit statement is for

closing a transaction.

We assume that, in each transaction,

variables are declared at the beginning of each

transaction, and when the program spawns a

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

7

thread in that transaction, they copy all these

variables into the new thread. These variables

usually copied in batch and store in a memory

area called transaction log, or simply log. The

size of the logs will be the total memory of the

variables that are cloned or initialized within it.

3.2. Dynamic Semantics

In this section, we present the semantics of

the language, define the environments, and

auxiliary functions that support the

representation of rules. A thread consists of

many transactions, and each transaction contains

many variables. We call the environment of a

thread the local environment [6]. The

environment of the program is called the global

environment [6], and which is a collection of

local environments. Transaction size is the total

memory for the variables inside it. We have the

definition of the local environment as follows.

Definition 1 (Local environment). A Local

environment E is a finite sequence identifier of

the transactions and their sizes, E = {l1:n1; l2:n2;

...; lk:nk}. An environment without any elements

is called an empty environment, denoted by 𝜖 [6].

Definition 2 (Global environment). A global

environment Γ is a set of identifiers of threads

and their local environments, Γ = {p1:E1; p2:E2;

...; pk:Ek} [6].

The total memory consumed by the program

at a time is the total memory of the program’s

open transactions at that time.

Definition 3 (Total memory). The total

memory consumed by the program at a time is

Γ, and ⟦𝛤⟧ = ∑ ⟦𝐸𝑖⟧𝑛
𝑖=1 , where n is the number

of threads of the program.

A pair of an environment Γ and a collection

of threads P are called a state Γ, P of the

program. A special state called error describes

the fault state - the state at which none of the

transaction rules can be applied. The dynamic

semantics rules are specified by transition rules

of the form 𝛤, 𝑃 ⟹ 𝛤′, 𝑃′ or 𝛤, 𝑃 ⟹ 𝑒𝑟𝑟𝑜𝑟 as in

Table 2.

In Table 2, we assume some equivalence

rules: 𝑃‖𝑃′ ≡ 𝑃′‖𝑃, 𝑃‖(𝑃′‖𝑃′′) ≡ (𝑃‖𝑃′)‖𝑃′′
and 𝑃‖0 ≡ 𝑃, and some auxiliary functions as

described below.

• S-TRANS: This rule to start a new

transaction (execute statement onacid). In this

Table 1. The syntax of the transactional language

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

8

rule, the function onacid(l, p, 𝛤) creates a

transaction l with memory size 0 at the end of

the local environment of p. If onacid(l,pi, 𝛤)= 𝛤',

where 𝛤 = {p1:E1, ..., pi:Ei, ..., pk:Ek} and with

statement fresh l then 𝛤'={p1:E1, ..., pi:E'i, ...,

pk:Ek} where Ei'=Ei;l:0.

• S-COMM: This rule is used to commits a

transaction. In this rule, ∐ 𝑝𝑖(𝑒𝑖)𝑘
1 stands for

𝑝1(𝑒1)‖… ‖𝑝𝑘(𝑒𝑘). If the current transaction

identifier of p is l, then all threads with

transaction identifier l must joint commit when

transaction l commit.

In this rule, function intrans(𝛤, l:n) returns

a set of all threads inside this transaction l,

denoted by p. In the environment 𝛤 contains

transaction l and this transaction is the last

element of this environment. This means that if

intrans(𝛤, l:n) = p = p1, ..., pk then:

− For all 𝑖 ∈ {1 … 𝑘}, 𝑝𝑖 has the form

𝐸𝑖
′; 𝑙: 𝑛,

− For all 𝑝′: 𝐸′ ∈ 𝛤 such that 𝑝′ ∉
{𝑝1, … , 𝑝𝑘} then we have E' does not contain

transaction l.

Function commit(p, Γ) removes the last

transaction in the local environments of all

threads in p. Suppose intrans(Γ, l:n) = p and

commit(p, Γ)= Γ′, for all p':E' ∈ Γ′, if p' ∈ p,

then p':(E'; l:n) ∈ Γ. For other cases p':E' ∈ Γ.

• S-NEW: This rule is used to initialize a

new shared variable, where function

new(x,l,p, 𝛤) initialize a shared variable x at the

end of transaction l (the last transaction at that

time). If 𝑛𝑒𝑤(𝑥, 𝑙, 𝑝𝑖, 𝛤)=𝛤', 𝛤 ={p1:E1, ...,

pi:Ei, ..., pk:Ek}, and Ei={l1:n1; ...; lj:nj} then

Γ′ = {𝑝1: 𝐸1, . . . , 𝑝𝑖: 𝐸′𝑖 , . . . , 𝑝𝑘: 𝐸𝑘}, and

E'i={l1:n1; ...; lj:n'j}, where n'j=nj+m, m is the

memory size of the initialized variable.

For variables that are declared outside the

transactions and local variables, they do not

affect the memory resources caused by the STM

Table 2. The semantics of transactional language

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

9

mechanism, so in this work, we do not care about

these variables.

• S-SPAWN: This rule is applied to create a

new thread. The statement spawn{ e1 }

creates thread p' for executing e1 in parallel with

thread p (it's parent thread) and the environment

𝛤 changes to 𝛤′. The function 𝑠𝑝𝑎𝑤𝑛(𝑝, 𝑝′, 𝛤)

adds to Γ a new thread p'. Its local environment

is copied from the local environment of the

thread. Suppose 𝛤 = {𝑝: 𝐸} ∪ 𝛤′′ and

𝑠𝑝𝑎𝑤𝑛(𝑝, 𝑝′, Γ) = Γ′ then Γ′ = Γ ∪ {𝑝′: 𝐸′}

where E'=E.

• S-ASSIGN: This rule is used to assign a

value to a variable as usual standard semantics of

programming languages. In this rule, variable x-

11 and value of expression e1 must be of the same

type T. e0 is the value of x11 before it is assigned

the value e1. The function isclone(x11) returns

true if the variable x11 is cloned from another

thread (the parent thread of the current thread),

and returns false if the variable x11 is initialized

in the current thread.

If the variable x11 is initialized in the current

thread, then when the program performs the

assignment, it is assigned a new value (e1)

instead of the old value (e0), and the environment

𝛤 is not changed.

If the variable x11 is the cloned variable from

the current thread's parent thread, then when

performing the assignment, the function write

adds a new variable adjacent to it to store the new

value (e1). Thus, its old value (e0) is not

overwritten. This is to serve the joint commit

between the threads. In this case, the

environment is changed from 𝛤 to 𝛤′ as follows:

𝛤 = 𝛤′′ ∪ {𝑝𝑖: 𝐸𝑖}, 𝛤′ = 𝛤′′ ∪ {𝑝𝑖: 𝐸𝑖
′},

𝐸𝑖 = 𝐸𝑖
′′ ∪ {𝑙𝑗: 𝑛𝑗}, 𝐸𝑖

′ = 𝐸𝑖
′′ ∪ {𝑙𝑖: 𝑛𝑗

′},

𝑛𝑗
′ = 𝑛𝑗 + 𝑠𝑖𝑧𝑒(𝑥)

The function size(x) returns the memory size

of the variable x.

• S-COND: This rule to execute the

conditional statement. The expression 𝑖 = 𝑒𝑏 ↓
𝑡𝑟𝑢𝑒 ? 1 ∶ 2 means that if eb is true then i get

value 1 else i get value 2.

• S-WHILE: This rule is used to implement

the loop in the program. The expression e'= 𝑒𝑏 ↓
𝑡𝑟𝑢𝑒? 𝑒; 𝑤ℎ𝑖𝑙𝑒(𝑒𝑏){ 𝑒 }; 𝑒2 ∶ 𝑒2 means that if eb

is true then e'=e; while(eb){ e }; e2 else e'=e2.

In our previous work, expression e in the

body of the loop has to close w.r.t transaction

and does not contain statement spawn. In this

work, the body of the loop can be any

expression. However, in order to determine the

resources consumed by these loop expressions,

we are assuming that the maximum number of

loops is known. This is also a drawback in this

work, and we plan to address it in future work.

• S-SKIP: This rule is used for other

operations, such as •, ■, ♦, ▲ which do not affect

the transaction and multi-threaded semantics, so

we simplify here by a skip operation.

• S-ERROR: This rule is used to handle

error cases, e.g., commit in an empty

environment.

4. Type System

Our type system aims to estimate the upper

bound of the maximum memory required by

shared variables in multi-threaded transaction

programs. Each program segment (called a term)

is typed through a special string, thereby

abstracting the transaction behavior of that

program.

The type rules presented here are inherited

from our previous work [5, 6], however they are

improved to match the current language and are

described in more detail.

4.1. Type

We use a set of symbols with non-negative

numbers to represent the type of a term. The type

of a term is a finite sequence of numbers with

symbols, which are marked by a pair of a symbol

and a non-negative natural number in the set ℕ+.

We use the set {, +, −, ¬, #} to denote the

initialization of a variable, open, commit, joint

commit a transaction, and memory maximum

allocation for the logs. The set of numbers with

symbols is denoted by ℕ
𝑇 , i.e. 𝑇ℕ =

{ 𝑛
 , 𝑛

+ , 𝑛
− , 𝑛

¬ , 𝑛
| 𝑛 ϵ ℕ

 }. The numbers

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

10

assigned to these symbols have the following

meaning:

• 𝑛
 : Initializes a variable with size n,

meaning that it needs to be allocated n units of

memory to that variable.

• 𝑛
+ : The opening of a transaction, the

memory allocated for that transaction is n. The

case n=0 means that a transaction has been

opened but no variable is initialized in that

transaction.

• 𝑛
− : There are n commit statements in

succession to finish the previous transactions.

• 𝑛
¬ : There are n threads need to

synchronize at a time.

• 𝑛
: The maximum memory required for

a term is n units of memory.

Definition 4 (Type of a term). The type T of

a term in our system is defined as follows [6]:

𝑇 = 𝑆 | 𝑇𝑇 ‖T ⊗ T | 𝑇ρ | 𝑇 ⊘ 𝑇 | 𝑇‖𝑘𝑇

The type of a term can be a sequence of

tagged numbers S as described in Section 4.1, or

synthesized from other types of terms. In this

definition, TT means that the type of term is

derived from the type of two sequential terms.

𝑇ρ means that a term has type T that will be

executed in a thread parallel to its parent thread.

The T ⊗ T, 𝑇 ⊘ 𝑇, and 𝑇‖𝑘𝑇 operations are

merged, choice, and parallel operations,

respectively, are to create new terms from

existing terms, and they will be described in

detail in the next section 4.2.

4.2. Typing Rules

The typing rules are described in Table 3., where

the type of a term is of the form𝑛 ⊢ 𝑒: 𝑇, and we

read that e has type T. n is the environment of the

expression, and it represents the amount of

memory consumed or released when the

program executes e.

• T-ONACID, T-COMMIT: These two rules

are used to type expressions onacid and commit

corresponding. The statement onacid to open a

transaction, its type is 0
+ . The statement commit

to close the last opened transaction, its type is

1
− .

• T-SPAWN: This rule is used to type the

element spawn{ e }. If the type of e is T then

spawn{ e } has the type 𝑇ρ. Here symbol ρ is

used to indicate that the current thread is running

parallel with the parent thread.

• T-NEW: This rule is used to type the

statements that initialize a new reference object.

The function size(x) returns the size of the

Table 3. Typing rules

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

11

variable x (memory allocated for variable x). In

this work, we assume that an integer variable

needs 2 memory units, a boolean variable needs

1 memory unit. If e is shared int x=0; then type

of e is 2
 ; if e is shared bool x=0; then type of

e is 1
 .

• T-SEQ: This rule represents sequential

components of e1 and e2. When two expressions

are sequential, its type is also sequential.

Suppose e1 has type T1 and e2 has type T2, where

T1 has a form without ρ, e1; e2 has type T1T2.

• T-MERGE: This rule to type expressions

with two parallel elements. The symbol 𝑇1
ρ

indicates that the thread of type T1 is running in

parallel with its parent thread. To simplify the

expression of type 𝑇1
ρ

𝑇2 we use the ⊗ operation

shown in the following.

When e1 ends with some expressions spawn,

it means that e1 has the type 𝑇1
ρ
. When its type is

associated with T2, we need to use the aggregate

operation to type the string e1; e2 then it will be

of the form T1⊗T2.

• T-COND: This rule is used to type for

conditional expressions. We assume that e1 and

e2 have types of T1 and T2, respectively. If the

expression e is if(eb) then{ e1 } else{ e2 }$ then

the type of e is 𝑇1 ⊘ 𝑇2.

• T-WHILE: This rule is used to type the

loop expression. The symbol Tm to describe a

sequence of m components T consecutively,

where m is the maximum number of loops, and

T is the type of the loop body expression. By this

rule, our type system can type any loop

expressions with a known maximum number of

loops. For general loop expressions, we cannot

statically determine the number of loops,

because it depends on the values of variables

during program execution. We plan to

investigate loop-bound analysis in developing a

type inference algorithm for our type system in a

future work.

• T-THREAD: If an expression e has type

T, then the thread executing it also has type T. e

here is the expression that will be executed by

the thread, so its type must be a canonical

sequence as in Definition 5.

• T-PAR: This rule is used to type

programs at the time the program is running. At

this time, the program has many parallel threads

running. If we just need to type static for the

program, we do not need this rule. However, this

rule helps us prove the correctness and sharpness

of the type system.

For cases where expressions execute outside

transactions, or it does not consume memory by

the STM mechanism, we use the rule T-SKIP.

This means that we can skip the typing of these

expressions. The function summem(e) returns

the total memory that expression e uses by the

STM mechanism.

For convenience, we can add or remove

elements of 0
𝑡𝑎𝑔(𝑠) form from the string because

it does not affect the semantics of the string. The

set ℕ̅
𝑇 can be divided into equivalence classes,

in which all elements in the equivalent class

describe the same transaction behavior, and each

class uses the most concise string to describe the

class. We call it the canonical string.

Definition 5 (Canonical sequence). A

sequence S is canonical if tag(S) does not

include elements ′′
, ′ + +′, ′ − −′, ′##′, ′ +

−′, ′ +− ′, ′ + # − ′, ′ + #− ′, and

⟦𝑆(𝑖)⟧ > 0 for all i.

We can always reduce an S string without

changing the way to understand it. Note that,

during string reduction, the pattern ′ + −′ may

not appear on the left, but we can add 0
to apply

the function.

Note that, during reducing string we cannot

reduce the string in 𝑛
+ , 𝑚

+ format, because each

element 𝑛
+ , 𝑚

+ represents an open transaction,

it needs to be committed with an element 1
− .

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

12

For convenience of presenting operations in

the following sections, we introduce several

notations and their meanings:

• 𝑠# represents an empty sequence or an

element 𝑛
, i.e. 𝑠𝑘

∈ {𝜖} ∪ { 𝑛
|𝑛 ∈ ℕ}.

• 𝑠𝐧 (n stands for negation) represents

1
− or 𝑛

¬ , i.e. 𝑠𝑘
𝐧 ∈ { 1

− } ∪ { 𝑛
¬ |𝑛 ∈ ℕ+}.

• 𝑠𝐜 (c stands for commit) represents 1
− ,

𝑛
¬ , or 𝑇1‖0 … ‖0𝑇𝑘 i.e. 𝑠𝑘

𝐜 ∈ { 1
− } ∪

{ 𝑛
¬ |𝑛 ∈ ℕ+} ∪ {𝑇1‖0 … ‖0𝑇𝑘|𝑘 ≥ 2}.

• ⟦𝑠#⟧ represents the natural number of s

corresponding, for example, ⟦5#⟧ is equal to 5.

The following are some rules to reduce a

sequence of tagged numbers to a canonical

sequence.

i) In a transaction, memory resources

allocated to consecutive variables are equal to

the total memory allocated for each variable.

𝑛
 𝑚



⇒ (𝑛 + 𝑚)



For example, for the expression e is shared

int x=0; shared bool y=0; where an integer

variable needs 4 units of memory, the logical

variable needs 1 unit of memory then the type of

e is:

4
 1



⇒ (4 + 1)



⇒ 5

 .

ii) Inside an open transaction, if we

initialize one more variable with memory to use

is m then the memory needed for that transaction

increases by m.

𝑛
+ 𝑚



⇒ (𝑛 + 𝑚)

+

For example, for the expression e is onacid

shared int x=0; shared int y=0; then the type of e

is 0
+ 2

 2


⇒ 2

+ 2


⇒ 4

+ .

iii) For nested transactions, the memory that

they need to use is the total memory of the

component transactions.

The formula (1) is used to type program

segments that behave as described in segment

AB, formula (2) is used to type program

segments that behave as described in segment

BC in the Figure 2.

Figure 2. Nested transactions.

iv) Two consecutive terms have types

𝑛
, 𝑚

, then their type is the type of term that

has a greater value, so we have the formula to

reduce the string as follows.

𝑚
𝑛

#

⇒ 𝑚𝑎𝑥(𝑚, 𝑛)

In this case, the behavior of the program segment

is similar to that described in the Figure 3.

Figure 3. Two consecutive terms.

v) Symbol ρ is used to mark that the

expression is executed in parallel to its parent

thread.

(𝑇ρ
)ρ = 𝑇 ρ

In case the expression does not contain joint

commits, we can ignore them:

(𝑛
)ρ = 𝑛

For expression of the form 𝑇1
ρ

𝑇2, then T2 is

the remainder of the parent thread after spawning

the child thread executing T1. Since T2 has joint

commits with T1, we can join T1 with T2 to make

it ready for joint commit.

𝑇1
ρ

𝑇2

⇒ 𝑇1 ⊗ 𝑇2

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

13

The ⊗ operation is defined rule (6). In this

case, the behavior of the program segment can

be described in the Figure 4.

vi) The ⊗ operation is used to combine the

type of threads in parallel.

During this operation, we look for joint

commits from left to right to merge them. In case

T1 contains joint commits but T2 does not then

we do not merge them and wait for the next

expression.

vii) The ⊘ operation is used to type

conditional statements. In this case, we will

choose the element which has a larger value.

In this rule, for brevity, we use the symbol 𝑛
∓

instead of the symbol 𝑛
+ or 𝑛

− or 𝑛
¬ .

viii) The following rules are used for threads

to joint commit. The value n in element 𝑛
¬

represents the number of threads inside the latest

opened transaction. This case is described in the

Figure 5., and we can combine them with the

following rules.

The following rule is similar to the above, but

we are interested in nested transactions, the same

as described in the Figure 6.

Figure 6. Joint commit parallel threads (case 2).

The above rules are used to type the program

when it is not running (static). If your purpose is

only to determine the type of program, the above

rules are sufficient. However, to prove the

correctness and sharpness of the type system, we

need the following two rules. The two rules (9),

(10) are to type the program when the program

is running (dynamic), and already have threads

running in parallel.

ix) The following rules are used for threads

to joint commit between threads in running time.

Figure 4. Two parallel threads.

Figure 5. Joint commit parallel threads (case 1).

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

14

Listing 2. Example of applying rules (9), (10)

where k>0 and 𝑇1𝑠1
𝑐𝑠1

#, 𝑇2𝑠2
𝑐𝑠2

is canonical

forms.

x) Similar to rule (8)., the rules below

apply at the time that the program is running.

To explain more clearly these two rules, we

consider the example in Listing 2.

We apply the rules T-ONACID, T-COMMIT, T-

INIT, T-SPAWN to type the program. We then

apply rule (9) to reduce them, and get the type of

the program is

After the spawn statement runs, the first

thread has an open transaction, and their memory

is duplicated. The type of the rest of the two

threads are thread 1: 2
1

− ; thread 2: 2
1

− .

Apply rule T-PAR, and apply rule (9) to

reduce them, we have:

This is the type of program at the time after

executing the statement spawn. Besides, it has

an open transaction and its memory is being

duplicated. So the type of this transaction is:

1
+ 1

+ .

We add this sequence to the above type

sequence, and apply rule 10. to reduce them, we

have:

So the program type is 6
, or the

maximum memory the program needs is 6

units. Since the type in this work reflects the

behavior of a term of a program, so the type

of a well-type program is a string containing

only one element 𝑛
, where n is the

maximum memory that the program requires

during executing it.

Definition 6 (Well-typed). A program is

well-typed if it has type T and 𝑇

⇒∗ 𝑠# [6].

Definition 7 (Resource consumption). If
𝛤, 𝑃 is a running state of the program and

𝑃: 𝑇, then the maximum resource

consumption during executing P is:

4.3. Characteristic of the Type System

In this section, we present the characteristics

of type systems and apply them to prove the

correctness and sharpness of type systems.

A type of the expression e has the

characteristic that its environment is only

sufficient for open transactions to commit in e as

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

15

described by its type. We have the following

theorem.

Theorem 1 (Type judgment property).

Assume e:T, and its environment is
𝛤, if 𝑆𝑇

⇒∗ 𝑠# then ⟦𝑠#⟧ ≥ ⟦𝑆⟧, where 𝑆 =

𝑛 1
+ 𝑛 2

+ … 𝑛 𝑘
+ , and ⟦𝑆⟧ = ⟦𝛤⟧ [6].

Proof (Sketch). By induction on the typing rules

in Table 3.

During program execution by the semantic

rules in the Table 2, if the program changes from

state 𝛤, 𝑃 to 𝛤′, 𝑃′ and ⟦𝛤, 𝑃⟧ = 𝑛, then

⟦𝛤′, 𝑃′⟧ = 𝑛′ and 𝑛 ≥ 𝑛′ for any rules. We

formally express this characteristic in the

following theorem.

Lemma 1 (subject reduction). If 𝛤, 𝑃 ⟹
𝛤′, 𝑃′ by R rule and ⟦𝛤, 𝑃⟧ = 𝑛 then ⟦𝛤′, 𝑃′⟧ =
𝑛′ and 𝑛 ≥ 𝑛′ for ∀ R [6].

Proof (Sketch). The proof is done by

checking one by one of all the semantics rules in

Table 2.

Lemma 2 (Preservation). Given a well-typed

P0, its type is T and 𝑇

⇒∗ 𝑠#. For any state 𝛤, 𝑃

of the program, we have ⟦𝛤′, 𝑃′⟧ ≤ ⟦𝑠#⟧ [6].

Proof. By inductions on transitions of the

semantics.

• Initial state: ⟦∅, 𝑃⟧ = ⟦𝑠#⟧ ≤ ⟦𝑠#⟧.

• If 𝛤, 𝑃 ⟹ 𝛤′, 𝑃′, assume that ⟦𝛤, 𝑃⟧ ≤
⟦𝑠#⟧, by Lemma 1, we have ⟦𝛤′, 𝑃′⟧ ≤
⟦𝛤, 𝑃⟧ ≤ ⟦𝑠#⟧.

The correctness of the type system is

understood that a well-typed program does not

use more memory than the amount expressed in

its type.

Theorem 2 (Correctness). Given a well-

typed program P0, its type is T, and 𝑇

⇒∗ 𝑠# then

the resource consumption of the program during

running cannot exceed ⟧ ≤ ⟦𝑠#⟧ [6].

Proof. Let 𝛤, 𝑃 be a state of the program, by

the Lemma 2, we have ⟦𝛤, 𝑃⟧ ≤ ⟦𝑠#⟧. By

Definition ⟦𝛤, 𝑃⟧ and Theorem 1 we infer ⟦𝛤⟧ ≤
⟦𝑠#⟧.

This theorem asserts that, if a program is

well-typed then maximum memory usage of the

program will not exceed the value expressed in

its type.

5. Typing the Example Program

In this section, we apply the rules in Table 3.

to build a type inference tree for the example

program in List 1.

In this work, our type system can type any

term, and then integrate them into the program's

type. However, in order to facilitate the analysis

of sharpness in Section 6.1, we divide it into two

steps as follows: First, we type the program

segment 𝑒29
10 (the program segment contains the

conditional statement). Then we combine it with

the rest of the program to get the type of the

program.

By applying the rules in Table 3, we can

build a type inference tree for the program

segment 𝑒29
10 as shown in the Figure 7.

We inherit this result, and do the same for the

rest of the program, we get the type inference

tree of the program as shown in the Figure 8.

Note that the variables a and b at line 1 are

local variables, so we omit it.

Through this type inference tree, we can

conclude that, in the worst case scenario, the

program can use up to 12 memory units for

shared variables.

6. Discussion

In this section, to explain more clearly about

our work, we discuss sharpness, and evaluations

of our proposed solution.

6.1. Sharpness

The sharpness of type system is understood

that if given a well-typed program then there is

always a path from the initial state 𝛤0, 𝑃0 to the

state 𝛤, 𝑃 such that the memory consumption of

the program at state 𝛤, 𝑃 to be equal to the value

shown in their type expression.

In this work, our typing rules ensure that the

memory bound is always greater than or equal to

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

16

the total memory required by the program (i.e.,

ensuring the correctness of the type system).

However, there are some instances where the

bound found by these rules is greater than the

total memory that the program needs to use (i.e.

bound is not sharp).

During proving the correctness and

sharpness of the type system, we realized that,

for expressions that contain conditional

statements, the memory bound found may not

guarantee sharpness. To better understand this

problem, we consider the program segment 𝑒29
10

in the example in List 1. Applying the rules in

Table 3., we build the type inference tree for the

program segment 𝑒29
10 in the Figure 7.

Through the type inference tree, we realized

that the type of 𝑒29
10 is 5

. This means that it is a

well-typed program segment and the maximum

memory consumed by it is 5 units.

Now, we analyze the program segment

through the Figure 1. and code in Listing 1., we

have the following cases:

Figure 7. Typing the program segment at lines 10-29 in Listing. 1.

• If 𝑎 > 𝑏, the conditional statement will

execute 𝑒16
11, not 𝑒24

19, so 𝑒29
10 can rewrite into 𝑒16

11;

𝑒29
26, and the maximum memory that the program

segment needs to use is 4 units.

• If 𝑎 ≤ 𝑏, the conditional statement will

execute 𝑒24
19, not 𝑒16

11, so 𝑒29
10 can rewrite into 𝑒24

19;

𝑒29
26, and the maximum memory that the program

segment needs to use is 2 units.

We realize that the program segment has no

path to use up to 5 units (in other words, in this

case, the bound is not sharp).

Thus, from the above example, we realize

that, if we just based on the expressions in the

conditional statement, we can not find the

memory bound correctly because it depends on

the expression before and after conditional

statement.

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

17

Currently, we have done a review of the

cases that we recognize, and we have found that

the memory bound found by the type system is

sharp for all rules, except for the branching

statement.

6.2. Evaluation of Our Solution

In this work, our proposed method is a static

estimation method, based on type theory, which

can be proved mathematically to ensure

correctness, so the results are reliable.

A special feature of our type system is that it

can give type to an uncompleted program, or a

program segment. This feature is very useful,

because it can give a preview of memory usage

patterns while the programmers are typing code.

We tried to find studies close to our work to

compare results, but we couldn't find any, so

comparing our results with other studies has yet

to be done.

In this work, we use an abstract language

with the aim to focus on analyzing the behavior

of copying shared variables of the STM

mechanism. For future work, we plan to apply to

real languages and compare with actual memory

bounds.

Figure 8. Typing the example program in Listing 1.

7. Conclusions

We present a multi-thread language based on

the STM mechanism and a type system for

estimating the maximum memory for its

programs. In this work, the language and type

system are more detailed and rigorous than our

previous work, so they are closer to reality.

We added some discussion about the

sharpness of the memory bound found by the

type system, and evaluations of our proposed

N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19

18

solution. This helps users better understand our

solution and apply it more effectively.

In our future work, we plan to solve the

problems of sharpness of the found memory

bound and general loop typing. In this work, our

language is still in abstract form to focus on

presenting the features of the STM mechanism.

We will apply these results to the actual language

in future work.

References

[1] H. Weiwu, S. Weisong, T. Zhimin, L. Ming, A Lock-

Based Cache Coherence Protocol for Scope

Consistency, Journal of Computer Science and

Technologydoi:

https://doi.org/10.1007/BF02946599.

[2] J. R. Larus, R. Rajwar, Transactional Memory,

Commun. ACM 51, (2006), pp. 80–88.

[3] T. Harris, J. Larus, R. Rajwar, Transactional Memory,

2Nd Edition, 2nd Edition, Morgan and Claypool

Publishers, 2010.

[4] F. Klein, A. Baldassin, J. Moreira, P. Centoducatte, S.

Rigo, R. Azevedo, Stm Versus Lock-Based Systems:

An Energy Consumption Perspective, Proceedings Of

The 16th ACM/IEEE International Symposium On

Low Power Electronics And Design, ISLPED ’10,

ACM, New York, NY, USA, 2010, pp. 431–436.

doi:10.1145/1840845.1840940.

URL http://doi.acm.org/10.1145/1840845.1840940

[5] A. H. Truong, N. K. Nguyen, D. V. Hung, D.-H.

Dang, Calculating Statically Maximum Log Memory

Used By Multi-Threaded Transactional Programs,

Theoretical Aspects of Computing - ICTAC 2016 -

13th International Colloquium, Taipei, Taiwan,

ROC, 2016, Proceedings, Lecture Notes in Computer

Science, Springer, 2015, pp. 3–27 (to appear).

[6] N. K. Nguyen, A. H. Truong, A Compositional

Type Systems for Finding Log Memory Bounds Of

Transactional Programs, Proceedings of the Eighth

International Symposium on Information and

Communication Technology, SoICT 2017, ACM,

New York, NY, USA, 2017, pp. 409–416.

http://doi.acm.org/10.1145/3155133.3155183

[7] A. Truong, D. V. Hung, D. Dang, X. Vu, A

Type System for Counting Logs of Multi-Threaded

Nested Transactional Programs, N. Bjørner, S.

Prasad, L. Parida (Eds.), Distributed Computing and

Internet Technology - 12th International

Conference, ICDCIT 2016, Proceedings,

Vol.9581 of LNCS, Springer, 2016, pp. 157–168.

http://dx.doi.org/10.1007/978-3-319-28034-9

[8] X. Vu, T. M. T. Tran, A. Truong, M. Steffen, A

Type System for Finding Upper Resource Bounds of

Multi-Threaded Programs With Nested

Transactions, Symposium on Information and

Communication Technology 2012, SoICT ’12,

Halong City, Quang Ninh, Viet Nam, August 23-24,

2012, pp.21–30.

http://doi.acm.org/10.1145/2350716.2350722

[9] J. C. Mitchell, Type Systems for Programming

Languages, Handbook Of Theoretical Computer

Science, Volume B: Formal Models and Sematics,

1990.

[10] N. Shavit, D. Touitou, Software Transactional

Memory, Symposium on Principles of Distributed

Computing, 1995, pp. 204–213.

doi:10.1145/224964.224987.

[11] B. Carlstrom, J. Chung, H. Chafi, A. McDonald,

C. Minh, L. Hammond, C. Kozyrakis, K. Olukotun,

Executing Java Programs with Transactional

Memory, Science of Computer Programming 63

(2006) 111–129. doi:10.1016/j.scico.2006.05.006.

[12] T. Harris, K. Fraser, Language Support for

Lightweight Transactions, SIGPLAN Not. 49 (4)

(2014) 64–78.

http://doi.acm.org/10.1145/2641638.2641654

[13] A. Welc, S. Jagannathan, A. L. Hosking,

Transactional Monitors for Concurrent Objects, M.

Odersky (Ed.), ECOOP 2004 – Object-Oriented

Programming, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2004, pp. 518–541.

[14] J. Vitek, S. Jagannathan, A. Welc, A. L. Hosking, A

Semantic Framework for Designer Transactions, in:

D. Schmidt (Ed.), Programming Languages and

Systems, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2004, pp. 249–263.

[15] T. Harris, S. Marlow, S. Peyton-Jones, M. Herlihy,

Composable Memory Transactions, Proceedings of

the Tenth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’05,

ACM, New York, NY, USA, 2005, pp. 48–60.

doi:10.1145/1065944.1065952.

URL http://doi.acm.org/10.1145/1065944.1065952

[16] B. Dongol, R. Jagadeesan, J. Riely, Transactions in

Relaxed Memory Architectures, Proc. ACM

Program. Lang. 2 (POPL) (2017) 18:1–18:29.

http://doi.acm.org/10.1145/3158106

[17] L. Briand, I. Wieczorek, Resource Estimation in

Software Engineering, 2002.

doi:10.1002/0471028959.sof282.

[18] M. Bogaerts, New Upper Bounds for the Size of

Permutation Codes via Linear Programming, Electr.

J. Comb. 17.

http://doi.acm.org/10.1145/1840845.1840940

N.N.Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 1 (2020) 1-19

19

[19] J. Hoffmann, A. Das, S.-C. Weng, Towards

Automatic Resource Bound Analysis for Ocaml,

SIGPLAN Not. 52 (1) (2017) 359–373.

http://doi.acm.org/10.1145/3093333.3009842

[20] J. Hoffmann, Z. Shao, Automatic Static Cost

Analysis for Parallel Programs, J. Vitek (Ed.),

Programming Languages and Systems - 24th

European Symposium on Programming, ESOP 2015,

Vol. 9032 of LNCS, Springer, 2015, pp. 132–157.

http://dx.doi.org/10.1007/978-3-662-46669-8-6

[21] E. Albert, P. Gordillo, A. Rubio, I. Sergey,

Gastap: A Gas Analyzer for Smart Contracts, ArXiv

abs/1811.10403.

[22] T. Chen, X. Li, X. Luo, X. Zhang, Under-Optimized

Smart Contracts Devour Your Money, 2017 IEEE

24th International Conference on Software Analysis,

Evolution and Reengineering (SANER), 2017,

pp. 442-446.

[23] T. A. Hoang, N. N. Khai, A Type System For

Counting Logs of a Minimal Language With

Multithreaded and Nested Transactions, Journal of

Science of HNUE.

[24] N. N. Khai, T. A. Hoang, A Type System For

Inferring The Log Memory Of Transactional Program

From Shared Variables., Journal of Science and

Technology section on Information and

Communication Technology.

