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Abstract: Estimating memory required by complex programs is a well-known research topic. In this 

work, we build a type system to statically estimate the memory bounds required by shared variables 

in software transactional memory (STM) programs. This work extends our previous works with 

additional language features such as explicitly declared shared variables, introduction of  primitive 

types, and allowing loop body to contain any statement, not required to be well-typed as in our 

previous works. Also, the new type system has better compositionality compared to available type 

systems. 
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1. Introduction * 

Usually, the programmers have to take care 

of the resource usage of the program. However, 

this task is more difficult when multi-threaded 

programs are written. Synchronizing threads in 

multi-threaded programs is often handled by 

lock-based mechanism [1]. However, this 

mechanism is often error-prone with lock errors 

such as deadlock or livelock. 

As an alternative approach for lock-based 

mechanism, the STM [2, 3] makes it  easier for 

multi-threaded programming since the 

_______ 
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programmer does not have to pay attention to the 

lock errors and the management of locks, so they 

can focus on the business functions of the 

programs. 

However, there is a disadvantage of the STM 

mechanism that consumes more memory than 

the traditional mechanisms. The results of the 

experiment in [4] have shown that the STM 

program can consume more resources than 

conventional programs up to 22 times (3 times 

on average). This is due to when a thread is 

spawned, it will duplicate shared variables from 

the parent thread so it can use these variables 
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independently. These variables will be released 

when the thread is synchronized with its parent 

thread. Therefore, estimating the memory used 

by shared variables in the STM programs is 

necessary to optimize the program and reduce 

the risks of being out of memory runtime 

exceptions. 

Due to the implicit synchronization between 

threads, and nesting of transactions (detailed in 

Sections 2.1, 3.2), estimating maximum memory 

for shared variables is a non-trivial problem. The 

current work on this problem often uses dynamic 

methods [4]. That is, they execute the program 

and use tools to measure the resources consumed 

by the program. They do this several times, then 

take the average or maximum value of the 

measurements. This method is easy to do, but it 

gives only approximate results. The method that 

we propose in this work is a static method based 

on type theory. The results are proven 

mathematically to ensure correctness, so our 

results are reliable. 

In the previous works, we have developed 

several type systems to estimate the resource 

usage of the STM programs [5-8], in which we 

assume that the resources are the parameters 

provided by the user. Users still have to calculate 

manually the resources of each transaction, so 

this work is still generalized, not completely 

automated. 

This work is extended from our previous 

work [6], in which we add more features to the 

language to make it less abstract than our 

previous works and closer to programming 

languages available. We offer some basic 

features of the STM mechanism in practical 

programming languages. Specifically, we 

adjusted some of the syntax and semantics as 

follows: i) Shared variables are explicitly 

declared. Expressions and values are more 

strictly expressed; ii) Expressions in the loop 

body can contain any statement and are not 

required to be a well-typed expression.In the 

previous language [6], the loop body expression 

must be a well-typed one and contain no spawn 

statement. This improvement makes the 

language much stronger but leads to many 

challenges and difficulties for typing; iii) The 

formula to calculate the resource consumption of 

the program and the auxiliary functions such as 

onacid, new have also been changed to be more 

suitable; iv) The semantic rules of language, 

environment, and status of the program are 

redefined in more details. This makes their 

implementation easier in practice. 

We prove that the bound is sharp for all 

statements except the conditional statement. 

Formally, we adapt the type rules defined in 

our previous works [5, 6] to the new STM 

language in order to make the typing more 

accurate. Several rules such as T-NEW and T-

BOOL are combined to make them more general. 

We adjusted the rules T-COND and T-WHILE to 

type better conditional and loop expressions. The 

main contributions of this paper are summarized 

as follows: 

• An improved STM language whose features 

are closer to current practical language; 

• A type system to estimate the memory 

bound required by shared variables in the 

STM programs and discusses the sharpness 

of these boundaries. 

The rest of the article is organized as follows: 

In the next section, we present an overview of 

the STM mechanism with an illustrative 

example of a research context, and discuss 

related works. In Section 3, we describe our 

STM language. Section 4 is about the type 

system. In Section 6, we discuss the sharpness of 

the type system and typing for the example 

program. Section 7 provides the conclusion and 

future works. 

2. Preliminary 

To describe the problem more clearly, in this 

section, we explain some of the typical features 

of STM programs and illustrate our context 

research with an example. We survey related 
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works on the STM mechanism and the 

estimation of resources used by the programs. 

2.1. Characteristics of STM-based Programs 

The STM mechanism is an alternative to 

lock-base mechanism to control concurrency 

programs. It has several typical features as 

follows: 

• Complex nested transactions: A 

transaction can be spawned within another open 

transaction. When a transaction is spawned 

within another transaction, we call the first 

transaction a parent transaction, the latter a child 

transaction. Child transactions must be 

committed before the parent transaction. Within 

a thread, if a transaction commits without 

referring to other threads we call local commit. 

When a transaction commits, the threads 

spawned within it also have to be synchronized. 

We call this joint commit.  

• Duplicate shared variables: When a 

new thread is spawned, it copies the shared 

variables of the parent thread into their own 

variables for use independently. After the 

transaction is completed, these threads compare 

the values of these shared variables to 

synchronize. If there is no conflict, they are 

synchronized, otherwise, they are canceled or 

roll-back. This depends on the design of the 

programming language. When using this 

mechanism, the program does not need to use 

locks so it avoids lock errors. However, copying 

shared variables of threads causes the program to 

consume more memory.  

• Implicit synchronization: For some 

actual programming languages, the programmer 

may not need to write statements to synchronize 

between threads, their compiler automatically 

adds those statements during the execution. This 

is called implicit synchronization. It is 

convenient for the programmer because they do 

not care about synchronization between threads. 

However, this also creates other constraints, we 

will analyze more in detail in section 3.2. 

Because of this implicit synchronization, we 

need to analyze the program at the semantic level 

of the language rather than at the source code 

level. In addition, these programs have some 

nested transactions, threads run in parallel but 

are not independent. This makes estimating the 

memory consumed by these programs really 

complex. Our solution to this problem is to build 

a type system. This is a static program analysis 

method that has been used in many works [9]. 

The main purpose of this type system is to 

estimate the maximum memory required by 

shared variables in STM programs. However, 

users can develop them to suit their purpose, for 

example, the calculation of the cost of memory, 

CPU, network bandwidth resources, or the 

number of gases required for smart contracts in 

Ethereum, etc. 

2.2. An Illustrative Example 

To describe the problem, we consider an 

STM program segment as shown in Listing 1. 

In this code, the statement onacid is used 

to open a transaction; The statement commit is 

used to commit a transaction or joint commit 

transactions between the parent thread and its 

child threads. The statement spawn is used to 

spawn a new thread; The variables declared with 

the keyword shared in front are shared 

variables between the parent and child threads. 

Under the STM mechanism, these variables 

are cloned by child threads from their parent 

threads to become their own variables; the 

remaining statements such as declaring and 

initializing variables, conditional statement, loop 

statement are similar to other common 

languages. 

The behavior of this program is described in 

the Figure 1. The symbol [ describes the 

operations that open a transaction; the symbol ] 

as the closing of a transaction or joint commit 

between the parent thread and child threads; 
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The dashed square i) represents the joint 

commits of the parent and child threads; The 

point marked by the symbol ♦ represents the 

branch of the conditional statement: they can 

turn to branch e1 or branch e2; the dashed square 

ii) represents the closing of the transaction 

outside of the conditional statement. Visually we 

realize that the maximum memory the program 

needs to consume by the STM mechanism can 

be at points ①, ②, or ③. 
 

 

 
Assuming that a bool variable needs 1 

memory unit, an integer variable needs 2 

memory units, the maximum memory required 

for shared variables in this program at each time is: 

• At point ①, the maximum memory 

required is 12 units as follows: 

− Thread 0 requires 4 units in which 2 

units are for the variable x1 in the first 

transaction, another 2 units for the 

variable x2 in the 2nd transaction. 

− Thread 1 requests 8 units in which 2 

units are required because thread 1 

clones variable x1 from thread 0 by 

STM mechanism, 6 units for variables 

y1, y2, and y3. 

• At point ②, the maximum memory 

required is 10 units as follows: 

− Thread 0 requires 4 units for the 

variables x1 and x2. 

− Thread 1 requires 6 or 5 units as follows: 

+ 2 units for the variable x1, which is 

cloned from thread 0 by the STM 

mechanism. 

+ If the statement if turns to branch 

p1: 4 units for the variables y4, y5, 

and y6. 

In this case, at point ② the program 

consumes 10 units.  

+ If the statement if turns to branch 

p2: 3 units for variables y7, y8, and 

y9. 

In this case, at point ② the program 

consumes 9 units. 

• At point ③, the maximum memory 

required is 8 units as follows: 

− Thread 0 requires 4 units for the 

variables x1 and x2.  

− Thread 1 requires 6 or 4 units:  

+ 2 units for the variable x1 (it is cloned 

from thread 0). 

+ If the statement if turns to branch p1: 

4 units for the variables y4, y5, and 

y10. 

In this case, at point ③, the program 

consumes 10 units. 

+ If the statement if turns to branch p2: 

2 units for the variables y7 and y10. 

Listing 1. Example of a multi-threaded 

program 
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Figure 1. Describe the behavior of the program in Listing.

In this case, at point ③ the program 

consumes 8 units. According to the above 

analysis, we realize that the maximum memory 

required by the program is 12 units at point ①. 

2.3. Related Works 

STM mechanism: The STM mechanism has 

been studied for a long time, in which [10] can 

be considered as the first proposal of this 

approach. In this work, there are limits that 

transactions are static, the data set is already 

known. In work [13], Herlihy et al. have 

overcome the limits on the above static 

transactions by dynamic transactions in libraries 

of the Java language. Then there are many 

studies that continue to be developed and 

implemented in practice, such as in Java 

language [11-14], Haskell language [15],   C++ 

language [16]. The above works showed that the 

STM mechanism is very potential and practical. 

The estimation of resources used by the 

program: Estimating resources used by the 

program is an important issue, and it has been of 

interest to many scientists. In [17], the authors 

present an overview of resource estimation 

issues in software engineering. In [18], the 

authors present a method to find the upper 

bounds for the size of permutation codes via 

linear programming. In [19] Jan Hoffmann et al. 

propose a method of automatic resource bound  

 

analysis for the OCaml program. He used 

techniques to parameterize resources to deduce 

the time, memory, and energy needed by the 

program. In [4], Klein et al. found that the energy 

consumption of the software transactional 

memory mechanism was higher than the lock-

based mechanism of up to 22 times (average 

more than 3 times). 

In [20], the authors introduce the first 

automatic analysis for deriving bounds on the 

worst-case evaluation costs of parallel first-order 

functional programs. The analysis is performed 

by a novel type system for amortized resource 

analysis. The main innovation is a technique that 

separates the reasoning about sizes of data 

structures and evaluation cost within  the same 

framework. In recent years, for the Ethereum 

blockchain platform, in [21], the authors design 

and implement a tool to automatically infer 

sound gas upper bounds for smart contracts. In 

Ethereum, gas (in Ether, a cryptographic 

currency like Bitcoin) is the execution fee 

compensating  the computing resources of 

miners for running smart contracts [22]. In [22], 

the authors analyzed the Solidity language and 

its compilation. Then they propose a tool for 

automatically locating gas-costly patterns by 

analyzing smart contracts’ bytecodes. 

Our work focuses on multi-threaded 

languages, using STM mechanisms. We focus 

on solving the problems of complex nested 

transactions, implicit  synchronization between 



N.N Khai et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 1-19 

   

6 

threads. Our method is static program analysis, 

based on the type system. 

In works [7, 23], we have built a type system 

for core STM language, which only contains the 

most basic statements. This type system can 

calculate the maximum number of transactions 

that an STM program requires in the worst case. 

These works help us make basic rules and prove 

the attributes of the type system conveniently. 

The type system in our work [5] was developed 

from the type system in our previous works [7, 

23], in which we have improved the type system 

to calculate the maximum resource that the 

program needs to use rather than just count the 

maximum number of transactions as in the 

previous works. 

In [5], each transaction is provided a 

parameter. These parameters represent the 

resource that the transaction requires. Our type 

system calculates the maximum log memory that 

the program needs to use based on those 

parameters. 

The results of those works are generalized so 

that users can develop them to suit their 

purposes, such as calculating the cost of memory 

resources, CPU, network bandwidth, time, or the 

number of gas required for smart contracts in 

Ethereum. However, the calculation of the 

consumed resource of each transaction (the 

parameter of the transaction) is manual, so this is 

still semi-automatic. Then, in [24], we have 

improved the language and type system to 

calculate the log memory from the program’s 

shared variables in a completely automated way. 

In [6], our type system is developed from our 

works [5, 8], in which we expanded the 

language, so that it was closer to the actual 

language, and we have also improved the type 

system for more convenient calculations. 

The main feature of the type system in this 

work is the ability to composition. This means 

that it is possible to type any term of the 

program, then we combine them to get the type 

of the program. 

3. Transactional Language 

In this section, we present our STM 

language. This language is developed from [6], 

where we improve some syntax and semantics 

rules so that it is closer to the actual language as 

introduced in Section 1. Specifically, we add the 

S-ASSIGN rule, improve the  S-WHILE, S-NEW, S-

TRANS rules, and add some auxiliary functions to 

make the presentation of the rules more detailed. 

We explain these improvements in each rule in 

more detail. 

3.1. Syntax 

The syntax of the language is presented in 

Table 1.. At line 1., P represents threads or 

processes, which can be an empty thread, 

denoted by ∅, or multiple parallel threads P||P, 

or a thread p executing expression e. At line 2., 

T represents primitive types, which can be the 

integer or boolean type. D at line 3. is a list of 

variable declarations, which can be the shared 

variables or local variables. O at line 4. 

represents the operators, which can be arithmetic 

operations such as +, –, ×, ÷ (denoted by •); 

relational operations such as =, >, ≥, <, ≤ 

(denoted by ■); logical operations such as AND, 

OR (denoted by ♦), NOT (denoted ▲). 

At lines 5., 6., vi,  vb are integer and logic 

values respectively. At line 7., v is values which 

can be integer values or logical values. At line 8., 

ei  is an integer expression or an integer value; 

At line 9., eb  is a boolean expression or a logic 

value. 

From line 10. to line 14., an expression e can 

be a statement declaring and initializing new 

variables, assignment, sequencing (denoted by e; 

e), branch statements, loop statements, the 

statement spawn{e} to create a new thread that 

executes e, the statement onacid is for opening 

a new transaction, the commit statement is for 

closing a transaction. 

We assume that, in each transaction, 

variables are declared at the beginning of each 

transaction, and when the program spawns a 
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thread in that transaction, they copy all these 

variables into the new thread. These variables 

usually copied in batch and store in a memory 

area called transaction log, or simply log. The 

size of the logs will be the total memory of the 

variables that are cloned or initialized within it. 

3.2. Dynamic Semantics 

In this section, we present the semantics of 

the language, define the environments, and 

auxiliary functions that support the 

representation of rules. A thread consists of 

many transactions, and each transaction contains 

many variables. We call the environment of a 

thread the local environment [6]. The 

environment of the program is called the global 

environment [6], and which is a collection of 

local environments. Transaction size is the total 

memory for the variables inside it. We have the 

definition of the local environment as follows. 

Definition 1 (Local environment). A Local 

environment E is a finite sequence identifier of 

the transactions and their sizes, E = {l1:n1; l2:n2;  

...; lk:nk}. An environment without any elements 

is called an empty environment, denoted by 𝜖 [6]. 

Definition 2 (Global environment). A global 

environment Γ is a set of identifiers of threads 

and their local environments, Γ = {p1:E1; p2:E2; 

...; pk:Ek} [6]. 

The total memory consumed by the program 

at a time is the total memory of the program’s 

open transactions at that time. 
 

 

 

 
 

Definition 3 (Total memory). The total 

memory consumed by the program at a time is 

Γ, and ⟦𝛤⟧ = ∑ ⟦𝐸𝑖⟧𝑛
𝑖=1 , where n is the number 

of threads of the program. 

A pair of an environment Γ and a collection 

of threads P are called a state Γ, P of the 

program. A special state called error describes 

the fault state - the state at which none of the 

transaction rules can be applied. The dynamic 

semantics rules are specified by transition rules 

of the form 𝛤, 𝑃 ⟹ 𝛤′, 𝑃′ or 𝛤, 𝑃 ⟹ 𝑒𝑟𝑟𝑜𝑟 as in 

Table 2. 

In Table 2, we assume some equivalence 

rules: 𝑃‖𝑃′ ≡ 𝑃′‖𝑃, 𝑃‖(𝑃′‖𝑃′′) ≡ (𝑃‖𝑃′)‖𝑃′′ 
and 𝑃‖0 ≡ 𝑃, and some auxiliary functions as 

described below. 

• S-TRANS: This rule to start a new 

transaction (execute statement onacid). In this 

Table 1. The syntax of the transactional language 
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rule, the function onacid(l, p, 𝛤) creates a 

transaction $l$ with memory size 0 at the end of 

the local environment of p. If onacid(l,pi, 𝛤)= 𝛤', 

where 𝛤 = {p1:E1, ..., pi:Ei, ..., pk:Ek} and with 

statement fresh l then 𝛤'={p1:E1, ..., pi:E'i, ..., 

pk:Ek} where Ei'=Ei;l:0. 

• S-COMM: This rule is used to commits a 

transaction. In this rule, ∐ 𝑝𝑖(𝑒𝑖)𝑘
1  stands for 

𝑝1(𝑒1)‖… ‖𝑝𝑘(𝑒𝑘). If the current transaction 

identifier of p is l, then all threads with 

transaction identifier l must joint commit when 

transaction l commit. 

In this rule, function intrans(𝛤, l:n) returns 

a set of all threads inside this transaction l, 

denoted by p. In the environment 𝛤 contains 

transaction l and this transaction is the last 

element of this environment. This means that if 

intrans(𝛤, l:n) = p = p1, ..., pk then: 

− For all 𝑖 ∈ {1 … 𝑘}, 𝑝𝑖 has the form 

𝐸𝑖
′;  𝑙: 𝑛, 

− For all 𝑝′: 𝐸′ ∈ 𝛤 such that 𝑝′ ∉
{𝑝1, … , 𝑝𝑘} then we have E' does not contain 

transaction l. 

Function commit(p, Γ) removes the last 

transaction in the local environments of all 

threads in p. Suppose intrans(Γ, l:n) = p and 

commit(p, Γ)= Γ′, for all p':E' ∈ Γ′, if p' ∈ p, 

then p':(E'; l:n) ∈ Γ. For other cases p':E' ∈ Γ. 

• S-NEW: This rule is used to initialize a 

new shared variable, where function 

new(x,l,p, 𝛤) initialize a shared variable x at the 

end of transaction l (the last transaction at that 

time). If  𝑛𝑒𝑤(𝑥, 𝑙, 𝑝𝑖, 𝛤)=𝛤',  𝛤 ={p1:E1, ..., 

pi:Ei, ..., pk:Ek}, and Ei={l1:n1; ...; lj:nj} then 

 

Γ′ = {𝑝1: 𝐸1, . . . , 𝑝𝑖: 𝐸′𝑖 , . . . , 𝑝𝑘: 𝐸𝑘}, and 

E'i={l1:n1; ...; lj:n'j}, where n'j=nj+m, m is the 

memory size of the initialized variable. 

For variables that are declared outside the 

transactions and local variables, they do not 

affect the memory resources caused by the STM 

Table 2. The semantics of transactional language 
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mechanism, so in this work, we do not care about 

these variables. 

• S-SPAWN: This rule is applied to create a 

new thread. The statement spawn{ e1 } 

creates thread p' for executing e1 in parallel with 

thread p (it's parent thread) and the environment 

𝛤 changes to 𝛤′. The function 𝑠𝑝𝑎𝑤𝑛(𝑝, 𝑝′, 𝛤) 

adds to Γ a new thread p'. Its local environment 

is copied from the local environment of the 

thread. Suppose 𝛤 =  {𝑝: 𝐸} ∪ 𝛤′′ and  

𝑠𝑝𝑎𝑤𝑛(𝑝, 𝑝′, Γ) = Γ′ then Γ′ = Γ ∪ {𝑝′: 𝐸′} 

where E'=E. 

• S-ASSIGN: This rule is used to assign a 

value to a variable as usual standard semantics of 

programming languages. In this rule, variable x-

11 and value of expression e1 must be of the same 

type T. e0 is the value of x11 before it is assigned 

the value e1. The function isclone(x11) returns 

true if the variable x11 is cloned from another 

thread (the parent thread of the current thread), 

and returns false if the variable x11 is initialized 

in the current thread. 

If the variable x11 is initialized in the current 

thread, then when the program performs the 

assignment, it is assigned a new value (e1) 

instead of the old value (e0), and the environment 

𝛤 is not changed. 

If the variable x11 is the cloned variable from 

the current thread's parent thread, then when 

performing the assignment, the function write 

adds a new variable adjacent to it to store the new 

value (e1). Thus, its old value (e0) is not 

overwritten. This is to serve the joint commit 

between the threads. In this case, the 

environment is changed from 𝛤 to 𝛤′ as follows: 

𝛤 = 𝛤′′ ∪ {𝑝𝑖: 𝐸𝑖}, 𝛤′ = 𝛤′′ ∪ {𝑝𝑖: 𝐸𝑖
′}, 

𝐸𝑖 = 𝐸𝑖
′′ ∪ {𝑙𝑗: 𝑛𝑗}, 𝐸𝑖

′ = 𝐸𝑖
′′ ∪ {𝑙𝑖: 𝑛𝑗

′}, 

𝑛𝑗
′ = 𝑛𝑗 + 𝑠𝑖𝑧𝑒(𝑥) 

The function size(x) returns the memory size 

of the variable x. 

• S-COND: This rule to execute the 

conditional statement. The expression 𝑖 = 𝑒𝑏 ↓
𝑡𝑟𝑢𝑒 ? 1 ∶ 2 means that if eb is true then i get 

value 1 else i get value 2. 

• S-WHILE: This rule is used to implement 

the loop in the program. The expression e'= 𝑒𝑏 ↓
𝑡𝑟𝑢𝑒? 𝑒; 𝑤ℎ𝑖𝑙𝑒(𝑒𝑏){ 𝑒 }; 𝑒2 ∶  𝑒2 means that if eb 

is true then e'=e; while(eb){ e }; e2 else e'=e2. 

In our previous work, expression e in the 

body of the loop has to close w.r.t transaction 

and does not contain statement spawn. In this 

work, the body of the loop can be any 

expression. However, in order to determine the 

resources consumed by these loop expressions, 

we are assuming that the maximum number of 

loops is known. This is also a drawback in this 

work, and we plan to address it in future work. 

• S-SKIP: This rule is used for other 

operations, such as •, ■, ♦, ▲ which do not affect 

the transaction and multi-threaded semantics, so 

we simplify here by a skip operation. 

• S-ERROR: This rule is used to handle 

error cases, e.g., commit in an empty 

environment. 

4. Type System 

Our type system aims to estimate the upper 

bound of the maximum memory required by 

shared variables in multi-threaded transaction 

programs. Each program segment (called a term) 

is typed through a special string, thereby 

abstracting the transaction behavior of that 

program. 

The type rules presented here are inherited 

from our previous work [5, 6], however they are 

improved to match the current language and are 

described in more detail. 

4.1. Type 

We use a set of symbols with non-negative 

numbers to represent the type of a term. The type 

of a term is a finite sequence of numbers with 

symbols, which are marked by a pair of a symbol 

and a non-negative natural number in the set ℕ+. 

We use the set {, +, −, ¬, #} to denote the 

initialization of a variable, open, commit, joint 

commit a transaction, and memory maximum 

allocation for the logs. The set of numbers with 

symbols is denoted by ℕ 
𝑇 , i.e.  𝑇ℕ =

{ 𝑛 
 , 𝑛 

+ , 𝑛 
− , 𝑛 

¬ , 𝑛 
# | 𝑛 ϵ ℕ 

 }. The numbers 
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assigned to these symbols have the following 

meaning: 

• 𝑛 
 : Initializes a variable with size n, 

meaning that it needs to be allocated n units of 

memory to that variable. 

• 𝑛 
+ : The opening of a transaction, the 

memory allocated for that transaction is n. The 

case n=0 means that a transaction has been 

opened but no variable is initialized in that 

transaction. 

• 𝑛 
− : There are n commit statements in 

succession to finish the previous transactions. 

• 𝑛 
¬ : There are n threads need to 

synchronize at a time. 

• 𝑛 
# : The maximum memory required for 

a term is n units of memory. 

Definition 4 (Type of a term). The type T of 

a term in our system is defined as follows [6]: 

𝑇 = 𝑆 | 𝑇𝑇 ‖T ⊗ T | 𝑇ρ | 𝑇 ⊘ 𝑇 | 𝑇‖𝑘𝑇 

The type of a term can be a sequence of 

tagged numbers S as described in Section 4.1, or 

synthesized from other types of terms. In this 

definition, TT means that the type of term is 

derived from the type of two sequential terms. 

𝑇ρ means that a term has type T that will be

 

 

executed in a thread parallel to its parent thread. 

The T ⊗ T, 𝑇 ⊘ 𝑇, and 𝑇‖𝑘𝑇 operations are 

merged, choice, and parallel operations, 

respectively, are to create new terms from 

existing terms, and they will be described in 

detail in the next section 4.2. 

4.2. Typing Rules 

The typing rules are described in Table 3., where 

the type of a term is of the form𝑛 ⊢ 𝑒: 𝑇, and we 

read that e has type T. n is the environment of the 

expression, and it represents the amount of 

memory consumed or released when the 

program executes e. 

• T-ONACID, T-COMMIT: These two rules 

are used to type expressions onacid and commit 

corresponding. The statement onacid to open a 

transaction, its type is 0 
+ . The statement commit 

to close the last opened transaction, its type is 

1 
− . 

• T-SPAWN: This rule is used to type the 

element spawn{ e }. If the type of e is T then 

spawn{ e } has the type  𝑇ρ. Here symbol ρ is 

used to indicate that the current thread is running 

parallel with the parent thread. 

• T-NEW: This rule is used to type the 

statements that initialize a new reference object. 

The function size(x) returns the size of the 

Table 3. Typing rules 
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variable x (memory allocated for variable x). In 

this work, we assume that an integer variable 

needs 2 memory units, a boolean variable needs 

1 memory unit. If e is shared int x=0; then type 

of e is 2 
 ; if e is shared bool x=0; then type of 

e is 1 
 . 

• T-SEQ: This rule represents sequential 

components of e1 and e2. When two expressions 

are sequential, its type is also sequential. 

Suppose e1 has type T1 and e2 has type T2, where 

T1 has a form without  ρ, e1; e2 has type T1T2. 

• T-MERGE: This rule to type expressions 

with two parallel elements. The symbol  𝑇1
ρ
 

indicates that the thread of type T1 is running in 

parallel with its parent thread. To simplify the 

expression of type 𝑇1
ρ

𝑇2 we use the ⊗ operation 

shown in the following. 

When e1 ends with some expressions spawn, 

it means that e1 has the type 𝑇1
ρ
. When its type is 

associated with T2, we need to use the aggregate 

operation to type the string e1; e2 then it will be 

of the form T1⊗T2. 

• T-COND: This rule is used to type for 

conditional expressions. We assume that e1 and 

e2 have types of T1 and T2, respectively. If the 

expression e is if(eb) then{ e1 } else{ e2 }$ then 

the type of e is 𝑇1 ⊘ 𝑇2. 

• T-WHILE: This rule is used to type the 

loop expression. The symbol Tm to describe a 

sequence of m components T consecutively, 

where m is the maximum number of loops, and 

T is the type of the loop body expression. By this 

rule, our type system can type any loop 

expressions with a known maximum number of 

loops. For general loop expressions, we cannot 

statically determine the number of loops, 

because it depends on the values of variables 

during program execution. We plan to 

investigate loop-bound analysis in developing a 

type inference algorithm for our type system in a 

future work. 

• T-THREAD: If an expression e has type 

T, then the thread executing it also has type T. e 

here is the expression that will be executed by 

the thread, so its type must be a canonical 

sequence as in Definition 5. 

• T-PAR: This rule is used to type 

programs at the time the program is running. At 

this time, the program has many parallel threads 

running. If we just need to type static for the 

program, we do not need this rule. However, this 

rule helps us prove the correctness and sharpness 

of the type system. 

For cases where expressions execute outside 

transactions, or it does not consume memory by 

the STM mechanism, we use the rule T-SKIP. 

This means that we can skip the typing of these 

expressions. The function summem(e) returns 

the total memory that expression e uses by the 

STM mechanism. 

For convenience, we can add or remove 

elements of 0 
𝑡𝑎𝑔(𝑠)  form from the string because 

it does not affect the semantics of the string. The 

set ℕ̅ 
𝑇  can be divided into equivalence classes, 

in which all elements in the equivalent class 

describe the same transaction behavior, and each 

class uses the most concise string to describe the 

class. We call it the canonical string. 

Definition 5 (Canonical sequence).  A 

sequence S is canonical if tag(S) does not 

include elements ′′
, ′ + +′, ′ − −′, ′##′, ′ +

−′, ′ +− ′, ′ + # − ′, ′ + #− ′, and 

⟦𝑆(𝑖)⟧ > 0 for all i. 

We can always reduce an S string without 

changing the way to understand it. Note that, 

during string reduction, the pattern  ′ + −′ may 

not appear on the left, but we can add 0 
#  to apply 

the function. 

Note that, during reducing string we cannot 

reduce the string in 𝑛 
+ , 𝑚 

+  format, because each 

element 𝑛 
+ , 𝑚 

+  represents an open transaction, 

it needs to be committed with an element 1 
− . 
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For convenience of presenting operations in 

the following sections, we introduce several 

notations and their meanings: 

• 𝑠# represents an empty sequence or an 

element 𝑛 
# , i.e. 𝑠𝑘

# ∈ {𝜖} ∪ { 𝑛 
# |𝑛 ∈ ℕ}. 

• 𝑠𝐧 (n stands for negation) represents 

1 
−  or 𝑛 

¬ , i.e. 𝑠𝑘
𝐧 ∈ { 1 

− } ∪ { 𝑛 
¬ |𝑛 ∈ ℕ+}. 

• 𝑠𝐜 (c stands for commit) represents 1 
− , 

𝑛 
¬ , or 𝑇1‖0 … ‖0𝑇𝑘 i.e. 𝑠𝑘

𝐜 ∈ { 1 
− } ∪

{ 𝑛 
¬ |𝑛 ∈ ℕ+} ∪ {𝑇1‖0 … ‖0𝑇𝑘|𝑘 ≥ 2}. 

• ⟦𝑠#⟧ represents the natural number of s 

corresponding, for example, ⟦5#⟧ is equal to 5. 

The following are some rules to reduce a 

sequence of tagged numbers to a canonical 

sequence.  

i) In a transaction, memory resources 

allocated to consecutive variables are equal to 

the total memory allocated for each variable. 

𝑛 
 𝑚 



 
⇒ (𝑛 + 𝑚) 

  

For example, for the expression e is  shared 

int x=0; shared bool y=0; where an integer 

variable needs 4 units of memory, the logical 

variable needs 1 unit of memory then the type of 

e is:  

4 
 1 



 
⇒ (4 + 1) 



 
⇒ 5 

 . 

ii) Inside an open transaction, if we 

initialize one more variable with memory to use 

is m then the memory needed for that transaction 

increases by m. 

𝑛 
+ 𝑚 



 
⇒ (𝑛 + 𝑚) 

+  

For example, for the expression e is onacid 

shared int x=0; shared int y=0; then the type of e 

is 0 
+ 2 

 2 


 
⇒ 2 

+ 2 


 
⇒ 4 

+ . 

iii) For nested transactions, the memory that 

they need to use is the total memory of the 

component transactions. 

 

The formula (1) is used to type program 

segments that behave as described in segment 

AB, formula (2) is used to type program 

segments that behave as described in segment 

BC in the Figure 2. 

 

Figure 2. Nested transactions. 

iv) Two consecutive terms have types 

𝑛 
# , 𝑚 

# , then their type is the type of term that 

has a greater value, so we have the formula to 

reduce the string as follows. 

𝑚 
# 𝑛 

#

 
⇒ 𝑚𝑎𝑥(𝑚, 𝑛) 

#  

In this case, the behavior of the program segment 

is similar to that described in the Figure 3. 

 

Figure 3. Two consecutive terms. 

v) Symbol ρ is used to mark that the 

expression is executed in parallel to its parent 

thread. 

(𝑇ρ 
)ρ = 𝑇  ρ 

In case the expression does not contain joint 

commits, we can ignore them: 

( 𝑛 
# )ρ = 𝑛 

#  

For expression of the form 𝑇1
ρ

𝑇2, then T2 is 

the remainder of the parent thread after spawning 

the child thread executing T1. Since T2 has joint 

commits with T1, we can join T1 with T2 to make 

it ready for joint commit. 

𝑇1
ρ

𝑇2
 

⇒ 𝑇1 ⊗ 𝑇2 
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The ⊗ operation is defined rule (6). In this 

case, the behavior of the program segment can 

be described in the Figure 4. 

 

 

vi) The ⊗ operation is used to combine the 

type of threads in parallel. 

 

During this operation, we look for joint 

commits from left to right to merge them. In case 

T1 contains joint commits but T2 does not then 

we do not merge them and wait for the next 

expression. 

vii) The ⊘ operation is used to type  

conditional statements. In this case, we will 

choose the element which has a larger value. 

 

In this rule, for brevity, we use the symbol 𝑛 
∓  

instead of the symbol 𝑛 
+  or 𝑛 

−  or 𝑛 
¬ . 

viii) The following rules are used for threads 

to joint commit. The value n in element 𝑛 
¬  

represents the number of threads inside the latest 

opened transaction. This case is described in the 

Figure 5., and we can combine them with the 

following rules. 

 

The following rule is similar to the above, but 

we are interested in nested transactions, the same 

as described in the Figure 6. 

 

 

 

 

Figure 6. Joint commit parallel threads (case 2). 

 

The above rules are used to type the program 

when it is not running (static). If your purpose is 

only to determine the type of program, the above 

rules are sufficient. However, to prove the 

correctness and sharpness of the type system, we 

need the following two rules. The two rules (9), 

(10) are to type the program when the program 

is running (dynamic), and already have threads 

running in parallel. 

ix) The following rules are used for threads 

to joint commit between threads in running time. 

 

 

Figure 4. Two parallel threads. 

Figure 5. Joint commit parallel threads (case 1). 
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Listing 2. Example of applying rules (9), (10) 

 

where k>0 and 𝑇1𝑠1
𝑐𝑠1

#, 𝑇2𝑠2
𝑐𝑠2

# is canonical 

forms. 

x) Similar to rule (8)., the rules below 

apply at the time that the program is running. 

 

To explain more clearly these two rules, we 

consider the example in Listing 2. 

We apply the rules T-ONACID, T-COMMIT,  T-

INIT, T-SPAWN to type the program. We then 

apply rule (9) to reduce them, and get the type of 

the program is 

 

After the spawn statement runs, the first 

thread has an open transaction, and their memory 

is duplicated. The type of the rest of the two 

threads are thread 1: 2 
# 1 

− ; thread 2: 2 
# 1 

− . 

Apply rule T-PAR, and apply rule (9) to 

reduce them, we have: 

 

This is the type of program at the time after 

executing the statement spawn. Besides, it has 

an open transaction and its memory is being 

duplicated. So the type of this transaction is: 

1 
+ 1 

+ . 

We add this sequence to the above type 

sequence, and apply rule 10. to reduce them, we 

have: 

 

So the program type is 6 
# , or the 

maximum memory the program needs is 6 

units. Since the type in this work reflects the 

behavior of a term of a program, so the type 

of a well-type program is a string containing 

only one element 𝑛 
# , where n is the 

maximum memory that the program requires 

during executing it. 

Definition 6 (Well-typed). A program is 

well-typed if it has type T and 𝑇
 

⇒∗ 𝑠# [6]. 

Definition 7 (Resource consumption). If  
𝛤, 𝑃 is a running state of the program and 

𝑃: 𝑇, then the maximum resource 

consumption during executing P is: 

 

4.3. Characteristic of the Type System 

In this section, we present the characteristics 

of type systems and apply them to prove the 

correctness and sharpness of type systems. 

A type of the expression e has the 

characteristic that its environment is only 

sufficient for open transactions to commit in e as 
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described by its type. We have the following 

theorem. 

Theorem 1 (Type judgment property). 

Assume e:T, and its environment is  
𝛤, if 𝑆𝑇

 
⇒∗ 𝑠# then ⟦𝑠#⟧ ≥ ⟦𝑆⟧, where 𝑆 =

𝑛 1 
+ 𝑛 2 

+ … 𝑛 𝑘 
+ , and ⟦𝑆⟧ = ⟦𝛤⟧ [6]. 

Proof (Sketch). By induction on the typing rules 

in Table 3.  

During program execution by the semantic 

rules in the Table 2, if the program changes from 

state 𝛤, 𝑃 to 𝛤′, 𝑃′ and ⟦𝛤, 𝑃⟧ = 𝑛, then 

⟦𝛤′, 𝑃′⟧ = 𝑛′ and 𝑛 ≥ 𝑛′ for any rules. We 

formally express this characteristic in the 

following theorem. 

Lemma 1 (subject reduction). If 𝛤, 𝑃 ⟹
𝛤′, 𝑃′  by R rule and ⟦𝛤, 𝑃⟧ = 𝑛 then ⟦𝛤′, 𝑃′⟧ =
𝑛′  and 𝑛 ≥ 𝑛′ for ∀ R [6]. 

Proof (Sketch). The proof is done by 

checking one by one of all the semantics rules in 

Table 2.  

Lemma 2 (Preservation). Given a well-typed 

P0, its type is T and 𝑇
 

⇒∗ 𝑠#. For any state 𝛤, 𝑃 

of the program, we have ⟦𝛤′, 𝑃′⟧ ≤ ⟦𝑠#⟧ [6]. 

Proof. By inductions on transitions of the 

semantics. 

• Initial state: ⟦∅, 𝑃⟧ = ⟦𝑠#⟧ ≤ ⟦𝑠#⟧. 

• If 𝛤, 𝑃 ⟹ 𝛤′, 𝑃′, assume that ⟦𝛤, 𝑃⟧ ≤
⟦𝑠#⟧, by Lemma 1, we have ⟦𝛤′, 𝑃′⟧ ≤
⟦𝛤, 𝑃⟧ ≤ ⟦𝑠#⟧.  

The correctness of the type system is 

understood that a well-typed program does not 

use more memory than the amount expressed in 

its type. 

Theorem 2 (Correctness). Given a well-

typed program P0, its type is T, and 𝑇
 

⇒∗ 𝑠# then 

the resource consumption of the program during 

running cannot exceed ⟧ ≤ ⟦𝑠#⟧ [6]. 

Proof. Let 𝛤, 𝑃 be a state of the program, by 

the Lemma 2, we have ⟦𝛤, 𝑃⟧ ≤ ⟦𝑠#⟧. By 

Definition ⟦𝛤, 𝑃⟧ and Theorem 1 we infer ⟦𝛤⟧ ≤
⟦𝑠#⟧.  

This theorem asserts that, if a program is 

well-typed then maximum memory usage of the 

program will not exceed the value expressed in 

its type. 

5. Typing the Example Program 

In this section, we apply the rules in Table 3. 

to build a type inference tree for the example 

program in List 1. 

In this work, our type system can type any 

term, and then integrate them into the program's 

type. However, in order to facilitate the analysis 

of sharpness in Section 6.1, we divide it into two 

steps as follows: First, we type the program 

segment 𝑒29
10 (the program segment contains the 

conditional statement). Then we combine it with 

the rest of the program to get the type of the 

program. 

By applying the rules in Table 3, we can 

build a type inference tree for the program 

segment 𝑒29
10 as shown in the Figure 7. 

We inherit this result, and do the same for the 

rest of the program, we get the type inference 

tree of the program as shown in the Figure 8. 

Note that the variables a and b at line 1 are 

local variables, so we omit it. 

Through this type inference tree, we can 

conclude that, in the worst case scenario, the 

program can use up to 12 memory units for 

shared variables. 

6. Discussion 

In this section, to explain more clearly about 

our work, we discuss sharpness, and evaluations 

of our proposed solution. 

6.1. Sharpness 

The sharpness of type system is understood 

that if given a well-typed program then there is 

always a path from the initial state 𝛤0, 𝑃0 to the 

state 𝛤, 𝑃 such that the memory consumption of 

the program at state 𝛤, 𝑃 to be equal to the value 

shown in their type expression. 

In this work, our typing rules ensure that the 

memory bound is always greater than or equal to 
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the total memory required by the program (i.e., 

ensuring the correctness of the type system). 

However, there are some instances where the 

bound found by these rules is greater than the 

total memory that the program needs to use (i.e. 

bound is not sharp).  

During proving the correctness and 

sharpness of the type system, we realized that, 

for expressions that contain conditional 

statements, the memory bound found may not 

guarantee sharpness. To better understand this 

problem, we consider the program segment 𝑒29
10 

in the example in List 1. Applying the rules in 

Table 3., we build the type inference tree for the 

program segment 𝑒29
10 in the Figure 7. 

Through the type inference tree, we realized 

that the type of 𝑒29
10 is 5 

# . This means that it is a 

well-typed program segment and the maximum 

memory consumed by it is 5 units. 

Now, we analyze the program segment 

through the Figure 1. and code in Listing 1., we 

have the following cases: 

 

 

 
Figure 7. Typing the program segment at lines 10-29 in Listing. 1. 

 

• If 𝑎 > 𝑏, the conditional statement will 

execute 𝑒16
11, not 𝑒24

19, so 𝑒29
10 can rewrite into 𝑒16

11; 

𝑒29
26, and the maximum memory that the program 

segment needs to use is 4 units. 

• If 𝑎 ≤ 𝑏, the conditional statement will 

execute 𝑒24
19, not 𝑒16

11, so 𝑒29
10 can rewrite into 𝑒24

19; 

𝑒29
26, and the maximum memory that the program 

segment needs to use is 2 units. 

We realize that the program segment has no 

path to use up to 5 units (in other words, in this 

case, the bound is not sharp). 

Thus, from the above example, we realize 

that, if we just based on the expressions in the 

conditional statement, we can not find the 

memory bound correctly because it depends on 

the expression before and after conditional 

statement. 
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Currently, we have done a review of the 

cases that we recognize, and we have found that 

the memory bound found by the type system is 

sharp for all rules, except for the branching 

statement. 

 

6.2. Evaluation of Our Solution 

In this work, our proposed method is a static 

estimation method, based on type theory, which 

can be proved mathematically to ensure 

correctness, so the results are reliable. 

A special feature of our type system is that it 

can give type to an uncompleted program, or a 

program segment. This feature is very useful, 

because it can give a preview of memory usage 

patterns while the programmers are typing code. 

We tried to find studies close to our work to 

compare results, but we couldn't find any, so 

comparing our results with other studies has yet 

to be done. 

In this work, we use an abstract language 

with the aim to focus on analyzing the behavior 

of copying shared variables of the STM 

mechanism. For future work, we plan to apply to 

real languages and compare with actual memory 

bounds. 

 

 
Figure 8. Typing the example program in Listing 1. 

7. Conclusions 

We present a multi-thread language based on 

the STM mechanism and a type system for 

estimating the maximum memory for its 

programs. In this work, the language and type 

system are more detailed and rigorous than our 

previous work, so they are closer to reality. 

We added some discussion about the 

sharpness of the memory bound found by the 

type system, and evaluations of our proposed 
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solution. This helps users better understand our 

solution and apply it more effectively. 

In our future work, we plan to solve the 

problems of sharpness of the found memory 

bound and general loop typing. In this work, our 

language is still in abstract form to focus on 

presenting the features of the STM mechanism. 

We will apply these results to the actual language 

in future work. 
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