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Abstract: Table is one of the most common ways to represent structured data in documents. Existing 

researches on image-based table structure recognition often rely on limited datasets with the largest 

amount of 3,789 human-labeled tables as ICDAR 19 Track B dataset. A recent Table Bank dataset 

for table structures contains 145K tables, however, the tables are labeled in an HTML tag sequence 

format, which impedes the development of image-based recognition methods. In this paper, we 

propose several processing methods that automatically convert an HTML tag sequence annotation 

into bounding box annotation for table cells in one table image. By assembling these methods, we 

could convert 42,028 tables with high correctness, which is 11 times larger than the largest existing 

dataset (ICDAR 19). We then demonstrate that using these bounding box annotations, a 

straightforward representation of objects in images, we can achieve much higher F1-scores of table 

structure recognition at many high IoU thresholds using only off-the-shelf deep learning models: 

F1-score of 0.66 compared to the state-of-the-art of 0.44 for ICDAR19 dataset. A further experiment 

on using explicit bounding box annotation for image-based table structure recognition results in 

higher accuracy (70.6%) than implicit text sequence annotation (only 33.8%). The experiments 

show the effectiveness of our largest-to-date dataset to open up opportunities to generalize on real-

world applications. Our dataset and experimental models are publicly available at 

shorturl.at/hwHY3. 
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1. Introduction  

Table is one of the most commonly used 

methods to represent information in documents, 

thanks to its intuitiveness of representing 

structured data. In recent years, the number of 

digital documents has increased significantly 
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with businesses, corporations and governments 

are transitioning to paperless documents. 

Together with the transition to digital documents 

is the need to interact with the document as well 

as automatically process them. However, since 

most of these documents are either in image or 

exchange format like PDF, they do not contain 
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the layout coding of the documents, making it 

hard for users to use these files efficiently. Based 

on the valuable information contained in tables, 

many researchers have been focusing on the 

problem of processing and recognizing the 

structures of tables from image input.  

Table 1. Number of tables (as images) and table 

cells (as bounding boxes) in several popular table 

structure recognition datasets compared  

to our dataset 

Dataset # of Tables # Cells 

TableBank [5] 145,463 (n/a) 

ICDAR 13 [6] 154 14,114 

ICDAR 19 [7] 3,789 371,045 

TabStructDB[4] 1,081 53,174 

Ours 42,028 1,234,518 

Based on previous research [1–4],  we define 

two important tasks related to table processing as 

below: 

• Table Detection: Detect the coordinates or 

regions of all tables inside a document. 

• Table Structure Recognition: For each 

located table, its structural information 

needs to be recovered. The structural 

information is defined by rows', columns' or 

cells' location which form the layout of the 

table. The common and simple 

representation of this structure is via the 

bounding boxes of all cells in the table as 

shown in 1(c). 

While it is important to solve table structure 

recognition, only a few datasets for this task are 

available and many of which have a modest 

number of tables. The most popular datasets are 

shown in table 1 and the largest dataset with 

bounding box annotation is ICDAR 19 (3,789 

table images). Although the TableBank dataset 

has over 417K document images whose tables 

are labeled in bounding box format, its separated 

set for table structure recognition contains only 

145k images, of which all are annotated using 

sequential HTML tags, providing no information 

about the location of table cells in the table 

images. An example of such ground truth for the 

table image in Figure 1(a) is shown in Figure 

1(b). Compared to the intuitive bounding box 

annotation in Figure 1(c), this kind of annotation 

is not suitable for the task of image-based table 

structure recognition. It is because even if we can 

successfully predict the HTML tags of a table 

image, we don't have any information of the tag's 

coordinate to infer the location of the 

corresponding table cell. Figure 1 also shows 

that the table structure recognition task requires 

a fine-grain detection of bounding boxes for all 

table cells in the table, however, the labor cost 

for annotating this kind of information is 

undeniably high. 
 

 

(a) A sample table image 

 
(b) Groundtruth annotation in TableBank [5] 

 
(c) Expected output of table structure recognition 

Figure 1. An example of table image, groundtruth 

annotation in TableBank dataset [5], and expected 

output of table structure recognition which is also 

our model’s result. 

In this paper, we propose several methods to 

automatically convert the HTML tag sequences 

into bounding box locations in the table images 
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using the visual information and the HTML tags. 

Ensembling the proposed converting methods, 

we obtain a very large dataset for table structure 

recognition task, which includes over 42K table 

images and 1.2M table cells with relatively high 

correctness (see Table 1). Our dataset is 11 times 

larger than the current largest dataset (ICDAR 

19) for the same task with table cell level 

annotation. To demonstrate the effectiveness of 

our new dataset, we use an off-the-shelf and also 

a state-of-the-art model on table detection and 

table structure recognition model, 

CascadeTableNet [2], to train a table structure 

recognition model called CellNet. The 

experiments show that our large dataset helps 

generalize well on both tasks. Especially when 

testing on other existing datasets (such as 

ICDAR 19), it outperforms the 

CascadeTableNet [2] with a large margin of F1 

score on all IoU thresholds. Additionally, we 

show that using explicit bounding box 

annotation yields higher accuracy than implicit 

text sequence annotation. 

In summary, our contributions in this paper 

are: 

• Converting methods from HTML tag 

sequence format to bounding box coordinate 

format for table images; 

• Generating a very large dataset (42K 

images) for table structure recognition task; 

• Training a table structure recognition model 

(CellNet) that outperforms the state-of-the-

art models on ICDAR 19 and TableBank 

datasets. 

The paper is organized as follows: Section 2 

discusses some related works. Section 3 

describes our proposed converting methods. 

Section 4 describes some experiments and 

results. Section 5 concludes the paper. 

2. Related Works 

Most table structure recognition methods 

can be divided into two main categories: rule-

based and data-driven approaches. Rule-based 

methods are those that rely on some contents in 

tables such as text content, graphical lines, and 

arrangements to make a set of predefined rules 

to find the structure of the tables. On the other 

hand, data-driven primarily rely on machine 

learning techniques to recognize the structures of 

tables directly from the images. 

Rule-based approaches: In the early 1990s, 

Chandran and Kasturi [8] proposed a method to 

detect tables from binary document images using 

sets of predefined conditions for table lines. 

Itonori [9] used text-block arrangement and 

ruled lines to detect tables in document images. 

Smith [10] proposed using Tesseract OCR with 

layout analysis to locate table regions. Kieninger 

and Dengel [11] demonstrated a bottom-up 

method to recognize logical structure of tables 

without relying on visual clues like lines. Van 

Nguyen et al. [12] proposed a method for 

extracting table structure from scanned images 

using CRAFT to detect text areas. 

Data-driven approaches: Cesarini et al. [13] 

first used Modified X-Y tree as a hierarchical 

representation of a document and then used 

supervised learning to find different classes of 

tables in the tree. Kasar et al. [14] proposed 

finding intersecting points and using SVM 

classifiers to locate tables. Hao et al. [15] was the 

first to try localizing tables in PDF files using 

deep learning technique, while still relying on 

predefined rules. Gilani et al. [16], Siddiqui et al. 

[17] proposed the use of Faster R-CNN to locate 

tables in document images, completely eliminate 

the need for heuristics rules. Siddiqui et al. [4] 

also used Faster R-CNN to locate tables' rows 

and columns. Similarly, Schreiber et al. [3] also 

used Faster R-CNN but treated structure 

recognition task as rows and columns 

segmentation. Prasad et al. [2] proposed 

CascadeTabNet which used Cascade Mask R-

CNN to locate tables and their cells. 

Comparing those two approaches, rule-

based is often limited in well-crafted logic 

(rules) whereas data-driven requires a large 



V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59 

   

50 

amount of data in order to show effectiveness. 

Regarding the table structure recognition 

problem, the largest existing dataset (ICDAR 19) 

contains about 3.7K images. In this paper, we 

firstly build a larger dataset and then we use 

CascadeTabNet as our off-the-shelf model of 

choice to show how a large dataset can 

significantly improve the model performance. 

3. Methods  

As we have discussed in Section 1, the 

TableBank Recognition dataset [5] is large but 

limited by the HTML tag annotation. In this 

section, we will describe several methods that 

we use to convert the HTML tag annotation to 

bounding box annotation for table images.  The 

conversion principle is based on finding the 

location of each cell in a table image. We utilize 

the HMTL tag annotation as additional 

information to check whether the new 

annotations are correct or not. Moreover, due to 

the variability of table structure and appearance, 

we propose four different methods which 

leverage Digital Image Processing and Deep 

Learning techniques to find the table cells. Each 

method is hypothetically designed to cover 

others' weaknesses. The parameters or 

thresholds used in each method were chosen by 

experiments. 

3.1. Method 1: For Fully-bordered Tables 

Since table lines usually provide valuable 

information about table structure, this method 

uses them to find table cells of fully-bordered 

tables. The overall process is shown in Figure 6. 

In the first method, the image is thresholded 

into a binary image and then inverted. In our 

experiments, the threshold value of 192 is 

chosen because it can help generate the most 

correct annotations. After the image is inverted, 

a border surrounding the image is drawn to 

ensure consistency between examples in the 

dataset. 

 

 

 

Figure 2. Pipeline for fully-bordered  

tables (method 1). 

To generate masks for table lines, first, both 

vertical and horizontal lines are detected using 

erosion and then dilation, each runs for three 

iterations to make sure that the text is removed 

completely while retaining the lines. For 

horizontal lines, the horizontal kernel has the 

shape of (ℎ𝑜𝑟_𝑘𝑟𝑛_𝑙𝑒𝑛, 1). For vertical lines, 

the kernel's shape is (1, 𝑣𝑒𝑟𝑡_𝑘𝑟𝑛_𝑙𝑒𝑛). The 

ℎ𝑜𝑟_𝑘𝑟𝑛_𝑙𝑒𝑛 and 𝑣𝑒𝑟𝑡_𝑘𝑟𝑛_𝑙𝑒𝑛 are calculated 

as follows: 

ℎ𝑜𝑟_𝑘𝑟𝑛_𝑙𝑒𝑛 = ⌊⌊
𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

max 𝑛𝑢𝑚. 𝑜𝑓 𝑐𝑜𝑙𝑠.
⌋ ∗

1

4
⌋ (1) 

𝑣𝑒𝑟𝑡_𝑘𝑟𝑛_𝑙𝑒𝑛 = ⌊⌊
𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

𝑛𝑢𝑚. 𝑜𝑓 𝑟𝑜𝑤𝑠
⌋ ∗

1

4
⌋ *3(2) 

with max 𝑛𝑢𝑚. 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 is the 

maximum number of cells of all table rows and 

𝑛𝑢𝑚. 𝑜𝑓 𝑟𝑜𝑤𝑠 is the number of table rows taken 

from original annotation files. 

Unlike existing methods in [15, 18, 19] 

which do text block projection to recover table 

cells, our method will do horizontal and vertical 

lines projection instead. It works by finding out 

rows or columns of a table that contain a full line, 

which means that those rows or columns can 

have only a unique pixel value. Since the image 

was thresholded earlier, the unique value needs 

to be 0. If not, it means that there might be a cell 

somewhere in the middle. After finding out the 

rows and columns containing full lines, the areas 

between them are marked with an index number. 

The coordinates of these areas are used to 

construct bounding boxes of table cells by using 

each pair of horizontal and vertical areas. Since 

these boxes are too large, they are trimmed so 
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that the boxes cover just enough of the characters 

of table cells. For cases where a table cell is 

empty, their bounding boxes are removed as this 

research only concerns cells with visible content. 

Also, since a table contains uneven lines, the 

coordinates detected can be wrong because the 

row or column contains that line may be marked 

as not containing lines. To deal with this 

problem, before the trimming step, any extra 

borderlines not detected earlier are trimmed to 

avoid bounding boxes becoming too large 

because of them. 

 
Figure 3. A typical example of false conversion by 

Method 1, which happens when a table 

 has spanning cells 

With this method, we were able to generate 

annotations for 29,285 images, which account 

for 20.13% of the dataset. As one observation, 

we see that this method does not generalize well 

with tables having spanning cells. An example is 

shown in Figure 3. 

3.2. Method 2: For Fully-bordered Tables with 

Spanning Cells 

This method is designed to overcome the 

weakness of the first method regarding spanning 

cells. It works with any fully-bordered tables 

with multiple spanning cells. The overall process 

is shown in Figure 4. 

The beginning steps of this approach are the 

same as the first method until the getting rows' 

and columns' coordinates step. If a table contains 

one or more spanning cells, any lines staying 

next to spanning cells are not recognized in the 

previous method.   

 

Figure 4. Converting pipeline for fully-bordered 

tables with spanning cells (method 2). 

For example, in Figure 3, the line between 

the first and second rows is not registered in the 

horizontal projection so the first and second rows 

are recognized as one. To solve this problem, 

instead of finding rows and columns containing 

a full line of the image, this method scans for any 

rows and columns that have white lines in their 

respective mask and marks their coordinates. 

Unlike the previous method, these coordinates 

will not be marked with index numbers because 

it is complex when it comes to indexing 

spanning cells. After finding the coordinates, the 

cells are recovered similarly to method 1. 

 

Figure 5. A typical example error of method 2 due to 

redundant bounding boxes on spanning cells after 

cell recovery step. 

However, this step recovers redundant cells 

inside spanning ones because it does not take 

into account the absence of lines in the latter 

ones. An example is shown in Figure 5. Since 
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this structure is incorrect, these cells need to be 

merged as one in the next step. For every pair of 

table cells, this step checks whether if they are 

horizontally, vertically or not aligned at all. If 

they are not aligned in any direction at all, they 

will not be merged. If they are either vertically 

or horizontally aligned, the mask of the area 

between them is checked for the existence of 

lines by checking its number of unique pixels, as 

well as their value. These boxes will be merged 

if the mask has only 0 as its unique value, which 

indicates that there are no lines between these 

two boxes. After merging, all bounding boxes 

are trimmed similar to method 1 to get the final 

result. 

 
Figure 6. Converting pipeline for general tables 

(method 3). 

By using this approach, 41,256 annotations 

were generated (28.36% of the dataset), making 

this method the most effective one. While this 

method can be considered an upgrade version of 

method 1, we decided to keep both methods 

because in some cases, a table cell can contain 

characters standing near each other or equations 

that form a line. In such cases, this method can 

mistake them as a table borderline, while the 

previous method does not. Therefore, it is 

necessary to keep method 1 to counter  

such cases. 

3.3. Method 3: For General Tables 

Since previous methods only work on fully-

bordered tables, this method is designed to work 

with all types of tables, regardless of how they 

are bordered. It works by using Maximally 

Stable Extremal Regions (MSER) to detect table 

cells. The steps are shown in Figure 6. 

Similar to the first two methods, the first step 

involves binary thresholding and inverting the 

image. The chosen thresholding value for this 

approach is 225 because it can generate the most 

correct annotations. Then, the border 

surrounding the image is also drawn. Like the 

previous methods, we use a vertical and a 

horizontal kernel with the same size calculated 

in Equation 1 and 2 for horizontal and vertical 

one, respectively. Then erosion and dilation are 

performed to the image, each for three iterations 

to detect the lines in the image. 

After generating horizontal and vertical line 

masks, they are combined using bitwise OR 

operation to generate a table line mask. 

Subtracting the inverted image earlier with this 

mask should remove the table lines from the 

image, keeping only the text. Because some 

images may have some noisy small pixels near 

the table lines, a structuring element with the size 

of (1,1) is used to remove these noise using 

opening operation, which erodes and then dilates 

the image using the provided kernel. 

Then, the image is inverted and MSER [20] 

is used to detect text areas in the image. Any 

areas smaller than 4 pixels are set to be pruned 

to ignore any noises that are not detected in the 

above step while keeping small hyphens in many 

tables of the dataset. For each region detected by 

MSER, it will be drawn in a white image and the 

box is filled black for the merging process. 

Inspired by [21], we use most appeared 

bounding boxes' height to merge them. The 

structuring element used for merging bounding 

boxes has the shape of 

(𝑚𝑜𝑠𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 1.3, 1). Finally, 

connected components in the image are 
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extracted as rectangles and used as the final 

bounding boxes result. 

By using this method, we were able to 

generate annotations for about 26.66% of the 

whole dataset (38,783/145,463 images). 

3.4. Method 4: For Colored Tables 

Previous methods do not work correctly if the 

text areas have pixel values higher than the 

threshold value and vice versa for background 

areas. Therefore, method 4 is designed to work 

with these types of tables. Similar to [12], this 

method also uses CRAFT (Character-Region 

Awareness For Text detection) [22] to detect text 

areas and then locate the cell location of the 

table. CRAFT is particularly helpful in cases 

where table cells and text are colored as it is 

capable of detecting them, regardless of their 

colors. 

First, the image is passed to the CRAFT 

model to generate text region proposals. Since 

the results of CRAFT are polygons that have 

angles, they are converted to rectangle bounding 

boxes instead because all images in the dataset 

are computer-generated, meaning that the text is 

perfectly aligned. The conversion is done by 

taking the most top and left, bottom and right as 

the top left and bottom right coordinates of the 

bounding box, respectively. 

Then, these bounding boxes are merged by 

pair if they satisfy predefined conditions. The 

condition checking process is shown in Figure 7. 

For every pair of bounding boxes, if they are 

both vertically and horizontally intersected, they 

will be merged as this indicates that they share 

the same table cell. If they are both not vertically 

and horizontally intersected, they will not be 

merged as most pairs of bounding boxes that do 

not satisfy this condition do not belong to the 

same cell. If a pair is not vertically but 

horizontally intersected or vice versa, they will 

be checked to make sure that their distance is not 

too far. The distance threshold is set using the 

following equation: 

𝑡ℎ𝑟𝑒𝑠ℎ = ⌊
min. height of 2 bboxes

𝑛
⌋ (3) 

In method 4a, 𝑛 = 4 for both horizontal and 

vertical distance. In method 4b, 𝑛 = 3 for 

vertical distance and 𝑛 = 2 for horizontal 

distance. The purpose of two sets of values is to 

generate correct annotations as many as it can 

with this method. 

 

Figure 7. Merging deep learning-based detected 

bounding boxes in method 4 for colored tables. 

After checking the distance, the bounding 

boxes are checked if they belong to the same cell. 

First, their background pixels value is checked to 

see if they match. We sampled some regions and 

found out that for most cases, the background 

pixel value is always the one with the most pixels 

in its histogram. By comparing these values from 

the histograms of the regions, it is possible to 

determine if they are in the same cell or not 

because a table cell can only have the same color 

value. If the values are different between two 
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regions, it means that they are located in 

different cells. However, only having the same 

background does not guarantee that two regions 

belong to the same cell as two different cells may 

have the same background 

To counter that, it is necessary to check 

whether or not there are any lines in the area 

between the bounding boxes. When the area only 

has one unique pixel value, if the value is equal 

to the background pixel value of both boxes, this 

means that no lines exist in the area and vice 

versa. There are cases where the region in 

between has multiple unique pixel values 

because the space between boxes is large or 

CRAFT misses small symbols like dot, comma, 

etc. For these cases, we perform a loop check of 

every horizontal (for bounding boxes which are 

to be merged vertically) or vertical (for those 

which are to be merged horizontally) line and see 

if the total number of background pixel value 

divided by 4 is smaller than the total number of 

other pixels. If all lines pass this condition, it 

means that no lines are present in between and 

they can be merged. 

By using this method, we were only able to 

generate annotations for 3,301 (2.26%) images 

using 4a's configuration and 3,374 (2.31%) 

images using 4b's. The main culprit for its weak 

performance is the CRAFT model, which cannot 

detect all the text areas in most images and thus, 

did not generate all cells needed to represent the 

structure of the tables. 

3.5. Verifying Bounding Box Annotations 

The bounding box annotations generated 

automatically by the above-described methods 

still need further verification. Because the only 

annotation available (ground truth) for this 

dataset is the HTML sequence tags, they will be 

used to verify if the bounding boxes match the 

structure of the table (or the HTML tags). We 

propose two methods used to verify this. 

3.5.1. Method 1: Checking the Structure 

The first method works by sorting the 

bounding boxes and then comparing the 

structure of the annotations. First, all bounding 

boxes are assigned to their corresponding rows. 

In many cases, bounding boxes belonging to the 

same table row may not have the same top and 

bottom coordinates To deal with such cases, all 

boxes are horizontally projected. A row index 

number will be assigned to consecutive rows of 

pixels that have bounding boxes and this number 

will show which row in the table a bounding box 

belongs to. Then, all bounding boxes in the same 

row are sorted from left to right based on their 

most left coordinates. 

After sorting, this approach will check if the 

number of rows and the maximum number of 

visible columns match those in original XML 

annotations. If the numbers do not match, the 

bounding boxes will not be checked further 

because the generated annotation is wrong due to 

the lack or excess of rows or columns. Then, for 

each row, the number of visible cells (or the 

<tdy> tags) is compared to the one in XML file 

to make sure the number of cells is equal for the 

same row in both annotations. If the number of 

cells in a row does not match, the new annotation 

is considered wrong. The number of detected 

cells is also compared to the total number of cells 

of that row in the original file as well to avoid 

wrong annotations from the original file. If either 

condition stands correct, it means the row has the 

same number of cells in both files. If all rows 

pass the conditions, the XML file will be 

generated. This approach is used for method 1, 

3, and 4. 

3.5.2. Method 2: Checking the Number of Cells 

The second method simply involves 

comparing the number of bounding boxes 

detected by a method to the number of visible 

cells in the provided XML files. If the numbers 

match, it can be considered as a correct 

annotation. If they do not, the bounding boxes 

may not represent the structure of the table. The 

number of detected bounding boxes is also 

compared to the total number of cells, regardless 

of their visibility. Therefore, an annotation is 

deemed correct if the number of bounding boxes 
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either matches the number of visible cells or the 

total number of cells in the XML file. This 

method is only used for method 2 because the 

previous approach requires sorting the structure 

from the bounding boxes, which is complex to 

implement for tables with spanning cells. 

3.6. Dataset Generation 

Combining the number of annotations 

generated from various methods, a total of 

73,140 unique annotations were generated, 

which accounted for over half of the dataset. 

Since the number of bounding boxes was very 

large (2,888,543 table cells), in order to verify 

them without having to check every single file, 

we define a set of rules to filter the highly correct 

table images. 

1. The number of detected bounding boxes 

and the number of tag-based cells in the HTML 

annotation files are equal. 

2. Every bounding box must intersect with 

a bounding box generated from a sufficiently 

good table structure recognition model. 

3. IoU of these bounding boxes must be 

greater than or equal to 0.5. 

In order to complete this, we trained a table 

structure recognition model. First, we sampled a 

few images from the newly generated 

annotations, manually inspected and used them 

to train a cell recognition model for checking the 

new annotations. The new sampled dataset 

consists of 4,500 files having correct annotations 

and 500 files having incorrect ones. Since 

TableBank dataset had inconsistency in 

annotating multi-row cells, these annotations 

were also fixed even though they matched the 

original annotation. After correcting the wrong 

annotations, the dataset was split 4,500 for 

training and 500 for test. 

The model that we used had the same 

architecture with CascadeTabNet [2]. It has a 

Cascade mask R-CNN network with HRNetV2p 

as the backbone layer to extract high-resolution 

features and generate initial bounding boxes. It 

was trained on the sampled 4,500 table images 

for 20 epochs as the mAP across multiple 

thresholds from 0.5 to 0.95 fluctuated between 

70 and 78%. On test set, the model reached 87% 

mAP at IoU threshold of 0.75, which can be 

considered good enough for checking the 

annotations. 

After obtaining this model, we applied the 

above-described rule set to 73,140 images whose 

annotations had been created earlier. The 

number of annotations matching all of the above 

conditions is 39,836, account for 54.46% of the 

earlier dataset or 27.38% of TableBank Structure 

Recognition dataset. These new annotations and 

5,000 annotations sampled earlier were used as a 

new dataset, that has 42,028 table images with 

bounding box annotations of 1,234,518 cells in 

total. This dataset is split into 37,825 for training 

and 4,203 for test. 

Finally, to check the accuracy of generated 

ground truth, we sample 1,000 images from the 

42k image dataset and manually check them. Out 

of 1,000 images, 995 tables have correct 

annotations whereas only 5 tables have slightly 

incorrect annotations. This implies that our new 

dataset is highly reliable (99.5% accuracy). 

4. Experiments and Results 

4.1. Experiments 

For the table detection task, we trained 

CascadeTabNet model on TableBank Detection 

dataset to locate table regions. The 

implementation was done using mmdetection. 

Due to the high VRAM usage of HRNetV2p, the 

training was done on Google Colaboratory. 

 

Model P R 

CascadeTabNet [2] 92.99% 95.71% 

CascadeTabNet 

(ours) 
97.90% 99.20% 

Table 2. Results on CascadeTabNet’s TableBank 

dataset [2]. P: Precision; R: Recall 

As the original dataset was split into Word 

and LaTeX, they were merged according to their 
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set (training, validation and test set). Since the 

number of images in this dataset is huge, it took 

nearly a day to complete each epoch. Moreover, 

after the second epoch, the accuracy merely 

increased so the model was trained for only 5 

epochs. Evaluation was done on the merged 

TableBank dataset from [2], as well as the 

TableBank LaTeX dataset for comparison with 

other models from [23]. 

For the table structure recognition task, a 

similar CascadeTabNet model, which we called 

CellNet model is used. Unlike original 

CascadeTabNet [2] that do both table detection 

and structure recognition using a single model, 

we used CascadeTabNet for table detection and 

CellNet for table structure detection. CellNet 

was continued training from the model used to 

verify annotations in Section 3.6 on the new 

dataset. Since it was already pretrained, mAP did 

not change much during training so it was only 

trained for another 10 epochs. The evaluation 

was done on ICDAR 19 cTDaR Track B2 

(Modern) for comparison with other approaches 

using toolkit by [24]. Because CellNet can only 

recognize cells from table images, it is not 

directly comparable to other methods without 

some processing. To do that, first, we passed the 

document images to CascadeTabNet to detect 

tables in the document. Then, we kept any tables 

with confidence score ≥ 0.7 and passed the 

cropped images to CellNet to detect table cells. 

We also compared our model's performance in 

two additional cases: 

• CellNet (no overlap): Since 

CascadeTabNet can detect a table with different 

bounding boxes with high confident score, this 

can make our CellNet detect a table cell multiple 

times. Because of that, after getting the result 

from CellNet, we removed any bounding boxes 

that overlap each other, while keeping only the 

one with the highest confident score to evaluate 

the model. 

• CellNet (with GT table): In this case, we 

use the ground truth tables of ICDAR 19 as input 

for our CellNet. This is to understand how 

effective the CellNet can be in recognizing table 

cells when table detection is performed 

perfectly. 

4.2. Results 

4.2.1. Table Detection 

In the table detection task, our model is able 

to achieve better results on both TableBank 

Detection dataset when compared to the original 

CascadeTabNet model [2]. This is as expected 

since the authors only trained their model on 

3,000 images sampled from the dataset, while 

ours was trained on the whole dataset. Since the 

number of images is large, their augmentation 

techniques can be considered unnecessary to 

achieve better results. The result is reported in 

Table 2. 

Table 3. Results on LaTeX TableBank dataset. P: Precision. R: Recall. 

Model 

IoU@0.6 IoU@0.7 IoU@0.8 IoU@0.9 

P R P R P R P R 

Mask R-CNN [23] 94% 98% 94% 97% 93% 96% 84% 87% 

RetinaNet [23] 98% 86% 98% 86% 97% 85% 94% 82% 

SSD [23] 96% 97% 94% 95% 92% 92% 82% 82% 

YOLO [23] 98% 99% 98% 99% 96% 97% 74% 75% 

CascadeTabNet (ours) 98.7% 99.6% 98.7% 99.4% 98.5% 99.0% 95.9% 97.2% 
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Table 4. F1-scores on ICDAR 19 Track B2 (Modern) dataset. WAvg.: Weighted Average: 

Model 
F1-score at IoU threshold 

WAvg. 
@0.6 @0.7 @0.8 @0.9 

CascadeTabNet [2] 0.438 0.354 0.190 0.036 0.232 

NLPR-PAL [2] 0.365 0.305 0.195 0.035 0.206 

CellNet (ours) 0.645 0.477 0.220 0.040 0.310 

CellNet (ours – no overlap) 0.656 0.483 0.219 0.040 0.314 

CellNet (ours – with GT table) 0.579 0.436 0.204 0.044 0.285 

Furthermore, we compared our model to those 

trained in [23]. Since they only evaluated their 

models on TableBank Detection (LaTeX) 

dataset, we also did the same with our trained 

model (which was trained with both Word and 

LaTeX sets). The result is shown in Table 3. It  

indicates that when trained on both datasets, 

CascadeTabNet can still achieve the best results 

when compared to other methods on the LaTeX 

dataset at various IoU thresholds. Moreover, at a 

higher threshold value, both precision and recall 

of our model only witness a slight decrease, 

unlike other models in the paper, which 

experience a significant drop in both measures. 

At the highest IoU threshold (0.9), 

CascadeTabNet is comparable to Mask R-CNN 

and SSD at the lower threshold (0.6). When 

lowering the threshold to 0.8, CascadeTabNet 

outperforms all other models at the lowest 

threshold of the paper. These results have shown 

that the model can generate tighter bounding 

boxes that are close to the ground truth. 

4.2.2. Table Structure Recognition 

On ICDAR 19 Track B2 (Modern) dataset, 

our model was able to achieve the best 

performance when compared with the original 

CascadeTabNet model and NLPR-PAL method. 

Detailed result is shown in Table 4. Without the 

need for post-processing like in CascadeTabNet, 

CellNet outperformed the others significantly 

when the IoU threshold was low and slightly 

better when it was high. The result was further 

improved if any overlapped bounding boxes 

were removed after the detection. When using 

table ground truth as the input for the model, it 

only outperformed CascadeTabNet and NLPR-

PAL. But at the highest IoU threshold (0.9), it 

outperformed all other models. 

Table 5. Table  structure recognition results on 1,000 sampled table images from TableBank dataset, in which we 

manually compare our CellNet results with the ground truth HTML tags and visual bounding boxes 

 

 Length 0-20 21-40 41-60 61-80 >80 All 

 #Total 32 293 252 145 278 1,000 

TableBank [5] 
#Exact match 15 169 102 28 24 338 

Ratio 0.469 0.577 0.405 0.193 0.086 0.338 

CellNet (ours – tags GT) 
#Exact match 21 237 192 89 103 642 

Ratio 0.656 0.809 0.762 0.614 0.371 0.642 

CellNet (ours – bounding 

boxes) 

Correct 23 250 207 101 125 706 

Ratio 0.719 0.853 0.821 0.697 0.450 0.706 
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We also evaluated the effect of having 

explicit bounding box annotation on the model's 

performance by comparing the result to 

TableBank's image-to-text model. Since the 

result is not directly comparable, we evaluated 

using two methods: 

• Comparing the bounding boxes' 

arrangement to the ground truth HTML 

annotation. 

• Check if bounding boxes are annotated 

correctly according to the table. 

The results (see Table 5) showed that in both 

comparisons, our method performed 

significantly better than that of the proposed 

method in TableBank [5]. This proved that 

explicit bounding box annotation is more 

effective than implicit text sequence annotation. 

 5. Conclusions  

In this paper, we have proposed an 

automated approach to create a large dataset for 

table structure recognition with cell-level 

bounding box annotation. The dataset contains 

more than 42K table images with a reliable 

accuracy (99.5%). The dataset surpasses the 

largest existing dataset for the recognition task 

by 11 times. Our experiments have also shown 

that the table structure recognition model trained 

on this new dataset outperforms all existing 

solutions on several benchmark datasets. 

Our contributions in this paper are 

summarized as follows: 

• Proposed several methods to 

automatically generate bounding box 

annotations from HTML tag annotation of 

TableBank dataset. 

• Generated a new large dataset with over 

42K table images for structure recognition task. 

• Developed a table structure recognition 

model using the newly generated dataset 

resulting in significant improvement over 

previous works. 

Our upcoming works will involve using the 

trained table structure recognition model to 

supervise the conversion process from HTML 

tag sequences to coordinate annotation, 

retraining the recognition models, and 

optimizing recognition performance with other 

deep learning techniques. We may also combine 

several datasets to increase the generalization of 

the new dataset. 
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