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Abstract: Natural Language Processing (NLP) is one of the major branches in the emerging field 

of Artificial Intelligence (AI). Classical approaches in this area were mostly based on parsing and 

information extraction techniques, which suffered from great difficulty when dealing with very large 

textual datasets available in practical applications. This issue can potentially be addressed with the 

recent advancement of the Deep Learning (DL) techniques, which are naturally assuming very large 

datasets for training. In fact, NLP research has witnessed a remarkable achievement with the intro-

duction of Word Embedding techniques, which allows a document to be represented meaningfully 

as a matrix, on which major DL models like CNN or RNN can be deployed effectively to accomplish 

common NLP tasks. Gradually, NLP scholars keep developing specific models for their areas, 

notably attention-enhanced BiLSTM, Transformer and BERT. The births of those models have in-

troduced a new wave of modern approaches which frequently report new breaking results and open 

much novel research directions. The aim of this paper is to give readers a roadmap of those modern 

approaches in NLP, including their ideas, theories and applications. This would hopefully offer a 

solid background for further research in this area. 

Keywords: Natural Language Processing, Artificial Intelligence, Deep Learning, Word Embedding, 

CNN, RNN, LSTM, Sequence-to-sequence, Language Model, BERT.  

1. Introduction* 

Natural Language Processing (NLP) [1] is 

one of major branches of Artificial Intelligence 

________ 
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(AI) [2], which focuses on applications based on 

human natural languages. The crucial challenge 

of this area lies on the “process” to understand 

the meaning of human language. In this context, 
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the term “process” can be understood as a way to 

transform from a presentation into another one. 

In that case, written or spoken language forms 

will be processed to be transformed into a for-

malism understandable by computers. Typically, 

major tasks of NLP include the following. 

- Text Classification [3]: It can be considered 

as one of the most popular tasks in this area. In 

this task, a document will be classified into a pre-

defined category. For instance, Google’s e-mail 

system can classify if an incoming e-mail is a 

spam or not. 

- Sentiment Analysis [4]: It aims to analyze 

the sentiment of the author/writer of a textual 

document (normally positive, negative or 

neutral). This task can be considered as a 

specific kind of text classification applications 

where each sentiment value is a category. This 

task is very useful for e-commerce systems 

nowadays, where reviews of customers can be 

analyzed to help a brand to obtain the 

opinions/feedback of users over their products. 

- Entity Recognition [5]: This aims to rec-

ognize entities mentioned in a document. In 

practical applications, those entities are named 

and usually belong into a certain class. 

- Topic Modeling [6]: In this context, a topic 

is considered as a set of relevant keywords, 

which can provide hint to a certain concept. For 

example, the set of words football, stadium, 

trekking, swimming can imply the concept, or 

topic, of sport. The aim of this task is to detect 

possible topics mentioned in a document by 

means of finding sets of relevant keywords. In 

order to fulfill this, the Topic Modeling 

technique is needed to be trained with a very 

large corpus in order to evaluate the co-

occurrence probability of words potentially 

belonging to a same topic. 

- Machine Translation [7]: Sometimes re-

ferred to by the abbreviation MT, this task aims 

to automatically translate a document from one 

language into another. 

- Chatbot [8]: Ideally, this is an interactive 

system which can communicate with users using 

natural languages without human interference. 

Nowadays, this kind of application has been 

increasingly attracted much attention from 

enterprises in various domains. 

- Automatic Summarization [9]: This task 

aims to produce a shortened version of a 

document, which captures major important 

points of the original text using a coherent 

natural language. This task is highly practical 

today to help human to extract useful 

information from large textual datasets from 

various domains. 

Typically, the classical approaches for NLP 

normally combine syntax analysis and informa-

tion extraction where documents are represented 

as vectors, e.g T F-IDF of bag-of-words ones. 

With the rapid development of computational re-

sources since the end the 20th century, Deep 

Learning (DL) technique has been deployed ef-

fectively to handle various problems of 

computer science, including NLP. Once applied 

to solve NLP tasks, the applications of Deep 

Learning have achieved some remarkable 

milestones as illustrated in Figure 1. Since the 

application of neural language model was 

reported in 2001, perhaps the first notable 

milestone of NLP in this direction is the 

introduction of Word Embedding in 2013. This 

technique allows encoding each word in a 

document into a numerical vector, which is 

interpreted from the contexts that this word is 

likely to appear in a training corpus. Thus, a 

document can be represented as a matrix or an 

ordered set of vectors, on which typical deep 

learning architectures such as Convolutional 

Neural Network (CNN) or Long Short-Term 

Memory (LSTM) can be effectively deployed. 

Especially, an architecture combined from two 

opposite (forward and backward directions) 

LSTM models, known as Bidirectional LSTM, or 

BiLSTM, had also become popular for NLP 

tasks due to its ca-pability of capturing 

information a documents in both opposite 

directions in a document. 

After some initial success gained by those 

models on NLP tasks, the research community 

continued witnessing the births of some text-

oriented advanced techniques including 
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… 

sequence-to-sequence (or seq2seq) architecture 

in 2014 and attention mechanism in 2015. In 

2018, the use of pre-trained language models 

such as Transformer, BERT or GPT marked some 

significant improvements on performance of NLP 

tasks, which has still been adopted until today. 

In this paper, we review the modern ap-

proached in NLP related to the above discussed 

research. Firstly, we present popular pipelines 

for processing data in NLP tasks, including both 

classical and DL-based ones. Next, we present 

the Word Embedding techniques, followed by 

remarkable achievements of DL-based ressearch 

for NLP. They include using Convolutional 

Neural Network (CNN) for feature extraction; 

the models based on Recurrent Neural Network 

(RNN) to handle sequence data; the sequence-to-

sequence model and attention mechanism; the 

transfer learning technique withs pretrained 

language models. Finally, the paper concludes with 

some discussion about some most recent results 

and directions in this area. 

It is also noted that the work presented in this 

paper aims to give readers an overall picture of 

the modern approaches in NLP at a foundation 

level. Interested readers can further refer to more 

intensive surveys given in [10-13]. 

2. Processing Pipelines of NLP Applications 

Like other data processing applications, NLP 

applications are usually developed on top of a 

pipeline to process data step-wise. In this 

section, we discuss two typical pipelines mostly 

used in classical and DL-based NLP 

applications. 

2.1. The Classical NLP Pipeline 

In traditional approach, NLP consists of two 

main steps described in Figure 2. The first step is 

referred to as Pre-processing, which filters out re-

dundant information and standardizes input text into 

a common format. Typical pre-processing actions 

includes tokenization, stemming, stop word removal 

and Part-of-Speech (PoS) tagging. 

Pre-processing Modeling Output 
 

  

Figure 2. Classical NLP pipeline. 

The next step is called Modeling, which is in 

charge of introducing a model solving the in-

tended tasks with three operations as follows. 

The next step is called Modeling, which is in 

charge of introducing a model solving the in-

tended tasks with three operations as follows. 

- Feature Extraction: In machine learning, 

data is represented as features. Feature extraction 

process is of building feature set and filtering out 

important features that best represent input data. 

In terms of textual data, bag-of-words (BOW) 

[14] or TF-IDF vectors [15, 16] are common 

features. 

- Model Construction: Model is the result of 

applying appropriate machine learning al-

gorithms on input data. Traditional NLP 

approaches make use of supervised learning 

techniques including SVM [17, 18], NB 

Classifier [19] or MLP [20], and unsupervised 

methods such as clustering [6] or LDA [6, 21] to 

construct models. 

- Outcome Inference: This is to apply the 

trained model on data to obtain the final results. 

The next step is called Modeling, which is in 

charge of introducing a model solving the in-

tended tasks with three operations as follows. 

- Feature Extraction: In machine learning, 

data is represented as features. Feature extraction 

process is of building feature set and filtering out 

important features that best represent input data. In 

terms of textual data, bag-of-words (BOW) [14] or 

TF-IDF vectors [15, 16] are common features. 

- Model Construction: Model is the result of 

applying appropriate machine learning al-

gorithms on input data. Traditional NLP 

approaches make use of supervised learning 
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techniques including SVM [17, 18], NB 

Classifier [19] or MLP [20], and unsupervised 

methods such as clustering [6] or LDA [6, 21] to 

construct models. 

- Outcome Inference: This is to apply the 

trained model on data to obtain the final results. 

2.2. The Deep Learning-based NLP Pipeline 

  Pre-processing                                          Modeling                              Output 

                                               Output l 

                                                                          Hidden layer             ayer 

                                            Embedding layer            

Figure 3. DL-based NLP pipeline. 

With the rising of Deep Learning, traditional 

NLP approaches are now gradually replaced by 

deep learning models. Though many highly 

complicated deep learning models are built for 

different NLP tasks, they basically follow the 

same pipeline described in Figure 3, which is 

carried out by the following operations. 

- Similar to the classical pipeline, the raw 

textual data are firtsly pre-processed with the 

common modules of tokenization, stemming, 

stop word removal, etc. 

- Data representation is essential in deep 

learning architectures. Different from traditional 

approaches which make use of document-level 

information, modern models use embedding 

layer to transform words or even characters into 

numerical vectors that contain higher amount of 

meaning information. 

- The core of NLP system is a deep learning 

model. The model architecture may vary on the task 

it is built on. Some common deep architectures will 

be described in the next sections. 

Even though deep learning architecture 

seems to play the central part in current NLP 

tasks, it is worth noting that fundamental works 

of NLP are still not avoidable, such as lexical 

scanning, parsing or semantic analysis. Espe-

cially, the famous tool CoreNLP, which supports 

core functionalities of NLP, has been incorpo-

rated in many DL-based architecture with inter-

esting outcome observed [22-26]. 

3. Word Representation Models 

In the book entitled Introduction to Informa-

tion Retrieval [27] published in 2008, the authors 

explained about the techniques to exploit 

information from various data sources, 

especially in the textual form. There are two 

well-known classical techniques for this goal 

discussed in this book, including Count-

Vectorization or Bag- of-words (BOW) [14], and 

the weights of Term Frequency - Inverse 

Document Frequency (TF- IDF). These two 

methods, in particular TF-IDF weights, are 

proven effective in determination of important 

keywords in documents. However, they cannot 

reflect the information of word positions in the 

documents and hardly convey the semantics of 

the words as well as the whole documents. 

 

Figure 4. Representation of the word “am” as 

one-hot vector. 

Word Embedding is a technique later emerg-

ing as a more effective method for word repre-

sentation. This term was firstly coined by 

Yoshua Bengio in the famous paper entitly 

“Neural Probabilistic Language Models” [28] 

published in 2003. It recommended that a word 

vector can “embed” the semantics of words in a 

numerical vectors to let them be processed 

effectively by machines. Inspired by those idea, a 
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number of word embedding techniques were 

then reported as Word2vec [29], GloVe [30], 

fastText [31], ELMO [32] and BERT [33]. In 

general, a word embedding technique should 

fulfill the following conditions. 

- There is only one unique representation per 

word, i.e., two different words should be 

represented by two different vectors. 

- Two similar words, in terms of their seman-

tic meaning, should be represented by two 

similar vectors, in terms of their distance in the 

embedding space. 

3.1. Word Representation by One-hot Vector 

One-hot vector perhaps is one of the earlies 

technique to encode categorical data items as 

numerical vectors. Basically, a one-hot vector is 

a binary vector whose dimensional values are 

only of 0 or 1. Particularly, there is only one 

dimension has the value of 1 in a one-hot vector, 

whereas the rest are of 0. Based on that 

technique, one can represent every word in a text 

document as a one- hot vector. For instance, with 

a sentence of “I am a member of URA research 

group”, the word am can be represented as a 

one-hot vector as illustrated in Figure 4, whose 

number of dimension is exactly the vocabulary 

size of the corresponding language. 

Thus, one-hot encoding can be employed to 

convert any word in a dictionary into a form of 

numerical vector. Therefore, this technique was 

used in many NLP and other machine learning 

models, especially in the case that the vocabu-

lary size is relatively small. Obviously, this tech-

nique fulfills the requirement that different words 

should be represented as different vectors. How-

ever this technique still suffers from the 

following drawbacks. 

- When working with a large vocabulary 

size, this technique tends to generate very sparse 

high-dimensional vectors, most of whose di-

mensional values are of 0. 

- More importantly, it can be undeniably ob-

served that the Euclidean distance between any 

pair of one-hot vectors is constantly of V2. This 

prevent one-hot vectors from representing the 

difference in semantics of the words. 

3.2. The Word2vec Technique 

Word2vec is one of the popular techniques in 

the Natural Language Processing field. It was 

publicly announced in 2013 by a group of re-

searchers led by Tomas Mikolov and has been 

registered for protection of the mode of the 

invention [29]. Based on AutoEncoder [34], 

Word2vec has solved the problems related to 

context meanings of the AutoEncoder model by 

transforming each word of the corpus into a 

vector based on their contextual information in 

that corpus. Therefore, the model is able to learn 

so as to produce a similar vector for those words 

that share the same contextual information. The 

contextual information of a focus word is a 

window containing words on the left side and 

right side of the focus word, which are called 

context words. The size of the window, denoted 

by k, represents k words on the left side and k 

words on the right side of the focus word. 

Two main training techniques of Word2vec 

are CBOW and Skip-gram. 

CBOW (Continuous Bag of Words) 

The idea behind the CBOW model is that it 

predicts the focus word vector based on the 

context words collected from a k-size window in 

which k is finite. Given a focus word wt at the 

position t inside the sequence, the context words 

contains (wt - m, . . ., wt - 1, wt + 1, . . ., wt + m) 

surround the focus word wt in the window size 

of m. 

 

Figure 5. A general CBOW model. 
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The CBOW model can be generalized as il-

lustrated by Figure 5. In Figure 5, C is the num-

ber of context words while V is the size of vocab-

ulary and the hyperparameter N is the number 

ofnodes in the hidden layers where N is 

relatively small compared to V. Every node of 

the hidden layer is fully connected to the nodes 

of the previous layer. 

When the CBOW model is trained with a large 

corpus, we will gain a good representative matrix w 

with size V X N when the training process converges. 

From then, with an arbitrary one- hot vector T with 

size 1 X V, we can get an embedding vector E with size 

1 X N based on the product operation of E = T X w. 

For example, with this one-hot vector for the 

word “am”: 

 
And matrix WV×N shown below 

 

We can perform matrix multiplication v
T

am = W
T 

× xam and receive the resulting matrix as below:  

 

As we can see, vector v
T

 has the dimension 

N which is relatively small compared to V. This 

vector is no longer considered as a sparse vector 

since all of its values are now different from 0. 

Moreover, the training procedure of the CBOW 

model also helps create embedding vectors with 

closer distances for the words that frequently ap-

pear together in the context words. After the 

CBOW training converges, the matrix WVXN will 

be used as an embedding layer for other deep 

learning models specialized in NLP tasks as il-

lustrated in Figure 3. 

The skip-gram model 

The skip-gram model is demonstrated in 

Figure 6. This model is similar to CBOW; 

however, the focus word is now used as the input 

for the model and the context word as the 

expected output. 

4. Convolutional Neural Network for NLP 

4.1. Convolutional Neural Network 

 

Figure 6. A general Skip-gram model. 

Convolutional Neural Network, known as 

CNN or ConvNet, is one of foundation 

techniques in the area of Computer Vision, or 

Deep Learning in general. This kind of 

architecture is typically used for image 

classification, such as the problem of facial 

recognition. This architecture is proposed by the 

famous scientist Yann LeCun, winner of the 

Turing award in 2018, for the problem of 

handwritten zip code recognition [35]. 

Basically, a CNN architecture consists of the 

following layers: convolutional, pooling and 

fully connected. In certain variants, 

convolutional and pooling layers can be repeated 

many times before feeding to the final fully 

connected layer, as illustrated in Figure 7. 
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Figure 7. An illustrative CNN architecture. 

In the typical Feedforward Neural Network, 

the layers directly connected via a weight vector 

W, known as fully connected layer or affine 

layer. In constrast, in the convolutional layer, the 

layers are connected via the convolution mecha-

nism. That is, each neural of the next layer con-

nects to a local region of the previous layer via a 

convolution window, or filter. During the train-

ing process, the CNN network will automatically 

learn the appropriate weights of the filters. 

After the convolutional layer is the pooling 

layer, or subsampling layer. The objective of this 

layer is to standardize the output vectors of the 

filters, to make them have the same dimension 

space using a pooling window. In addition, by 

only selecting a value in each pooling window as 

the next output, the number of parameters to be 

trained would be significantly reduced, as com-

pared to a corresponding MLP network with the 

same number of neural nodes. 

Figure 8 illustrates the computational 

process in the convolutional and pooling layers 

of a CNN network. The output results from the 

each filter will be eventually concatenated, 

producing the final feature map, which can in 

turn be used as input for the next similar process, 

or fed to the a fully connected layer to get the 

final prediction of the model. 

4.2. CNN for NLP Tasks 

The CNN network is initially intended to 

work with images represented as matrices. Thus, 

in order to be applied with NLP tasks, the orig-

inal textual documents needed to be represented 

as matrices as well. With the Word Embedding 

technique discussed previously, each word in a 

document can be encoded as vector of the same 

dimension. Then, a document can be formed as 

a matrix, on which the CNN can be applied as 

depicted in Figure 9. In this example, the 

problem of Sentiment Analysis is picked as a 

case study, adapted from the work published in 

[36], which is considered as a pioneered work 

that applied CNN for NLP. Interested readers 

can further refer to this paper for the way to 

select suitable hyperparameters when 

implementing the model. 

For more details, we can consider the archi-

tecture in Figure 9 as 5 parts, namely #sentence, 

#filters, #featuremaps, #1-max and #concat-1- 

max, whose information is given as follows. 

# sentence 

This is the input of the system, in this case is 

a sentence of 7 words: “The film contains a few 

funny bits”. Assuming that the embedding 

dimension is 5, the sentence is then represented 

as a 7 X 5 matrix. 

# filters 

Initially, CNN is used for Computer Vision 

applications, whose input is normally a 2D or 3D 

images/objects. Thus, their filters are also orga-

nized as 2D matrices or 3D cubes to reflect this 

dimensional characteristic. However, for textual 

data, the input is naturally organized as a 1D se-

ries of word. In that case, the filters adopted by a 

NLP-intended CNN would also be adapted ac-

cordingly. To be more precise, the number of 

columns in the filter will be the same of the size 

of the embedding word vector, meanwhile its 

rows are used to reflect the concept of n-gram of 

text data. In this example, the row for each filter 

will be either in (2,3,4), corresponding to the 

concepts of bigram, trigram and 4-gram of 

classical NLP. The are two filters for each kind, 

eventually making 6 filters for whole system. 

# featuremap 

In this context, the feature maps are the 

matrices generated once we perform the 

convolutional operation between the #filters on 

the #sentence. Since the columns of the filters  

are the same with the dimension of the 

embedding space, each feature map is then a 

column matrix whose size is varied depending 

on the filter size. 
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# 1-max 

This is in fact corresponding to the pooling 

layer in the standard CNN architecture, where 

the maximal value in each column vector of the 

feature map will be selected for further 

processing. As a result, we have a set of 6 

maximal numbers from 6 column vectors. 

 

# concat-1-max 

In this step, the results from #1-max are con-

catenated together, making another column vector 

of 6 element, which is then connected to a softmax 

layer using the fully connected mechanism. The 

result of this softmax layer is treated as a binary 

classification of sentiment opinion, e.g positive  

or negative. 

 

Figure 8. The generation of a feature map in a CNN network via convolutional and pooling layers. 

 

Figure 9. Using CNN to perform the task of 

Sentiment Analysis. 

In qaddition, CNN is also considered for in-

formation modeling at character level. For in-

stance, Santos [37] va Labeau [38] had success-

fully leveraged this work for the problems of 

NER and POS-tagger, respectively. 

5. Recurrent Neural Network for NLP 

5.1. Sequence Data 

Natural language data is an ordered sequence 

of data. Unlike the traditional data type where 

the patterns are unordered and independent of 

each other, with natural language data, the order 

of occurrence of the data patterns also carries 
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certain information. In text data, the order in 

which words appear in a text plays a very 

important role in conveying the meaning of a 

sentence or paragraph. 

Feed-forward networks with fixed input data 

cannot solve the problem with arbitrary length 

sequence data. However, sequence data can be 

transformed (split) for using on input-only ar-

chitectures by taking a fixed amount of k samples 

of previous consecutive data as input. Models 

that approach this direction are classified as auto 

regressive models. In general, a generic k- 

degree auto regressive model can be understood 

as a mapping f : 

ỳi = f (Xi, yi-1, yi-2,..., yi - k) (1) 

where xi is the existing observation, yi is the 

sequence value at time i, yi is the predicted value 

at time i, yi is the sequence value at time i, k is 

the model degree. With the above approach, we 

temporarily solve the problem of vary data 

length. However, there are still many problems 

that make MLP networks unsuitable for 

sequence data as follows. 

- The MLP model is not yet able to remem-

ber the state from previous data to support 

decision making. In fact, it still depends entirely 

on the input. In case it is necessary to remember 

data at a length greater than k- degree of the 

model, the feed-forward network will not be able 

to make an accurate prediction. Indeed, the way 

in which the above regressive model derives its 

data from earlier samples in the sequence is 

entirely up to the assumptions of the network 

designer. 

- The number of parameters is very large: 

when using a fully connected layer, the number 

of parameters of a layer will be equal to the 

product of the input dimension and the output 

dimension. The large number of parameters also 

makes the model take up a lot of resources both in 

terms of memory requirement and training time. 

- The model is not capable of sharing weights 

between steps (fully connected layers) and uses 

a large number of parameters specific to each 

input on every layer. 

 

                                                                            Input 
MUupIr 

Figure 10. The conceptualization of an RNN. 

5.2. Recurrent Neural Network 

In 1986, Rumelhart and his colleagues pub-

lished a research paper entitled” Learning inter-

nal representations by error propagation” [39]. In 

the study, a classic network architecture for pro-

cessing sequence data is presented, called a re-

current neural network. Basically, a recurrent 

neural network is a neural network architecture 

in which the state of the model at the previous 

step is used as the input of the current step. In 

other words, a recurrent neural network model 

behaves in a way that maps the input data and the 

previous state of the model to output data, as 

shown in Figure 10. 

 

Figure 11. Sequence data processing with RNN. 
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With a traditional feed-forward neural net-

work, data are only passed in one direction, com-

putation and output results are encapsulated in 

one phase and based entirely on input data (i.e. 

no loops exist). We need to clarify that the loop 

here does not create an infinitely repetitive com-

putation cycle, but only uses data from the pre-

computation phase as input to the current phase. 

More specifically, we can “unfold” the loop to 

provide a more specific computational architec-

ture when passing sequence data to the network. 

With a recurrent neural network, the information 

from the previous transmission is saved (in the 

hidden state) for the current computation, creat-

ing a loop on the computation graph. In other 

words, the hidden state acts as a memory of the 

recalling neuron layer. This is especially useful 

when dealing with time-series data, where the 

same calculation logic (same calculation and set 

of weights) can be applied to each data point in 

the series, preserving information from previous 

points. while preserving sequence information. 

Figure 11 illustrates how RNNs process 

sequence data. 

Mathematically, all calculations in an RNN 

are presented in (2a) - (2c). 

where 

• ai is the hidden state of the model and a0 = 

0 is assumed the initial state. 

• ŷi is the output of corresponding i-th step. 

• xi is the input of corresponding i-th step. 

• f and g are the appropriate activation 

functions. Usually, we choose f (x) = tanh(x) or 

f (x) = ReLU(x) and g(x) = sigmoid(x) or g(x) = 

softmax(x) according to the design method and 

problem requirements. 

• W and b are model weights 

- W and b are model weights 

- Wax is the matrix of linear mapping which 

transforms x to a part in state a. 

- Waa is the matrix of linear mapping which 

transforms old state a to a part in new state a. 

- ba is the bias of transformation from old 

state a to a part in new state a. 

- Wya is the matrix of linear mapping which 

transforms current state a to the output y. 

- by is the bias of transformation from 

current state a to the output y. 

5.3. Long Short-Term Memory Network 

Even though the recurrent neural network is 

theoretically a simple and powerful model, it is 

difficult to learn properly due to a limit to cap-

ture long-term dependencies, caused by these 

two well-known issues in training a model: 

vanishing and exploding gradient [40]. The 

vanishing gradient will become worse when a 

sigmoid activation function is used, whereas a 

Rectified Linear Unit (ReLU) can easily lead to 

an exploding gradient. Fortunately, a formal 

thorough mathematical explanation of the 

vanishing and exploding gradient problems was 

represented by Bengio et al., [41], analyzing 

conditions under which these problems may 

appear. 

To deal with the long-term dependency 

problem, a developed version of RNNs was 

introduced by Gers and Schmidhuber and 

Cummins in 2000, called Long Short-Term 

Memory (LSTM) [42]. LSTMs has overcome the 

limitations of RNNs and delivered more accurate 

performance by using a hidden layer as a 

memory cell instead of a recurrent cell (see 

Figure 12). In the standard LSTM model, 

processing information is more complicated 

when modules containing computational blocks 

are repeated over many time steps to selectively 

interact with each other in order to determine 

what information will be added or removed. This 

process is controlled by three gates namely input 

gate, output gate, and forget gate. Controlling 

the flow of information inside an LSTM model 

can be described as the following (3a)-(3e) 

mathematical equations. 
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Figure 12. The structure of an LSTM cell. 

 

In (3a)-(3e), it, ft, ot, (C)t, ht denote input 

gate, forget gate, output gate, internal state, and 

hidden layer at t-th step, respectively. xt is the 

input of corresponding t-th step. Next, Wi, Wf, 

Wo, WC, and bi, bf, bo, and bC represent the 

weights and bias of three gates and a memory 

cell, in the order given. Concretely, the 

activation function sigmoid (a) helps an LSTM 

model to control the flow of information because 

the range of this activation function varies from 

0 to 1 so that if the value is 0 then all of the 

information will be cut off, otherwise the entire 

flow of information will pass through. Similarly, 

the output gate will allow information to be 

revealed appropriately due to the sigmoid 

activation function then the weights will be 

updated by the elementwise multiplication of 

output gate and internal state activated by non-

linearity tanh function. With the pivotal 

component is the memory cell accommodating 

three gates: input, forget, and output gate, 

LSTMs has overcome limitations of RNN, 

enhancing the ability to remember values over an 

arbitrary time interval by regulating the flow of 

information inside the memory cell. Therefore, 

LSTMs possess a capacity to work tremendously 

well on learning features from sequential data 

such as documents, connected handwriting, 

speech processing, or anomaly detection [43]. 

Later, a simpler version of LSTM, known as 

GRU [44], was also introduced. GRU uses no 

hidden memory and fewer gates than LSTMs 

does. As a result, GRU has a faster training 

process, consumes less memory while maintains 

high performance and can compete with LSTMs 

in some cases. 

5.2. BiLSTM and NLP Applications 

 

Figure 13. A CNN-BiLSTM architecture  

for NER task. 

RNN and its upgraded versions like LSTM 

and GRU can handle sequence data well in NLP 

problems. To enrich information encoded in 

each step, NLP applications often use a 

bidirectional mechanism, known as 

Bidirectional LSTM (BiL- STM) or 

Bidirectional GRU (BiGRU), in which data is 

processed across two opposing LSTM or GRU 

networks. The result at each step of these two 

opposite networks will be concatenated to the 

final representation of each step. In addition, 

because CNN is very powerful in feature 

extraction, RNN-based architectures often com-

bine with CNN to extract features from the orig-

inal text before racing to be processed in RNN 

layers. Figure 13 illustrates architecture of using 

CNN-BiLSTM for named entity recognition 
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[45]. In addition, the same architecture is also 

used for sentiment analysis [46], PoS tagging 

[47], text classification [36] problems. 

6. Sequence-to-sequence Model and Attention 

Mechanism 

6.1. Sequence-to-sequence Architecture 

Sequence-to-sequence (seq2seq) [48] is a 

deep-learning architecture initially devised for 

machine translation. Its intuition comes from an 

observation such that in order to translate a text, 

human would first read some parts of the text and 

then start to do the translation. NLP researchers 

also employ that idea into designing a structure 

dubbed as sequence-to-sequence. 

 

Figure 14. An example of a sequence-to-

sequence model. 

Basically, sequence-to-sequence model 

takes the design principle of comprising 2 

components, an encoder and a decoder, as 

illustrated in Figure 14. For a vanilla sequence-

to-sequence model, both the encoder and 

decoder are recurrent neural networks, but in 

order to capture longterm dependencies, we 

could choose LSTM or GRU instead. In general, 

the encoder has a function to digest and 

understand the input text as well as encode the 

information into a fixed-shape hidden state. 

Output sequences are generated by using the 

method of token-by-token, which means the 

previously created token will be the next time 

step input token. The decoder combines two 

source inputs encoder hidden state and current 

input token to consider the probability of 

generating the next word. The process of 

generating output will stop if the sequences 

touch the maximum length of the result or the 

current token is a special “end” token. 

Encoder 

For an input sequence x1 , . . . , xT, the encoder 

will read and print out a fixed-shaped vector c 

taking the context into account. We assume that 

the input sequence is X1 • • • xT known that xt is 

the tth token and. ht is the hidden state of time 

step t. Then, let us express f as the computation 

of an RNN unit as follows. 

ht = f (xt, ht−1)                              (4) 

Eventually, after passing through all the to-

kens in the sequence, the encoder transforms the 

whole sequence into a context vector. 

c = q(h1, . . . , hT )                                              (5) 

Usually, q function takes the final hidden 

state of encoder into context variable c. In order 

to make the encoder has better performance, 

instead of using unidirectional RNNs which just 

focus on previous hidden states, we can use 

bidirectional networks to consider both sides - 

the previous and after ones. 

Figure 15. A simple attention model. 

Decoder 

As mentioned in the last passage, an encoder 

converts the input sequence into a context vectorc. 

Hereafter, it is time for the decoder to evaluate the 

conditional probability P(yt’ y1, . . . , yt’−1, c) given the 

context vector c and past decoded to- kens y1, . . . , 
yt’−1. 
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At any time-step t’, decoder takes the output 

token yt’−1, context variable c and previous de- 

coder hidden state st’−1 then transforms them into 

current decoder hidden state as below 

st’  = g(yt’−1, c, st’−1)            (6) 

Note that g is a transform function. After 

gaining the current decoder hidden 

state,sequence-to- sequence will put effort into 

estimating the conditional probability by 

applying a softmax operation on output layer, 

which is a fully-connected layer to transform 

final hidden state. Then, the final probability is 

calculated by multiple probability of each word 

along time steps. 

 

6.2. Attention Mechanism 

Sequence-to-sequence model causes the 

RNN problems such as vanishing gradient 

excessively severe. Although the encoder and 

decoder can take LSTM or GRU forms, the 

performance still deteriorates for input with a 

length approximating 100 tokens, which is 

sorely popular in tasks such as machine 

translation or text summarization. 

Besides, in prominent tasks such as machine 

translation, there are a number of alignments be-

tween the output and input. That is, some words in 

the output could be linked to some from the input 

sequence. For instance, translating from “And the 

programme has been implemented” (English) to 

”Le programme a et e mis en application” (French), 

phrases such as ”programme” and ”mis en 

application” shall be mapped to ”pro- gramme” and 

”implemented” in the respective order. 

Bahdanau et al., [49] proposed an attention 

mechanism to implement that concept. The input of 

the attention scheme is a query vector q. For a query, 

attention returns an output related to the memory 

consisting of key and value pairs (k1,v1), ..., (kn, vn). 

We will start to derive the output of the attention. 

For each key k1, ..., kn, we perform the dot product 

with the query to learn the corresponding value. This 

operation demands that the query and the key have 

the same dimension d. For query and key q, k ∈ Rd , 

 

 

Figure 16. Sequence-to-sequence model  

with attention. 

o compute operations effectively, we often 

employ matrix computation. Assuming that in-

put attention has n queries and m key-value pairs. 

Length of queries and key is d , while length of 

values is equal v. So, we have matrices called 

query Q e Rnxd, key K e Rmxd and value V e Rmxv. 

Then, the equation becomes  

Additive Attention In general, we may utilize 

additive attention as the attention scoring func-

tion when queries and keys are vectors of various 

lengths. For query and key q e Rq, k e Rk, 

α(k, q) = v
⊤
tanh(Wkk + Wqq).       (10) 

where Wk e Rhxk , Wq e Rhxq are two weight 

parameters corresponding to key k, query q 

respectively and wv e Rh. 

6.3. Enhancement of seq-to-seq Model by Attention 

In Figure 16 is an example of using 

sequence- to-sequence with attention 

mechanism for machine translation. When 

endeavoring to generate the next token, the 
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hidden representation will attend to the 

representations of input tokens. As it can be seen 

from Figure 16, with a view to obtain the 

attention scores, the system will compute the dot 

products between the representation of “he” with 

those of the source input. Subsequently, the 

computed scores will play a role as the weights 

to coalesce the hidden representations of input 

tokens to form the attention output. Eventually, 

this output will be employed to determine the 

logits to generate the output token. 

7. Pre-trained Language Models 

7.1. Language Models 

In NLP, language models are models that can 

assign probabilities for a sequence of words or a 

sentence. In addition, language models can infer 

likelihood for a particular word (or sequence of 

words) from a preset input sequence. In math-

ematics methodology, the probability 

assignment for a word sequence can be modeled 

by chain rule in Equation 11: 

 
where wi denoth the i-th word in a sentence. 

7.2. Language Model Construction with RNN 

In classical approaches, probability assign-

ment is usually based on n-gram Markov model 

[50]. However, with the help of Deep Learning, 

recent approaches choose RNN architectures to 

train language models because of their out- 

performanced leaning capability on large dataset. 

Moreover, language models trained from RNN can 

be efficiently used as pre-trained language model 

for other NLP tasks as described below. 

RNN works by using probabilities of previ-

ous words to generate probability for the next 

word. The generated word is then used as input 

of RNN to produce the next word until the end-

of-sequence word is produced as depicted in 

Figure 17. Finally the probability of the whole 

sequence is computed as in Equation 11. 

 

Figure 17. Language model with RNN. 

Let “Today I go to school. Tomorrow I go to 

school too” be an input sequence for RNN. It is 

supposed that the corpus only contains words in 

this input sequence, then each word in corpus is 

a 1 X 7 vector in one-hot presentation. For 

example x<0> is a zero vector of size corpus 

length, which is 1x7 in this case. The first hidden 

state a<0> is a zero vector of any particular size 

based on our decision, which is 1 X 5 in this 

example. Waa is a 5 X 5 matrix and Wax is a 7 X 5 

matrix so a X Waa + x X Wax is a 1 X 5 matrix. The 

5 X 7 matrix Way is then used to resize this hidden 

state to desired output size 1 X 7. The result is fed 

into softmax activation function to produce 

output vector y. This output acts as a probability 

distribution for each word in corpus. Finally, the 

appropriate loss criteria based on y and y is used 

to update model’s weights. The whole procedure 

is illustrated in Figure 18. 

 

Figure 18. Detailed language model training 

procedure at one timestep with RNN. 
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7.3. Pre-trained Language Models 

Since 2018, many state-of-the-art NLP re-

searches are based on pre-trained language mod-

els such as ELMo [32], OpenAI GPT [51] or 

ULMFit [52]. There are two existing strategies 

for applying pre-trained language 

representations to downstream tasks as follows. 

- Feature-based: This strategy includes pre-

trained representations as additional features 

(e.g., ELMo). 

- Fine-tunning: This strategy introduces 

taskspecific parameters and fine-tune the pre-

trained parameters (e.g., OpenAI GPT, ULMFit). 

Figure 19 illustrates a representative situa-

tion using pre-trained language models for 

downstream task using UMLFit. This is a 

language model with many LSTM layers stacked 

on to each other. This model is first trained with 

a very large dataset then fine-tuned on domain 

dataset. Finally, with a specific target application 

dataset, the model with pre-trained weights is 

used as an embedding layer to represent input 

values as vector. These representation vectors is 

then used as input for other downstream task 

such as classification by SVM [53]. 

Figure 19. Using pre-trained language model  

of UMLFit [52]. 

Limitation of these language models is 

unidirectional manner because they restrict the 

power of the pre-trained representations. For 

example, OpenAI GPT uses left-to-right 

architecture whereas ELMo concatenates 

forward and backward language models. In 

2018, BERT [33] was introduced, which based 

on Transformer architecture [54] became a more 

comprehensive solution. 

7.4. Transformer Model 

 

Figure 20. Transformer architecture [54]. 

RNN units with their counterparts such as 

LSTM and GRU have established state-of-the- 

art results in multiple sequence modeling tasks. 

Combined with attention, the performance of 

problems such as machine translation and text 

summarization has been upgraded to a new level. 

Nonetheless, there is still one obstacle with those 

architectures, which is embedded in the sequen-

tial nature of the input and output. The incapa-

bility to parallelize the computation has caused a 

huge overhead in computation time. Trans-

former’s authors proposed an architecture 

dubbed as Transformer removing the recurrence 
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or convolutional layers. Instead, they suggested 

that solely relying on attention is the key to 

achieve parallelism. Self-attention is a core 

mechanism that connects distinct places of a 

single sequence to compute a representation of 

it. Almost NLP tasks such as reading 

comprehension or learning task-independent 

sentence representations have all been effectively 

utilized with self-attention. 

Seq2Seq Paradigm in Transformer 

Furthermore, at first sub-layer, instead of 

fully attending to the whole sequence in the 

input, for the time step t0, the decoder only 

performs attention from the current token to 

tokens 1, . . . , t - 1. Thanks to this masking method 

and the output tokens are offset by one place, the 

predicted token for position i can only be based 

on the known outputs at locations less than i. 

Self-attention  

There is a key factor to differentiate between 

the “original” attention and self-attention. 

Whereas attention evaluates the alignment of a 

token to its previous ones in a recursive manner, 

self-attention allows one to fully attend to all of 

the tokens in the sequence, making parallelism 

possible. In particular, for all keys, queries and 

values are packed into matrices K, Q and V. The 

attention scoring function used is scaled dot-

product attention. After calculating scoring, we 

divide by √𝑑 and then apply softmax function to 

show attention distributions on determined values. 

 

The scaling factor 
1

√𝑑𝑘

 is to reduce the effect dk  

of the dimension to the final output. The reason why 

attention function is chosen with scaled dot- product 

but not addictive attention is that the for- mer is 

much faster and has space-efficient.  

Multi-Head Attention  

One interesting result of Transformer [54] is that 

they found it is advantageous to conduct attention 

multiple times with respect to a wide variety of 

linear projections. Multi-head attention allows 

the model to simultaneously attend to input from 

several representation aspects at various locations. 

Whilst using a single attention head, model will 

learn average of all these aspects, which not detailed. 

The detailed equation is as follows. 

MultiHead(Q, K, V) = Concat(head1, . . . , 

headh)W
O 

where headi = Attention(QWQ, KWK, VWV ) 

Note that Wi

Q ∈ R
dmodel×dk 

, Wi
K ∈ R

dmodel×d
k , 

Wi
V ∈ R

dmodel×dv are parameter matrices for 

projecting queries, keys and values. In particular, 

dk = dv = dmodel/h where h is the number of heads.  

Positional Encoding  

In sequential data, positional information 

bears an important effect to the semantics of the 

sequence. Since Transformer is not estab- lished 

on recurrence nature, it must encode an- other 

method to take into account that kind of in- 

formation.There are several learnt and fixed 

positional en- coding types to choose from. 

Specifically, Trans- former authors took 

advantage of sinusoidal sig- nal, in which they 

transported the positions into sine and consine 

functions. The positional encod- ings and 

embeddings layers have the same dimen- sion, 

thus they could be added together. Accord- ing 

to the experiment of authors, the first method 

second which use sinusoidal signal gain the 

nearly identical results. 

PE(pos,2i) = sin(pos/100002i/dmodel ) PE(pos,2i+1) = 

cos(pos/100002i/dmodel ) 

where pos stands for position and i is the 

dimension. That means each dimension in the 

encoded vector would represent a sinusoidal wave. 

7.5. Transformer-based Language Models 

Transformer model has resulted in the 

development of a large number of pre-trained 

language models. Some outstanding models can 

be mentioned as GPT-2 [55], BERT [33] and 

Trans- former XL [56]. GPT-2 employs layered 

Trans- former decoder layers. In the meanwhile, 

BERT employs Transformer encoder layers, and 

Trans- former XL provides a recurrent decoder 

architecture based on the Transformer decoder. 
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These days, perhaps the most commonly 

utilized Transformer-based architecture in NLP 

tasks is BERT. The version landscape of BERT 

is depicted in the Figure 21. 

 

Figure 21. Variants of BERT [57] [11]. 

BERT’s overall architecture is shown in Figure 

22, which comprises a stack of Transformer 

encoder’s layers. Furthermore, BERT uses two 

training techniques during pre-training steps, whose 

details are as follows. 

Masked LM (MLM) 

The concept is straightforward: Masking 15% 

of the words in the input with a [MASK] token at 

random, then running the full sequence through the 

BERT attention-based encoder and forecasting just 

the masked words given on the context provided by 

the other non-masked words in the sequence. This 

basic masking strategy, however, has a flaw: the 

model only tries to predict the correct tokens when 

the [MASK] token is present in the input, while we 

want the model to try to predict the proper tokens 

regardless of the masked token’s presentation in the 

input. To ad dress this issue, 

 15 percent of the tokens chosen for masking 

were: 

- 80% of the tokens are actually replaced with the 

token [MASK]. 

- 10% of the time tokens are replaced with a 

random token. 

- 10% of the time tokens are left unchanged. 

During training, the BERT loss function only 

considers masked token predictions and ignores 

non-masked token predictions. As a result, the 

model converges far more slowly than models that 

are left-to-right or right-to-left. 

Next Sentence Prediction (NSP) 

The BERT training procedure also uses next 

sentence prediction to understand the relationship 

between two sentences. For jobs like question 

answering, a pre-trained model with this level of 

knowledge is useful. During training, the model is 

given pairs of sentences as input and is taught to 

predict if the second sentence is the same as the next 

sentence in the original text. BERT uses a specific 

[SEP] token to separate sentences. The model is fed 

two input sentences at a time during training, as 

follows: 

50% of the time the second sentence comes after 

the first one. 
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50% of the time it is a random sentence from the 

full corpus. 

BERT is then required to predict whether the 

second sentence is random or not, with the 

assumption that the random sentence will be 

disconnected from the first sentence. To 

determine if the second phrase is connected to 

the first, the entire input sequence is passed 

through a Transformer-based model, the final 

hidden state of the [CLS] token is transformed 

into a 2 × 1 shaped vector by using a simple 

classification layer, and the probability of 

IsNextSentenceLabel is calculated by softmax - 

an activation function. 

Knowledge is useful. During training, the 

model is given pairs of sentences as input and is 

taught to predict if the second sentence is the 

same as the next sentence in the original text. 

BERT uses a specific [SEP] token to separate 

sentences. The model is fed two input sentences 

at a time during training, as follows: 

- 50% of the time the second sentence comes 

after the first one. 

- 50% of the time it is a random sentence 

from the full corpus. 

BERT is then required to predict whether the 

second sentence is random or not, with the as-

sumption that the random sentence will be dis-

connected from the first sentence. To determine 

if the second phrase is connected to the first, the 

entire input sequence is passed through a 

Transformer-based model, the final hidden state 

of the [CLS] token is transformed into a 2 X 1 

shaped vector by using a simple classification 

layer, and the probability of IsNextSentence- 

Label is calculated by softmax - an activation 

function. 

Both Masked LM and Next Sentence Pre-

diction are used to train the model. This is to 

minimize the combined loss function of the two 

strategies. The following are some applications 

of BERT’s usage in common NLP tasks: 

Text Summarization: the most commonly 

used model is BERTSUM [58] to produce 

summary by highlighting or identifying key 

sentences. 

Text Classification: one of the typical Text 

Classification is Sentiment Analysis - labeling a 

sentence with positive, negative or neutral 

emotions. 

Question Answering: the input is a question 

related to a given text and BERT is asked to mark 

the answer by identify two vectors marking the 

beginning and the end. 

Named Entity Recognition: input is a passage 

and the model is requested to find the different 

types of entities (Person, Organization, Date, 

etc.) that appear in the source. 

 

Figure 22. BERT general architecture [33]. 

8. Applications of DL Models in NLP 

Since introduced, those aforementioned 

models have been applied successfully in 

various domains, including NLP. Remarkable 

applications of those models, together with their 

advantages and disadvantages, can be capture at 

the quick glance as follows. 

Conventional RNN models calculate their 

output based on the recent input and their mem-

ory calculated from the previous steps. By 

reusing weights on every calculation step, RNN 
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is known to be deep in terms of time with a lim-

ited number of parameters. The nature of RNN 

makes it suitable for time series data processing 

applications. However, these models only have 

the “memory of goldfish” and can only perform 

well with short history context. 

To handle short-term memory and vanishing 

gradient problems in RNN, LSTM (Long short-

term memory) as an extended version of RNN 

with gating technique to control information 

flow over its inferencing steps and this deep 

learning model become commonly used in time-

series data forecasting [59-61], speech recogni-

tion [62, 63], robotic tasks [64, 65] and NLP 

tasks including text generation [66], text 

classification [67], word prediction, next 

sentence selection, and sentence topic prediction 

[68, 69] . However, in the above applications, 

LSTM still suffers from long-term dependency 

difficulty. Tackling parallelism in RNNs, Ashish 

(2017) [54] designed a new deep learning 

sequence-to-sequence architecture that fully 

replaced RNNs with atten- tional layers (self 

attention and cross attention), shortening 

training time and better representing the 

relationship of data within the input and gen-

erated sequences. Transformer and its variants 

are mostly used in machine translation [70-72], 

summarization [73, 74], text generation [75] or 

question answering [76-78], etc. This model ar-

chitecture has a limitation of its input sequence 

length, leading to text chunking during inferenc- 

ing and causing the disruption of information 

representation. 

BERT was built on the encoder of Trans-

former architecture [79] and trained with mask 

and next sentence prediction tasks, thus can “un-

derstand” text sentences and provide a strong 

base model for downstream tasks. In applica-

tions that need representation of input sequence 

such as sentiment analysis [80, 81], intent pre-

diction [82, 83], POS Tagging [84], named entity 

recognition [85-88], event extraction [8991], 

relation extraction [88, 92-94]. BERT encodes 

the input embedding sequence with selfattention 

mechanism in a bidirectional manner, which 

means a vector at any position can “see” all other 

vectors and represent its meaning based on the 

global context without step-by-step projection. 

This mechanism is the strength of BERT, but it 

is also a constraint stopping BERT to scale up in 

terms of sequence length because of the memory 

cost of storing matrices and computational cost 

of dot products during attention calculation. 

9. Conclusion 

In the era of the Fourth Industrial Revolu-

tion, digital data have been incrementally gener-

ated in all domains in an automatic manner, call-

ing for intelligent systems to effectively process 

them for making useful information and knowl-

edge for human beings. As natural languages are 

still the main channel for communication in hu-

man societies, Natural Language Processing has 

emerged as one of the important approaches to 

response such a call. Especially, with the ad-

vancement of Deep Learning techniques, NLP 

researchers find for themselves powerful tools to 

handle enormous textual computer-generated data, 

which bring NLP tasks to new breaking results. 

In this paper, we have introduced an overall 

roadmap about the modern approaches in NLP. 

As the scientists in this area never cease to ex-

plore novel research directions for practical ap-

plication, currently there are several ongoing in-

terested works still under investigation for fur-

ther processing and extentions, remarkably as 

follows. 

- Natural Language Generation: This ap-

proach aims at generating natural language from 

structured representation or even nontext data, 

e.g. images. It can be considered as one of the 

most advanced achievement of AI in NLP. 

Intered readers can further read related works at 

[95, 96]. 

- Opposite to Natural Language Generation, 

Natural Language Understanding (NLU) 

converts text into machine-understandable 

formalism for further processing in downstream 

tasks. Recently, this work has been attracted 

much attention in chatbot development, such as 

[97-99]. 



Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 50 

- Question-Answering: It can be considered 

as a classical topic in NLP. However, with the 

emerging of DL models, advanced training 

methods such as zero-shot training has been 

applied with positive result [100-102]. 

- Machine Reading Comprehension: It is 

similar to NLU, however more focusing on 

reading long narrative. Similar to NLU, zero-

shot training with deep pre-trained models have 

been proposed with remarkable results reported 

[103-105]. 

- Recently, Graph Neural Network (GNN) 

has been emerged as a extremely suitable ap-

proach for processing graph-based data. As 

semantic graph generation from textual data has 

been investigated for a long time, using GNN for 

NLP promises a very potential direction for 

many related tasks [106-108]. 

- Using Pointer Generator Network (PGN) 

for summarizaion [109]. Perhaps PGN is one of 

the most recent techniques for improving 

seq2seq model to handle the out- of-vocabulary 

problem. The combination of 

Transformer/BERT and PGN promises much 

room for exploration in this direction. 

- Using memory network as a the next gener-

ation of deep neural networks [110]. It is another 

direction to manipulate the hidden memory of 

recurrent networks more effectively. One can 

consider it as counterpart of push-down 

automata in the ANN world. 

- Developing DL-based models such as 

Variational AutoEncoder (VAE) for topic 

modeling [111]. Up to now, LDA-based 

methods have still been considered the most 

appropriate approach for the problem of topic 

modeling. However, traditional techniques of 

this approach suffer from the scalability problem 

when dealing with very large training corpus. 

Making use of ANN-based architecture to 

simulate LDA process is considered as a good 

choice to overcome such problem. 

- Developing multi-modal architecture for 

NLP such as Visual Question Answering systems 

[112]. This direction envisions an interesting 

combination of multimedia data processing, 

such as image and text. The attention/self-

attention techniques are then evolved as cross-

attention or co-attention once handling such a 

task, producing much inspiring results at the 

moment. 
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