
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 37, No. 2 (2021) 47-59

47

Original Article

Automatic Building of a Large and Straightforward Dataset

for Image-Based Table Structure Recognition

Vinh Quang Tran, Diep Nguyen Thi Ngoc*

VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 14 May 2021

Revised 27 August 2021; Accepted 1 November 2021

Abstract: Table is one of the most common ways to represent structured data in documents. Existing

researches on image-based table structure recognition often rely on limited datasets with the largest

amount of 3,789 human-labeled tables as ICDAR 19 Track B dataset. A recent Table Bank dataset

for table structures contains 145K tables, however, the tables are labeled in an HTML tag sequence

format, which impedes the development of image-based recognition methods. In this paper, we

propose several processing methods that automatically convert an HTML tag sequence annotation

into bounding box annotation for table cells in one table image. By assembling these methods, we

could convert 42,028 tables with high correctness, which is 11 times larger than the largest existing

dataset (ICDAR 19). We then demonstrate that using these bounding box annotations, a

straightforward representation of objects in images, we can achieve much higher F1-scores of table

structure recognition at many high IoU thresholds using only off-the-shelf deep learning models:

F1-score of 0.66 compared to the state-of-the-art of 0.44 for ICDAR19 dataset. A further experiment

on using explicit bounding box annotation for image-based table structure recognition results in

higher accuracy (70.6%) than implicit text sequence annotation (only 33.8%). The experiments

show the effectiveness of our largest-to-date dataset to open up opportunities to generalize on real-

world applications. Our dataset and experimental models are publicly available at

shorturl.at/hwHY3.

Keywords: table detection, table structure recognition, deep learning, dataset.*

1. Introduction

Table is one of the most commonly used

methods to represent information in documents,

thanks to its intuitiveness of representing

structured data. In recent years, the number of

digital documents has increased significantly

* Corresponding author.

 E-mail address: ngocdiep@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.230

with businesses, corporations and governments

are transitioning to paperless documents.

Together with the transition to digital documents

is the need to interact with the document as well

as automatically process them. However, since

most of these documents are either in image or

exchange format like PDF, they do not contain

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

48

the layout coding of the documents, making it

hard for users to use these files efficiently. Based

on the valuable information contained in tables,

many researchers have been focusing on the

problem of processing and recognizing the

structures of tables from image input.

Table 1. Number of tables (as images) and table

cells (as bounding boxes) in several popular table

structure recognition datasets compared

to our dataset

Dataset # of Tables # Cells

TableBank [5] 145,463 (n/a)

ICDAR 13 [6] 154 14,114

ICDAR 19 [7] 3,789 371,045

TabStructDB[4] 1,081 53,174

Ours 42,028 1,234,518

Based on previous research [1–4], we define

two important tasks related to table processing as

below:

• Table Detection: Detect the coordinates or

regions of all tables inside a document.

• Table Structure Recognition: For each

located table, its structural information

needs to be recovered. The structural

information is defined by rows', columns' or

cells' location which form the layout of the

table. The common and simple

representation of this structure is via the

bounding boxes of all cells in the table as

shown in 1(c).

While it is important to solve table structure

recognition, only a few datasets for this task are

available and many of which have a modest

number of tables. The most popular datasets are

shown in table 1 and the largest dataset with

bounding box annotation is ICDAR 19 (3,789

table images). Although the TableBank dataset

has over 417K document images whose tables

are labeled in bounding box format, its separated

set for table structure recognition contains only

145k images, of which all are annotated using

sequential HTML tags, providing no information

about the location of table cells in the table

images. An example of such ground truth for the

table image in Figure 1(a) is shown in Figure

1(b). Compared to the intuitive bounding box

annotation in Figure 1(c), this kind of annotation

is not suitable for the task of image-based table

structure recognition. It is because even if we can

successfully predict the HTML tags of a table

image, we don't have any information of the tag's

coordinate to infer the location of the

corresponding table cell. Figure 1 also shows

that the table structure recognition task requires

a fine-grain detection of bounding boxes for all

table cells in the table, however, the labor cost

for annotating this kind of information is

undeniably high.

(a) A sample table image

(b) Groundtruth annotation in TableBank [5]

(c) Expected output of table structure recognition

Figure 1. An example of table image, groundtruth

annotation in TableBank dataset [5], and expected

output of table structure recognition which is also

our model’s result.

In this paper, we propose several methods to

automatically convert the HTML tag sequences

into bounding box locations in the table images

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

49

using the visual information and the HTML tags.

Ensembling the proposed converting methods,

we obtain a very large dataset for table structure

recognition task, which includes over 42K table

images and 1.2M table cells with relatively high

correctness (see Table 1). Our dataset is 11 times

larger than the current largest dataset (ICDAR

19) for the same task with table cell level

annotation. To demonstrate the effectiveness of

our new dataset, we use an off-the-shelf and also

a state-of-the-art model on table detection and

table structure recognition model,

CascadeTableNet [2], to train a table structure

recognition model called CellNet. The

experiments show that our large dataset helps

generalize well on both tasks. Especially when

testing on other existing datasets (such as

ICDAR 19), it outperforms the

CascadeTableNet [2] with a large margin of F1

score on all IoU thresholds. Additionally, we

show that using explicit bounding box

annotation yields higher accuracy than implicit

text sequence annotation.

In summary, our contributions in this paper

are:

• Converting methods from HTML tag

sequence format to bounding box coordinate

format for table images;

• Generating a very large dataset (42K

images) for table structure recognition task;

• Training a table structure recognition model

(CellNet) that outperforms the state-of-the-

art models on ICDAR 19 and TableBank

datasets.

The paper is organized as follows: Section 2

discusses some related works. Section 3

describes our proposed converting methods.

Section 4 describes some experiments and

results. Section 5 concludes the paper.

2. Related Works

Most table structure recognition methods

can be divided into two main categories: rule-

based and data-driven approaches. Rule-based

methods are those that rely on some contents in

tables such as text content, graphical lines, and

arrangements to make a set of predefined rules

to find the structure of the tables. On the other

hand, data-driven primarily rely on machine

learning techniques to recognize the structures of

tables directly from the images.

Rule-based approaches: In the early 1990s,

Chandran and Kasturi [8] proposed a method to

detect tables from binary document images using

sets of predefined conditions for table lines.

Itonori [9] used text-block arrangement and

ruled lines to detect tables in document images.

Smith [10] proposed using Tesseract OCR with

layout analysis to locate table regions. Kieninger

and Dengel [11] demonstrated a bottom-up

method to recognize logical structure of tables

without relying on visual clues like lines. Van

Nguyen et al. [12] proposed a method for

extracting table structure from scanned images

using CRAFT to detect text areas.

Data-driven approaches: Cesarini et al. [13]

first used Modified X-Y tree as a hierarchical

representation of a document and then used

supervised learning to find different classes of

tables in the tree. Kasar et al. [14] proposed

finding intersecting points and using SVM

classifiers to locate tables. Hao et al. [15] was the

first to try localizing tables in PDF files using

deep learning technique, while still relying on

predefined rules. Gilani et al. [16], Siddiqui et al.

[17] proposed the use of Faster R-CNN to locate

tables in document images, completely eliminate

the need for heuristics rules. Siddiqui et al. [4]

also used Faster R-CNN to locate tables' rows

and columns. Similarly, Schreiber et al. [3] also

used Faster R-CNN but treated structure

recognition task as rows and columns

segmentation. Prasad et al. [2] proposed

CascadeTabNet which used Cascade Mask R-

CNN to locate tables and their cells.

Comparing those two approaches, rule-

based is often limited in well-crafted logic

(rules) whereas data-driven requires a large

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

50

amount of data in order to show effectiveness.

Regarding the table structure recognition

problem, the largest existing dataset (ICDAR 19)

contains about 3.7K images. In this paper, we

firstly build a larger dataset and then we use

CascadeTabNet as our off-the-shelf model of

choice to show how a large dataset can

significantly improve the model performance.

3. Methods

As we have discussed in Section 1, the

TableBank Recognition dataset [5] is large but

limited by the HTML tag annotation. In this

section, we will describe several methods that

we use to convert the HTML tag annotation to

bounding box annotation for table images. The

conversion principle is based on finding the

location of each cell in a table image. We utilize

the HMTL tag annotation as additional

information to check whether the new

annotations are correct or not. Moreover, due to

the variability of table structure and appearance,

we propose four different methods which

leverage Digital Image Processing and Deep

Learning techniques to find the table cells. Each

method is hypothetically designed to cover

others' weaknesses. The parameters or

thresholds used in each method were chosen by

experiments.

3.1. Method 1: For Fully-bordered Tables

Since table lines usually provide valuable

information about table structure, this method

uses them to find table cells of fully-bordered

tables. The overall process is shown in Figure 6.

In the first method, the image is thresholded

into a binary image and then inverted. In our

experiments, the threshold value of 192 is

chosen because it can help generate the most

correct annotations. After the image is inverted,

a border surrounding the image is drawn to

ensure consistency between examples in the

dataset.

Figure 2. Pipeline for fully-bordered

tables (method 1).

To generate masks for table lines, first, both

vertical and horizontal lines are detected using

erosion and then dilation, each runs for three

iterations to make sure that the text is removed

completely while retaining the lines. For

horizontal lines, the horizontal kernel has the

shape of (ℎ𝑜𝑟_𝑘𝑟𝑛_𝑙𝑒𝑛, 1). For vertical lines,

the kernel's shape is (1, 𝑣𝑒𝑟𝑡_𝑘𝑟𝑛_𝑙𝑒𝑛). The

ℎ𝑜𝑟_𝑘𝑟𝑛_𝑙𝑒𝑛 and 𝑣𝑒𝑟𝑡_𝑘𝑟𝑛_𝑙𝑒𝑛 are calculated

as follows:

ℎ𝑜𝑟_𝑘𝑟𝑛_𝑙𝑒𝑛 = ⌊⌊
𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

max 𝑛𝑢𝑚. 𝑜𝑓 𝑐𝑜𝑙𝑠.
⌋ ∗

1

4
⌋ (1)

𝑣𝑒𝑟𝑡_𝑘𝑟𝑛_𝑙𝑒𝑛 = ⌊⌊
𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

𝑛𝑢𝑚. 𝑜𝑓 𝑟𝑜𝑤𝑠
⌋ ∗

1

4
⌋ *3(2)

with max 𝑛𝑢𝑚. 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 is the

maximum number of cells of all table rows and

𝑛𝑢𝑚. 𝑜𝑓 𝑟𝑜𝑤𝑠 is the number of table rows taken

from original annotation files.

Unlike existing methods in [15, 18, 19]

which do text block projection to recover table

cells, our method will do horizontal and vertical

lines projection instead. It works by finding out

rows or columns of a table that contain a full line,

which means that those rows or columns can

have only a unique pixel value. Since the image

was thresholded earlier, the unique value needs

to be 0. If not, it means that there might be a cell

somewhere in the middle. After finding out the

rows and columns containing full lines, the areas

between them are marked with an index number.

The coordinates of these areas are used to

construct bounding boxes of table cells by using

each pair of horizontal and vertical areas. Since

these boxes are too large, they are trimmed so

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

51

that the boxes cover just enough of the characters

of table cells. For cases where a table cell is

empty, their bounding boxes are removed as this

research only concerns cells with visible content.

Also, since a table contains uneven lines, the

coordinates detected can be wrong because the

row or column contains that line may be marked

as not containing lines. To deal with this

problem, before the trimming step, any extra

borderlines not detected earlier are trimmed to

avoid bounding boxes becoming too large

because of them.

Figure 3. A typical example of false conversion by

Method 1, which happens when a table

 has spanning cells

With this method, we were able to generate

annotations for 29,285 images, which account

for 20.13% of the dataset. As one observation,

we see that this method does not generalize well

with tables having spanning cells. An example is

shown in Figure 3.

3.2. Method 2: For Fully-bordered Tables with

Spanning Cells

This method is designed to overcome the

weakness of the first method regarding spanning

cells. It works with any fully-bordered tables

with multiple spanning cells. The overall process

is shown in Figure 4.

The beginning steps of this approach are the

same as the first method until the getting rows'

and columns' coordinates step. If a table contains

one or more spanning cells, any lines staying

next to spanning cells are not recognized in the

previous method.

Figure 4. Converting pipeline for fully-bordered

tables with spanning cells (method 2).

For example, in Figure 3, the line between

the first and second rows is not registered in the

horizontal projection so the first and second rows

are recognized as one. To solve this problem,

instead of finding rows and columns containing

a full line of the image, this method scans for any

rows and columns that have white lines in their

respective mask and marks their coordinates.

Unlike the previous method, these coordinates

will not be marked with index numbers because

it is complex when it comes to indexing

spanning cells. After finding the coordinates, the

cells are recovered similarly to method 1.

Figure 5. A typical example error of method 2 due to

redundant bounding boxes on spanning cells after

cell recovery step.

However, this step recovers redundant cells

inside spanning ones because it does not take

into account the absence of lines in the latter

ones. An example is shown in Figure 5. Since

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

52

this structure is incorrect, these cells need to be

merged as one in the next step. For every pair of

table cells, this step checks whether if they are

horizontally, vertically or not aligned at all. If

they are not aligned in any direction at all, they

will not be merged. If they are either vertically

or horizontally aligned, the mask of the area

between them is checked for the existence of

lines by checking its number of unique pixels, as

well as their value. These boxes will be merged

if the mask has only 0 as its unique value, which

indicates that there are no lines between these

two boxes. After merging, all bounding boxes

are trimmed similar to method 1 to get the final

result.

Figure 6. Converting pipeline for general tables

(method 3).

By using this approach, 41,256 annotations

were generated (28.36% of the dataset), making

this method the most effective one. While this

method can be considered an upgrade version of

method 1, we decided to keep both methods

because in some cases, a table cell can contain

characters standing near each other or equations

that form a line. In such cases, this method can

mistake them as a table borderline, while the

previous method does not. Therefore, it is

necessary to keep method 1 to counter

such cases.

3.3. Method 3: For General Tables

Since previous methods only work on fully-

bordered tables, this method is designed to work

with all types of tables, regardless of how they

are bordered. It works by using Maximally

Stable Extremal Regions (MSER) to detect table

cells. The steps are shown in Figure 6.

Similar to the first two methods, the first step

involves binary thresholding and inverting the

image. The chosen thresholding value for this

approach is 225 because it can generate the most

correct annotations. Then, the border

surrounding the image is also drawn. Like the

previous methods, we use a vertical and a

horizontal kernel with the same size calculated

in Equation 1 and 2 for horizontal and vertical

one, respectively. Then erosion and dilation are

performed to the image, each for three iterations

to detect the lines in the image.

After generating horizontal and vertical line

masks, they are combined using bitwise OR

operation to generate a table line mask.

Subtracting the inverted image earlier with this

mask should remove the table lines from the

image, keeping only the text. Because some

images may have some noisy small pixels near

the table lines, a structuring element with the size

of (1,1) is used to remove these noise using

opening operation, which erodes and then dilates

the image using the provided kernel.

Then, the image is inverted and MSER [20]

is used to detect text areas in the image. Any

areas smaller than 4 pixels are set to be pruned

to ignore any noises that are not detected in the

above step while keeping small hyphens in many

tables of the dataset. For each region detected by

MSER, it will be drawn in a white image and the

box is filled black for the merging process.

Inspired by [21], we use most appeared

bounding boxes' height to merge them. The

structuring element used for merging bounding

boxes has the shape of

(𝑚𝑜𝑠𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 1.3, 1). Finally,

connected components in the image are

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

53

extracted as rectangles and used as the final

bounding boxes result.

By using this method, we were able to

generate annotations for about 26.66% of the

whole dataset (38,783/145,463 images).

3.4. Method 4: For Colored Tables

Previous methods do not work correctly if the

text areas have pixel values higher than the

threshold value and vice versa for background

areas. Therefore, method 4 is designed to work

with these types of tables. Similar to [12], this

method also uses CRAFT (Character-Region

Awareness For Text detection) [22] to detect text

areas and then locate the cell location of the

table. CRAFT is particularly helpful in cases

where table cells and text are colored as it is

capable of detecting them, regardless of their

colors.

First, the image is passed to the CRAFT

model to generate text region proposals. Since

the results of CRAFT are polygons that have

angles, they are converted to rectangle bounding

boxes instead because all images in the dataset

are computer-generated, meaning that the text is

perfectly aligned. The conversion is done by

taking the most top and left, bottom and right as

the top left and bottom right coordinates of the

bounding box, respectively.

Then, these bounding boxes are merged by

pair if they satisfy predefined conditions. The

condition checking process is shown in Figure 7.

For every pair of bounding boxes, if they are

both vertically and horizontally intersected, they

will be merged as this indicates that they share

the same table cell. If they are both not vertically

and horizontally intersected, they will not be

merged as most pairs of bounding boxes that do

not satisfy this condition do not belong to the

same cell. If a pair is not vertically but

horizontally intersected or vice versa, they will

be checked to make sure that their distance is not

too far. The distance threshold is set using the

following equation:

𝑡ℎ𝑟𝑒𝑠ℎ = ⌊
min. height of 2 bboxes

𝑛
⌋ (3)

In method 4a, 𝑛 = 4 for both horizontal and

vertical distance. In method 4b, 𝑛 = 3 for

vertical distance and 𝑛 = 2 for horizontal

distance. The purpose of two sets of values is to

generate correct annotations as many as it can

with this method.

Figure 7. Merging deep learning-based detected

bounding boxes in method 4 for colored tables.

After checking the distance, the bounding

boxes are checked if they belong to the same cell.

First, their background pixels value is checked to

see if they match. We sampled some regions and

found out that for most cases, the background

pixel value is always the one with the most pixels

in its histogram. By comparing these values from

the histograms of the regions, it is possible to

determine if they are in the same cell or not

because a table cell can only have the same color

value. If the values are different between two

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

54

regions, it means that they are located in

different cells. However, only having the same

background does not guarantee that two regions

belong to the same cell as two different cells may

have the same background

To counter that, it is necessary to check

whether or not there are any lines in the area

between the bounding boxes. When the area only

has one unique pixel value, if the value is equal

to the background pixel value of both boxes, this

means that no lines exist in the area and vice

versa. There are cases where the region in

between has multiple unique pixel values

because the space between boxes is large or

CRAFT misses small symbols like dot, comma,

etc. For these cases, we perform a loop check of

every horizontal (for bounding boxes which are

to be merged vertically) or vertical (for those

which are to be merged horizontally) line and see

if the total number of background pixel value

divided by 4 is smaller than the total number of

other pixels. If all lines pass this condition, it

means that no lines are present in between and

they can be merged.

By using this method, we were only able to

generate annotations for 3,301 (2.26%) images

using 4a's configuration and 3,374 (2.31%)

images using 4b's. The main culprit for its weak

performance is the CRAFT model, which cannot

detect all the text areas in most images and thus,

did not generate all cells needed to represent the

structure of the tables.

3.5. Verifying Bounding Box Annotations

The bounding box annotations generated

automatically by the above-described methods

still need further verification. Because the only

annotation available (ground truth) for this

dataset is the HTML sequence tags, they will be

used to verify if the bounding boxes match the

structure of the table (or the HTML tags). We

propose two methods used to verify this.

3.5.1. Method 1: Checking the Structure

The first method works by sorting the

bounding boxes and then comparing the

structure of the annotations. First, all bounding

boxes are assigned to their corresponding rows.

In many cases, bounding boxes belonging to the

same table row may not have the same top and

bottom coordinates To deal with such cases, all

boxes are horizontally projected. A row index

number will be assigned to consecutive rows of

pixels that have bounding boxes and this number

will show which row in the table a bounding box

belongs to. Then, all bounding boxes in the same

row are sorted from left to right based on their

most left coordinates.

After sorting, this approach will check if the

number of rows and the maximum number of

visible columns match those in original XML

annotations. If the numbers do not match, the

bounding boxes will not be checked further

because the generated annotation is wrong due to

the lack or excess of rows or columns. Then, for

each row, the number of visible cells (or the

<tdy> tags) is compared to the one in XML file

to make sure the number of cells is equal for the

same row in both annotations. If the number of

cells in a row does not match, the new annotation

is considered wrong. The number of detected

cells is also compared to the total number of cells

of that row in the original file as well to avoid

wrong annotations from the original file. If either

condition stands correct, it means the row has the

same number of cells in both files. If all rows

pass the conditions, the XML file will be

generated. This approach is used for method 1,

3, and 4.

3.5.2. Method 2: Checking the Number of Cells

The second method simply involves

comparing the number of bounding boxes

detected by a method to the number of visible

cells in the provided XML files. If the numbers

match, it can be considered as a correct

annotation. If they do not, the bounding boxes

may not represent the structure of the table. The

number of detected bounding boxes is also

compared to the total number of cells, regardless

of their visibility. Therefore, an annotation is

deemed correct if the number of bounding boxes

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

55

either matches the number of visible cells or the

total number of cells in the XML file. This

method is only used for method 2 because the

previous approach requires sorting the structure

from the bounding boxes, which is complex to

implement for tables with spanning cells.

3.6. Dataset Generation

Combining the number of annotations

generated from various methods, a total of

73,140 unique annotations were generated,

which accounted for over half of the dataset.

Since the number of bounding boxes was very

large (2,888,543 table cells), in order to verify

them without having to check every single file,

we define a set of rules to filter the highly correct

table images.

1. The number of detected bounding boxes

and the number of tag-based cells in the HTML

annotation files are equal.

2. Every bounding box must intersect with

a bounding box generated from a sufficiently

good table structure recognition model.

3. IoU of these bounding boxes must be

greater than or equal to 0.5.

In order to complete this, we trained a table

structure recognition model. First, we sampled a

few images from the newly generated

annotations, manually inspected and used them

to train a cell recognition model for checking the

new annotations. The new sampled dataset

consists of 4,500 files having correct annotations

and 500 files having incorrect ones. Since

TableBank dataset had inconsistency in

annotating multi-row cells, these annotations

were also fixed even though they matched the

original annotation. After correcting the wrong

annotations, the dataset was split 4,500 for

training and 500 for test.

The model that we used had the same

architecture with CascadeTabNet [2]. It has a

Cascade mask R-CNN network with HRNetV2p

as the backbone layer to extract high-resolution

features and generate initial bounding boxes. It

was trained on the sampled 4,500 table images

for 20 epochs as the mAP across multiple

thresholds from 0.5 to 0.95 fluctuated between

70 and 78%. On test set, the model reached 87%

mAP at IoU threshold of 0.75, which can be

considered good enough for checking the

annotations.

After obtaining this model, we applied the

above-described rule set to 73,140 images whose

annotations had been created earlier. The

number of annotations matching all of the above

conditions is 39,836, account for 54.46% of the

earlier dataset or 27.38% of TableBank Structure

Recognition dataset. These new annotations and

5,000 annotations sampled earlier were used as a

new dataset, that has 42,028 table images with

bounding box annotations of 1,234,518 cells in

total. This dataset is split into 37,825 for training

and 4,203 for test.

Finally, to check the accuracy of generated

ground truth, we sample 1,000 images from the

42k image dataset and manually check them. Out

of 1,000 images, 995 tables have correct

annotations whereas only 5 tables have slightly

incorrect annotations. This implies that our new

dataset is highly reliable (99.5% accuracy).

4. Experiments and Results

4.1. Experiments

For the table detection task, we trained

CascadeTabNet model on TableBank Detection

dataset to locate table regions. The

implementation was done using mmdetection.

Due to the high VRAM usage of HRNetV2p, the

training was done on Google Colaboratory.

Model P R

CascadeTabNet [2] 92.99% 95.71%

CascadeTabNet

(ours)
97.90% 99.20%

Table 2. Results on CascadeTabNet’s TableBank

dataset [2]. P: Precision; R: Recall

As the original dataset was split into Word

and LaTeX, they were merged according to their

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

56

set (training, validation and test set). Since the

number of images in this dataset is huge, it took

nearly a day to complete each epoch. Moreover,

after the second epoch, the accuracy merely

increased so the model was trained for only 5

epochs. Evaluation was done on the merged

TableBank dataset from [2], as well as the

TableBank LaTeX dataset for comparison with

other models from [23].

For the table structure recognition task, a

similar CascadeTabNet model, which we called

CellNet model is used. Unlike original

CascadeTabNet [2] that do both table detection

and structure recognition using a single model,

we used CascadeTabNet for table detection and

CellNet for table structure detection. CellNet

was continued training from the model used to

verify annotations in Section 3.6 on the new

dataset. Since it was already pretrained, mAP did

not change much during training so it was only

trained for another 10 epochs. The evaluation

was done on ICDAR 19 cTDaR Track B2

(Modern) for comparison with other approaches

using toolkit by [24]. Because CellNet can only

recognize cells from table images, it is not

directly comparable to other methods without

some processing. To do that, first, we passed the

document images to CascadeTabNet to detect

tables in the document. Then, we kept any tables

with confidence score ≥ 0.7 and passed the

cropped images to CellNet to detect table cells.

We also compared our model's performance in

two additional cases:

• CellNet (no overlap): Since

CascadeTabNet can detect a table with different

bounding boxes with high confident score, this

can make our CellNet detect a table cell multiple

times. Because of that, after getting the result

from CellNet, we removed any bounding boxes

that overlap each other, while keeping only the

one with the highest confident score to evaluate

the model.

• CellNet (with GT table): In this case, we

use the ground truth tables of ICDAR 19 as input

for our CellNet. This is to understand how

effective the CellNet can be in recognizing table

cells when table detection is performed

perfectly.

4.2. Results

4.2.1. Table Detection

In the table detection task, our model is able

to achieve better results on both TableBank

Detection dataset when compared to the original

CascadeTabNet model [2]. This is as expected

since the authors only trained their model on

3,000 images sampled from the dataset, while

ours was trained on the whole dataset. Since the

number of images is large, their augmentation

techniques can be considered unnecessary to

achieve better results. The result is reported in

Table 2.

Table 3. Results on LaTeX TableBank dataset. P: Precision. R: Recall.

Model

IoU@0.6 IoU@0.7 IoU@0.8 IoU@0.9

P R P R P R P R

Mask R-CNN [23] 94% 98% 94% 97% 93% 96% 84% 87%

RetinaNet [23] 98% 86% 98% 86% 97% 85% 94% 82%

SSD [23] 96% 97% 94% 95% 92% 92% 82% 82%

YOLO [23] 98% 99% 98% 99% 96% 97% 74% 75%

CascadeTabNet (ours) 98.7% 99.6% 98.7% 99.4% 98.5% 99.0% 95.9% 97.2%

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

57

Table 4. F1-scores on ICDAR 19 Track B2 (Modern) dataset. WAvg.: Weighted Average:

Model
F1-score at IoU threshold

WAvg.
@0.6 @0.7 @0.8 @0.9

CascadeTabNet [2] 0.438 0.354 0.190 0.036 0.232

NLPR-PAL [2] 0.365 0.305 0.195 0.035 0.206

CellNet (ours) 0.645 0.477 0.220 0.040 0.310

CellNet (ours – no overlap) 0.656 0.483 0.219 0.040 0.314

CellNet (ours – with GT table) 0.579 0.436 0.204 0.044 0.285

Furthermore, we compared our model to those

trained in [23]. Since they only evaluated their

models on TableBank Detection (LaTeX)

dataset, we also did the same with our trained

model (which was trained with both Word and

LaTeX sets). The result is shown in Table 3. It

indicates that when trained on both datasets,

CascadeTabNet can still achieve the best results

when compared to other methods on the LaTeX

dataset at various IoU thresholds. Moreover, at a

higher threshold value, both precision and recall

of our model only witness a slight decrease,

unlike other models in the paper, which

experience a significant drop in both measures.

At the highest IoU threshold (0.9),

CascadeTabNet is comparable to Mask R-CNN

and SSD at the lower threshold (0.6). When

lowering the threshold to 0.8, CascadeTabNet

outperforms all other models at the lowest

threshold of the paper. These results have shown

that the model can generate tighter bounding

boxes that are close to the ground truth.

4.2.2. Table Structure Recognition

On ICDAR 19 Track B2 (Modern) dataset,

our model was able to achieve the best

performance when compared with the original

CascadeTabNet model and NLPR-PAL method.

Detailed result is shown in Table 4. Without the

need for post-processing like in CascadeTabNet,

CellNet outperformed the others significantly

when the IoU threshold was low and slightly

better when it was high. The result was further

improved if any overlapped bounding boxes

were removed after the detection. When using

table ground truth as the input for the model, it

only outperformed CascadeTabNet and NLPR-

PAL. But at the highest IoU threshold (0.9), it

outperformed all other models.

Table 5. Table structure recognition results on 1,000 sampled table images from TableBank dataset, in which we

manually compare our CellNet results with the ground truth HTML tags and visual bounding boxes

 Length 0-20 21-40 41-60 61-80 >80 All

 #Total 32 293 252 145 278 1,000

TableBank [5]
#Exact match 15 169 102 28 24 338

Ratio 0.469 0.577 0.405 0.193 0.086 0.338

CellNet (ours – tags GT)
#Exact match 21 237 192 89 103 642

Ratio 0.656 0.809 0.762 0.614 0.371 0.642

CellNet (ours – bounding

boxes)

Correct 23 250 207 101 125 706

Ratio 0.719 0.853 0.821 0.697 0.450 0.706

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

58

We also evaluated the effect of having

explicit bounding box annotation on the model's

performance by comparing the result to

TableBank's image-to-text model. Since the

result is not directly comparable, we evaluated

using two methods:

• Comparing the bounding boxes'

arrangement to the ground truth HTML

annotation.

• Check if bounding boxes are annotated

correctly according to the table.

The results (see Table 5) showed that in both

comparisons, our method performed

significantly better than that of the proposed

method in TableBank [5]. This proved that

explicit bounding box annotation is more

effective than implicit text sequence annotation.

 5. Conclusions

In this paper, we have proposed an

automated approach to create a large dataset for

table structure recognition with cell-level

bounding box annotation. The dataset contains

more than 42K table images with a reliable

accuracy (99.5%). The dataset surpasses the

largest existing dataset for the recognition task

by 11 times. Our experiments have also shown

that the table structure recognition model trained

on this new dataset outperforms all existing

solutions on several benchmark datasets.

Our contributions in this paper are

summarized as follows:

• Proposed several methods to

automatically generate bounding box

annotations from HTML tag annotation of

TableBank dataset.

• Generated a new large dataset with over

42K table images for structure recognition task.

• Developed a table structure recognition

model using the newly generated dataset

resulting in significant improvement over

previous works.

Our upcoming works will involve using the

trained table structure recognition model to

supervise the conversion process from HTML

tag sequences to coordinate annotation,

retraining the recognition models, and

optimizing recognition performance with other

deep learning techniques. We may also combine

several datasets to increase the generalization of

the new dataset.

Acknowledgments

This work has been supported by VNU

University of Engineering and Technology

under the project number CN19.10.

References

[1] S. S. Paliwal, D. Vishwanath, R. Rahul, M.

Sharma, L. Vig, Tablenet: Deep Learning Model

for End-To-End Table Detection and Tabular Data

Extraction From Scanned Document Images, in:

2019 International Conference on Document

Analysis and Recognition (ICDAR), IEEE, 2019,

pp. 128–133.

[2] D. Prasad, A. Gadpal, K. Kapadni, M. Visave, K.

Sultanpure, Cascadetabnet: An Approach for End

to End Table Detection And Structure Recognition

From Image-Based Documents, in: Proceedings of

the IEEE/CVF Conference on Computer Vision

and Pattern Recognition Workshops, 2020, pp.

572–573.

[3] S. Schreiber, S. Agne, I. Wolf, A. Dengel, S.

Ahmed, Deepdesrt: Deep Learning for Detection

and Structure Recognition of Rables in Document

Images, in: 2017 14th IAPR international

conference on document analysis and recognition

(ICDAR), Vol. 1,

[4] S. A. Siddiqui, I. A. Fateh, S. T. R. Rizvi, A.

Dengel, S. Ahmed, Deeptabstr: Deep Learning

Based Table Structure Recognition, in: 2019

International Conference on Document Analysis

and Recognition (ICDAR), IEEE, 2019, pp. 1403–

1409.

[5] M. Li, L. Cui, S. Huang, F. Wei, M. Zhou, Z. Li,

Tablebank: A Benchmark Dataset for Table

Detection and Recognition, arXiv e-prints (2019)

arXiv–1903.

[6] M. Göbel, T. Hassan, E. Oro, G. Orsi, Icdar 2013

Table Competition, in: 2013 12th International

Conference on Document Analysis and

Recognition, IEEE, 2013, pp. 1449–1453.

[7] L. Gao, Y. Huang, H. Déjean, J.-L. Meunier, Q.

Yan, Y. Fang, F. Kleber, E. Lang, Icdar 2019

Competition on Table Detection and Recognition

(ctdar), in: 2019 International Conference on

V.Q. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 37, No. 2 (2021) 47-59

59

Document Analysis and Recognition (ICDAR),

IEEE, 2019, pp. 1510–1515.

[8] S. Chandran, R. Kasturi, Structural Recognition of

Tabulated Data, in: Proceedings of 2nd

International Conference on Document Analysis

and Recognition (ICDAR’93), IEEE, 1993, pp.

516–519.

[9] K. Itonori, Table Structure Recognition Based on

Textblock Arrangement and Ruled Line Position,

in: Proceedings of 2nd International Conference on

Document Analysis and Recognition (ICDAR’93),

IEEE, 1993, pp. 765–768.

[10] F. Shafait, R. Smith, Table Detection in

Heterogeneous Documents, in: Proceedings of the

9th IAPR International Workshop on Document

Analysis Systems, 2010, pp. 65–72.

[11] T. Kieninger, A. Dengel, The t-recs Table

Recognition and Analysis System, in: International

Workshop on Document Analysis Systems,

Springer, 1998, pp. 255–270.

[12] N. V. Nguyen, H. Vu, A. Zucker, Y. Belkada, H.

V. Do, D. N. Nguyen, T. T. N. Le, D. V. Hoang,

Table Structure Recognition in Scanned Images

Using a Clustering Method, in: International

Conference on Industrial Networks and Intelligent

Systems, Springer, 2020, pp. 150–162.

[13] F. Cesarini, S. Marinai, L. Sarti, G. Soda,

Trainable Table Location in Document Images, in:

Object Recognition Supported By User Interaction

for Service robots, Vol. 3, 2002, pp. 236–240.

[14] T. Kasar, P. Barlas, S. Adam, C. Chatelain, T.

Paquet, Learning to Detect Tables in Scanned

Document Images Using Line Information, in:

2013 12th International Conference on Document

Analysis and Recognition, IEEE, 2013, pp. 1185–

1189.

[15] L. Hao, L. Gao, X. Yi, Z. Tang, A Table Detection

Method for Pdf Documents based on

Convolutional Neural Networks, in: 2016 12th

IAPR Workshop on Document Analysis Systems

(DAS), IEEE, 2016, pp. 287–292.

[16] Gilani, S. R. Qasim, I. Malik, F. Shafait, Table

Detection Using Deep Learning, in: 2017 14th

IAPR international conference on document

analysis and recognition (ICDAR), Vol. 1, 2017,

pp. 771–776.

[17] S. A. Siddiqui, M. I. Malik, S. Agne, A. Dengel, S.

Ahmed, Decnt: Deep Deformable Cnn For Table

Detection, IEEE Access, Vol. 6, 2018. Pp. 74151–

74161.

[18] Shigarov, A. Mikhailov, A. Altaev, Configurable

Table Structure Recognition in Untagged Pdf

Documents, in: Proceedings of the 2016 ACM

Symposium on Document Engineering, 2016, pp.

119–122.

[19] Y. Wang, I. T. Phillips, R. M. Haralick, Table

Structure Understanding and Its Performance

Evaluation, Pattern recognition, Vol. 37, 2004, pp.

1479–1497.

[20] M. Donoser, H. Bischof, Efficient Maximally

Stable Extremal Region (Mser) Tracking, in: 2006

IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’06), Vol.

1, Ieee, 2006, pp. 553–560.

[21] B. Gatos, D. Danatsas, I. Pratikakis, S. J.

Perantonis, Automatic Table Detection In

Document Images, in: International Conference on

Pattern Recognition and Image Analysis, Springer,

2005, pp. 609–618.

[22] Y. Baek, B. Lee, D. Han, S. Yun, H. Lee, Character

Region Awareness for Text Detection, in:

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019,

pp. 9365–9374.

[23] Á. Casado-Garc ́ıa, C. Domínguez, J. Heras, E.

Mata, V. Pascual, The Benefits of Close-Domain

Fine-Tuning for Table Detection in Document

Images, in: International Workshop on Document

Analysis Systems, Springer, 2020, pp. 199–215.

[24] R. Padilla, W. L. Passos, T. L. Dias, S. L. Netto, E.

A. da Silva, A Comparative Analysis of Object

Detection Metrics with a Companion Open-Source

Toolkit, Electronics Vol. 10, 2021, pp. 279.

