
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55

 31

Original Article

Modern Approaches in Natural Language Processing

Quan Thanh Tho*

URA Research Group, Ho Chi Minh City University of Technology,

Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam

Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam

Received 11 November 2021

Revised 28 December 2021; Accepted 30 December 2021

Abstract: Natural Language Processing (NLP) is one of the major branches in the emerging field

of Artificial Intelligence (AI). Classical approaches in this area were mostly based on parsing and

information extraction techniques, which suffered from great difficulty when dealing with very large

textual datasets available in practical applications. This issue can potentially be addressed with the

recent advancement of the Deep Learning (DL) techniques, which are naturally assuming very large

datasets for training. In fact, NLP research has witnessed a remarkable achievement with the intro-

duction of Word Embedding techniques, which allows a document to be represented meaningfully

as a matrix, on which major DL models like CNN or RNN can be deployed effectively to accomplish

common NLP tasks. Gradually, NLP scholars keep developing specific models for their areas,

notably attention-enhanced BiLSTM, Transformer and BERT. The births of those models have in-

troduced a new wave of modern approaches which frequently report new breaking results and open

much novel research directions. The aim of this paper is to give readers a roadmap of those modern

approaches in NLP, including their ideas, theories and applications. This would hopefully offer a

solid background for further research in this area.

Keywords: Natural Language Processing, Artificial Intelligence, Deep Learning, Word Embedding,

CNN, RNN, LSTM, Sequence-to-sequence, Language Model, BERT.

1. Introduction*

Natural Language Processing (NLP) [1] is

one of major branches of Artificial Intelligence

* Corresponding author.

 E-mail address: qttho@hcmut.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.302

(AI) [2], which focuses on applications based on

human natural languages. The crucial challenge

of this area lies on the “process” to understand

the meaning of human language. In this context,

mailto:qttho@hcmut.edu.vn

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 32

the term “process” can be understood as a way to

transform from a presentation into another one.

In that case, written or spoken language forms

will be processed to be transformed into a for-

malism understandable by computers. Typically,

major tasks of NLP include the following.

- Text Classification [3]: It can be considered

as one of the most popular tasks in this area. In

this task, a document will be classified into a pre-

defined category. For instance, Google’s e-mail

system can classify if an incoming e-mail is a

spam or not.

- Sentiment Analysis [4]: It aims to analyze

the sentiment of the author/writer of a textual

document (normally positive, negative or

neutral). This task can be considered as a

specific kind of text classification applications

where each sentiment value is a category. This

task is very useful for e-commerce systems

nowadays, where reviews of customers can be

analyzed to help a brand to obtain the

opinions/feedback of users over their products.

- Entity Recognition [5]: This aims to rec-

ognize entities mentioned in a document. In

practical applications, those entities are named

and usually belong into a certain class.

- Topic Modeling [6]: In this context, a topic

is considered as a set of relevant keywords,

which can provide hint to a certain concept. For

example, the set of words football, stadium,

trekking, swimming can imply the concept, or

topic, of sport. The aim of this task is to detect

possible topics mentioned in a document by

means of finding sets of relevant keywords. In

order to fulfill this, the Topic Modeling

technique is needed to be trained with a very

large corpus in order to evaluate the co-

occurrence probability of words potentially

belonging to a same topic.

- Machine Translation [7]: Sometimes re-

ferred to by the abbreviation MT, this task aims

to automatically translate a document from one

language into another.

- Chatbot [8]: Ideally, this is an interactive

system which can communicate with users using

natural languages without human interference.

Nowadays, this kind of application has been

increasingly attracted much attention from

enterprises in various domains.

- Automatic Summarization [9]: This task

aims to produce a shortened version of a

document, which captures major important

points of the original text using a coherent

natural language. This task is highly practical

today to help human to extract useful

information from large textual datasets from

various domains.

Typically, the classical approaches for NLP

normally combine syntax analysis and informa-

tion extraction where documents are represented

as vectors, e.g T F-IDF of bag-of-words ones.

With the rapid development of computational re-

sources since the end the 20th century, Deep

Learning (DL) technique has been deployed ef-

fectively to handle various problems of

computer science, including NLP. Once applied

to solve NLP tasks, the applications of Deep

Learning have achieved some remarkable

milestones as illustrated in Figure 1. Since the

application of neural language model was

reported in 2001, perhaps the first notable

milestone of NLP in this direction is the

introduction of Word Embedding in 2013. This

technique allows encoding each word in a

document into a numerical vector, which is

interpreted from the contexts that this word is

likely to appear in a training corpus. Thus, a

document can be represented as a matrix or an

ordered set of vectors, on which typical deep

learning architectures such as Convolutional

Neural Network (CNN) or Long Short-Term

Memory (LSTM) can be effectively deployed.

Especially, an architecture combined from two

opposite (forward and backward directions)

LSTM models, known as Bidirectional LSTM, or

BiLSTM, had also become popular for NLP

tasks due to its ca-pability of capturing

information a documents in both opposite

directions in a document.

After some initial success gained by those

models on NLP tasks, the research community

continued witnessing the births of some text-

oriented advanced techniques including

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 33

…

sequence-to-sequence (or seq2seq) architecture

in 2014 and attention mechanism in 2015. In

2018, the use of pre-trained language models

such as Transformer, BERT or GPT marked some

significant improvements on performance of NLP

tasks, which has still been adopted until today.

In this paper, we review the modern ap-

proached in NLP related to the above discussed

research. Firstly, we present popular pipelines

for processing data in NLP tasks, including both

classical and DL-based ones. Next, we present

the Word Embedding techniques, followed by

remarkable achievements of DL-based ressearch

for NLP. They include using Convolutional

Neural Network (CNN) for feature extraction;

the models based on Recurrent Neural Network

(RNN) to handle sequence data; the sequence-to-

sequence model and attention mechanism; the

transfer learning technique withs pretrained

language models. Finally, the paper concludes with

some discussion about some most recent results

and directions in this area.

It is also noted that the work presented in this

paper aims to give readers an overall picture of

the modern approaches in NLP at a foundation

level. Interested readers can further refer to more

intensive surveys given in [10-13].

2. Processing Pipelines of NLP Applications

Like other data processing applications, NLP

applications are usually developed on top of a

pipeline to process data step-wise. In this

section, we discuss two typical pipelines mostly

used in classical and DL-based NLP

applications.

2.1. The Classical NLP Pipeline

In traditional approach, NLP consists of two

main steps described in Figure 2. The first step is

referred to as Pre-processing, which filters out re-

dundant information and standardizes input text into

a common format. Typical pre-processing actions

includes tokenization, stemming, stop word removal

and Part-of-Speech (PoS) tagging.

Pre-processing Modeling Output

Figure 2. Classical NLP pipeline.

The next step is called Modeling, which is in

charge of introducing a model solving the in-

tended tasks with three operations as follows.

The next step is called Modeling, which is in

charge of introducing a model solving the in-

tended tasks with three operations as follows.

- Feature Extraction: In machine learning,

data is represented as features. Feature extraction

process is of building feature set and filtering out

important features that best represent input data.

In terms of textual data, bag-of-words (BOW)

[14] or TF-IDF vectors [15, 16] are common

features.

- Model Construction: Model is the result of

applying appropriate machine learning al-

gorithms on input data. Traditional NLP

approaches make use of supervised learning

techniques including SVM [17, 18], NB

Classifier [19] or MLP [20], and unsupervised

methods such as clustering [6] or LDA [6, 21] to

construct models.

- Outcome Inference: This is to apply the

trained model on data to obtain the final results.

The next step is called Modeling, which is in

charge of introducing a model solving the in-

tended tasks with three operations as follows.

- Feature Extraction: In machine learning,

data is represented as features. Feature extraction

process is of building feature set and filtering out

important features that best represent input data. In

terms of textual data, bag-of-words (BOW) [14] or

TF-IDF vectors [15, 16] are common features.

- Model Construction: Model is the result of

applying appropriate machine learning al-

gorithms on input data. Traditional NLP

approaches make use of supervised learning

Model

Inference

PoS

Processing

Model

Construction

Stemming

Feature

Extraction

Tokenization

Text
Classification

Sentiment
Analysis

Entity
Recognition

Topic
Modeling

Translation

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 34

…

techniques including SVM [17, 18], NB

Classifier [19] or MLP [20], and unsupervised

methods such as clustering [6] or LDA [6, 21] to

construct models.

- Outcome Inference: This is to apply the

trained model on data to obtain the final results.

2.2. The Deep Learning-based NLP Pipeline

 Pre-processing Modeling Output

 Output l

 Hidden layer ayer

 Embedding layer

Figure 3. DL-based NLP pipeline.

With the rising of Deep Learning, traditional

NLP approaches are now gradually replaced by

deep learning models. Though many highly

complicated deep learning models are built for

different NLP tasks, they basically follow the

same pipeline described in Figure 3, which is

carried out by the following operations.

- Similar to the classical pipeline, the raw

textual data are firtsly pre-processed with the

common modules of tokenization, stemming,

stop word removal, etc.

- Data representation is essential in deep

learning architectures. Different from traditional

approaches which make use of document-level

information, modern models use embedding

layer to transform words or even characters into

numerical vectors that contain higher amount of

meaning information.

- The core of NLP system is a deep learning

model. The model architecture may vary on the task

it is built on. Some common deep architectures will

be described in the next sections.

Even though deep learning architecture

seems to play the central part in current NLP

tasks, it is worth noting that fundamental works

of NLP are still not avoidable, such as lexical

scanning, parsing or semantic analysis. Espe-

cially, the famous tool CoreNLP, which supports

core functionalities of NLP, has been incorpo-

rated in many DL-based architecture with inter-

esting outcome observed [22-26].

3. Word Representation Models

In the book entitled Introduction to Informa-

tion Retrieval [27] published in 2008, the authors

explained about the techniques to exploit

information from various data sources,

especially in the textual form. There are two

well-known classical techniques for this goal

discussed in this book, including Count-

Vectorization or Bag- of-words (BOW) [14], and

the weights of Term Frequency - Inverse

Document Frequency (TF- IDF). These two

methods, in particular TF-IDF weights, are

proven effective in determination of important

keywords in documents. However, they cannot

reflect the information of word positions in the

documents and hardly convey the semantics of

the words as well as the whole documents.

Figure 4. Representation of the word “am” as

one-hot vector.

Word Embedding is a technique later emerg-

ing as a more effective method for word repre-

sentation. This term was firstly coined by

Yoshua Bengio in the famous paper entitly

“Neural Probabilistic Language Models” [28]

published in 2003. It recommended that a word

vector can “embed” the semantics of words in a

numerical vectors to let them be processed

effectively by machines. Inspired by those idea, a

Text
Classification

Sentiment
Analysis

Entity
Recognition

Topic
Modeling

Translation

PoS

Processing

Stemming

Tokenization

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 35

number of word embedding techniques were

then reported as Word2vec [29], GloVe [30],

fastText [31], ELMO [32] and BERT [33]. In

general, a word embedding technique should

fulfill the following conditions.

- There is only one unique representation per

word, i.e., two different words should be

represented by two different vectors.

- Two similar words, in terms of their seman-

tic meaning, should be represented by two

similar vectors, in terms of their distance in the

embedding space.

3.1. Word Representation by One-hot Vector

One-hot vector perhaps is one of the earlies

technique to encode categorical data items as

numerical vectors. Basically, a one-hot vector is

a binary vector whose dimensional values are

only of 0 or 1. Particularly, there is only one

dimension has the value of 1 in a one-hot vector,

whereas the rest are of 0. Based on that

technique, one can represent every word in a text

document as a one- hot vector. For instance, with

a sentence of “I am a member of URA research

group”, the word am can be represented as a

one-hot vector as illustrated in Figure 4, whose

number of dimension is exactly the vocabulary

size of the corresponding language.

Thus, one-hot encoding can be employed to

convert any word in a dictionary into a form of

numerical vector. Therefore, this technique was

used in many NLP and other machine learning

models, especially in the case that the vocabu-

lary size is relatively small. Obviously, this tech-

nique fulfills the requirement that different words

should be represented as different vectors. How-

ever this technique still suffers from the

following drawbacks.

- When working with a large vocabulary

size, this technique tends to generate very sparse

high-dimensional vectors, most of whose di-

mensional values are of 0.

- More importantly, it can be undeniably ob-

served that the Euclidean distance between any

pair of one-hot vectors is constantly of V2. This

prevent one-hot vectors from representing the

difference in semantics of the words.

3.2. The Word2vec Technique

Word2vec is one of the popular techniques in

the Natural Language Processing field. It was

publicly announced in 2013 by a group of re-

searchers led by Tomas Mikolov and has been

registered for protection of the mode of the

invention [29]. Based on AutoEncoder [34],

Word2vec has solved the problems related to

context meanings of the AutoEncoder model by

transforming each word of the corpus into a

vector based on their contextual information in

that corpus. Therefore, the model is able to learn

so as to produce a similar vector for those words

that share the same contextual information. The

contextual information of a focus word is a

window containing words on the left side and

right side of the focus word, which are called

context words. The size of the window, denoted

by k, represents k words on the left side and k

words on the right side of the focus word.

Two main training techniques of Word2vec

are CBOW and Skip-gram.

CBOW (Continuous Bag of Words)

The idea behind the CBOW model is that it

predicts the focus word vector based on the

context words collected from a k-size window in

which k is finite. Given a focus word wt at the

position t inside the sequence, the context words

contains (wt - m, . . ., wt - 1, wt + 1, . . ., wt + m)

surround the focus word wt in the window size

of m.

Figure 5. A general CBOW model.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 36

The CBOW model can be generalized as il-

lustrated by Figure 5. In Figure 5, C is the num-

ber of context words while V is the size of vocab-

ulary and the hyperparameter N is the number

ofnodes in the hidden layers where N is

relatively small compared to V. Every node of

the hidden layer is fully connected to the nodes

of the previous layer.

When the CBOW model is trained with a large

corpus, we will gain a good representative matrix w

with size V X N when the training process converges.

From then, with an arbitrary one- hot vector T with

size 1 X V, we can get an embedding vector E with size

1 X N based on the product operation of E = T X w.

For example, with this one-hot vector for the

word “am”:

And matrix WV×N shown below

We can perform matrix multiplication v
T

am = W
T

× xam and receive the resulting matrix as below:

As we can see, vector v
T

 has the dimension

N which is relatively small compared to V. This

vector is no longer considered as a sparse vector

since all of its values are now different from 0.

Moreover, the training procedure of the CBOW

model also helps create embedding vectors with

closer distances for the words that frequently ap-

pear together in the context words. After the

CBOW training converges, the matrix WVXN will

be used as an embedding layer for other deep

learning models specialized in NLP tasks as il-

lustrated in Figure 3.

The skip-gram model

The skip-gram model is demonstrated in

Figure 6. This model is similar to CBOW;

however, the focus word is now used as the input

for the model and the context word as the

expected output.

4. Convolutional Neural Network for NLP

4.1. Convolutional Neural Network

Figure 6. A general Skip-gram model.

Convolutional Neural Network, known as

CNN or ConvNet, is one of foundation

techniques in the area of Computer Vision, or

Deep Learning in general. This kind of

architecture is typically used for image

classification, such as the problem of facial

recognition. This architecture is proposed by the

famous scientist Yann LeCun, winner of the

Turing award in 2018, for the problem of

handwritten zip code recognition [35].

Basically, a CNN architecture consists of the

following layers: convolutional, pooling and

fully connected. In certain variants,

convolutional and pooling layers can be repeated

many times before feeding to the final fully

connected layer, as illustrated in Figure 7.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 37

Figure 7. An illustrative CNN architecture.

In the typical Feedforward Neural Network,

the layers directly connected via a weight vector

W, known as fully connected layer or affine

layer. In constrast, in the convolutional layer, the

layers are connected via the convolution mecha-

nism. That is, each neural of the next layer con-

nects to a local region of the previous layer via a

convolution window, or filter. During the train-

ing process, the CNN network will automatically

learn the appropriate weights of the filters.

After the convolutional layer is the pooling

layer, or subsampling layer. The objective of this

layer is to standardize the output vectors of the

filters, to make them have the same dimension

space using a pooling window. In addition, by

only selecting a value in each pooling window as

the next output, the number of parameters to be

trained would be significantly reduced, as com-

pared to a corresponding MLP network with the

same number of neural nodes.

Figure 8 illustrates the computational

process in the convolutional and pooling layers

of a CNN network. The output results from the

each filter will be eventually concatenated,

producing the final feature map, which can in

turn be used as input for the next similar process,

or fed to the a fully connected layer to get the

final prediction of the model.

4.2. CNN for NLP Tasks

The CNN network is initially intended to

work with images represented as matrices. Thus,

in order to be applied with NLP tasks, the orig-

inal textual documents needed to be represented

as matrices as well. With the Word Embedding

technique discussed previously, each word in a

document can be encoded as vector of the same

dimension. Then, a document can be formed as

a matrix, on which the CNN can be applied as

depicted in Figure 9. In this example, the

problem of Sentiment Analysis is picked as a

case study, adapted from the work published in

[36], which is considered as a pioneered work

that applied CNN for NLP. Interested readers

can further refer to this paper for the way to

select suitable hyperparameters when

implementing the model.

For more details, we can consider the archi-

tecture in Figure 9 as 5 parts, namely #sentence,

#filters, #featuremaps, #1-max and #concat-1-

max, whose information is given as follows.

sentence

This is the input of the system, in this case is

a sentence of 7 words: “The film contains a few

funny bits”. Assuming that the embedding

dimension is 5, the sentence is then represented

as a 7 X 5 matrix.

filters

Initially, CNN is used for Computer Vision

applications, whose input is normally a 2D or 3D

images/objects. Thus, their filters are also orga-

nized as 2D matrices or 3D cubes to reflect this

dimensional characteristic. However, for textual

data, the input is naturally organized as a 1D se-

ries of word. In that case, the filters adopted by a

NLP-intended CNN would also be adapted ac-

cordingly. To be more precise, the number of

columns in the filter will be the same of the size

of the embedding word vector, meanwhile its

rows are used to reflect the concept of n-gram of

text data. In this example, the row for each filter

will be either in (2,3,4), corresponding to the

concepts of bigram, trigram and 4-gram of

classical NLP. The are two filters for each kind,

eventually making 6 filters for whole system.

featuremap

In this context, the feature maps are the

matrices generated once we perform the

convolutional operation between the #filters on

the #sentence. Since the columns of the filters

are the same with the dimension of the

embedding space, each feature map is then a

column matrix whose size is varied depending

on the filter size.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 38

1-max

This is in fact corresponding to the pooling

layer in the standard CNN architecture, where

the maximal value in each column vector of the

feature map will be selected for further

processing. As a result, we have a set of 6

maximal numbers from 6 column vectors.

concat-1-max

In this step, the results from #1-max are con-

catenated together, making another column vector

of 6 element, which is then connected to a softmax

layer using the fully connected mechanism. The

result of this softmax layer is treated as a binary

classification of sentiment opinion, e.g positive

or negative.

Figure 8. The generation of a feature map in a CNN network via convolutional and pooling layers.

Figure 9. Using CNN to perform the task of

Sentiment Analysis.

In qaddition, CNN is also considered for in-

formation modeling at character level. For in-

stance, Santos [37] va Labeau [38] had success-

fully leveraged this work for the problems of

NER and POS-tagger, respectively.

5. Recurrent Neural Network for NLP

5.1. Sequence Data

Natural language data is an ordered sequence

of data. Unlike the traditional data type where

the patterns are unordered and independent of

each other, with natural language data, the order

of occurrence of the data patterns also carries

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 39

certain information. In text data, the order in

which words appear in a text plays a very

important role in conveying the meaning of a

sentence or paragraph.

Feed-forward networks with fixed input data

cannot solve the problem with arbitrary length

sequence data. However, sequence data can be

transformed (split) for using on input-only ar-

chitectures by taking a fixed amount of k samples

of previous consecutive data as input. Models

that approach this direction are classified as auto

regressive models. In general, a generic k-

degree auto regressive model can be understood

as a mapping f :

ỳi = f (Xi, yi-1, yi-2,..., yi - k) (1)

where xi is the existing observation, yi is the

sequence value at time i, yi is the predicted value

at time i, yi is the sequence value at time i, k is

the model degree. With the above approach, we

temporarily solve the problem of vary data

length. However, there are still many problems

that make MLP networks unsuitable for

sequence data as follows.

- The MLP model is not yet able to remem-

ber the state from previous data to support

decision making. In fact, it still depends entirely

on the input. In case it is necessary to remember

data at a length greater than k- degree of the

model, the feed-forward network will not be able

to make an accurate prediction. Indeed, the way

in which the above regressive model derives its

data from earlier samples in the sequence is

entirely up to the assumptions of the network

designer.

- The number of parameters is very large:

when using a fully connected layer, the number

of parameters of a layer will be equal to the

product of the input dimension and the output

dimension. The large number of parameters also

makes the model take up a lot of resources both in

terms of memory requirement and training time.

- The model is not capable of sharing weights

between steps (fully connected layers) and uses

a large number of parameters specific to each

input on every layer.

 Input
MUupIr

Figure 10. The conceptualization of an RNN.

5.2. Recurrent Neural Network

In 1986, Rumelhart and his colleagues pub-

lished a research paper entitled” Learning inter-

nal representations by error propagation” [39]. In

the study, a classic network architecture for pro-

cessing sequence data is presented, called a re-

current neural network. Basically, a recurrent

neural network is a neural network architecture

in which the state of the model at the previous

step is used as the input of the current step. In

other words, a recurrent neural network model

behaves in a way that maps the input data and the

previous state of the model to output data, as

shown in Figure 10.

Figure 11. Sequence data processing with RNN.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 40

With a traditional feed-forward neural net-

work, data are only passed in one direction, com-

putation and output results are encapsulated in

one phase and based entirely on input data (i.e.

no loops exist). We need to clarify that the loop

here does not create an infinitely repetitive com-

putation cycle, but only uses data from the pre-

computation phase as input to the current phase.

More specifically, we can “unfold” the loop to

provide a more specific computational architec-

ture when passing sequence data to the network.

With a recurrent neural network, the information

from the previous transmission is saved (in the

hidden state) for the current computation, creat-

ing a loop on the computation graph. In other

words, the hidden state acts as a memory of the

recalling neuron layer. This is especially useful

when dealing with time-series data, where the

same calculation logic (same calculation and set

of weights) can be applied to each data point in

the series, preserving information from previous

points. while preserving sequence information.

Figure 11 illustrates how RNNs process

sequence data.

Mathematically, all calculations in an RNN

are presented in (2a) - (2c).

where

• ai is the hidden state of the model and a0 =

0 is assumed the initial state.

• ŷi is the output of corresponding i-th step.

• xi is the input of corresponding i-th step.

• f and g are the appropriate activation

functions. Usually, we choose f (x) = tanh(x) or

f (x) = ReLU(x) and g(x) = sigmoid(x) or g(x) =

softmax(x) according to the design method and

problem requirements.

• W and b are model weights

- W and b are model weights

- Wax is the matrix of linear mapping which

transforms x to a part in state a.

- Waa is the matrix of linear mapping which

transforms old state a to a part in new state a.

- ba is the bias of transformation from old

state a to a part in new state a.

- Wya is the matrix of linear mapping which

transforms current state a to the output y.

- by is the bias of transformation from

current state a to the output y.

5.3. Long Short-Term Memory Network

Even though the recurrent neural network is

theoretically a simple and powerful model, it is

difficult to learn properly due to a limit to cap-

ture long-term dependencies, caused by these

two well-known issues in training a model:

vanishing and exploding gradient [40]. The

vanishing gradient will become worse when a

sigmoid activation function is used, whereas a

Rectified Linear Unit (ReLU) can easily lead to

an exploding gradient. Fortunately, a formal

thorough mathematical explanation of the

vanishing and exploding gradient problems was

represented by Bengio et al., [41], analyzing

conditions under which these problems may

appear.

To deal with the long-term dependency

problem, a developed version of RNNs was

introduced by Gers and Schmidhuber and

Cummins in 2000, called Long Short-Term

Memory (LSTM) [42]. LSTMs has overcome the

limitations of RNNs and delivered more accurate

performance by using a hidden layer as a

memory cell instead of a recurrent cell (see

Figure 12). In the standard LSTM model,

processing information is more complicated

when modules containing computational blocks

are repeated over many time steps to selectively

interact with each other in order to determine

what information will be added or removed. This

process is controlled by three gates namely input

gate, output gate, and forget gate. Controlling

the flow of information inside an LSTM model

can be described as the following (3a)-(3e)

mathematical equations.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 41

Figure 12. The structure of an LSTM cell.

In (3a)-(3e), it, ft, ot, (C)t, ht denote input

gate, forget gate, output gate, internal state, and

hidden layer at t-th step, respectively. xt is the

input of corresponding t-th step. Next, Wi, Wf,

Wo, WC, and bi, bf, bo, and bC represent the

weights and bias of three gates and a memory

cell, in the order given. Concretely, the

activation function sigmoid (a) helps an LSTM

model to control the flow of information because

the range of this activation function varies from

0 to 1 so that if the value is 0 then all of the

information will be cut off, otherwise the entire

flow of information will pass through. Similarly,

the output gate will allow information to be

revealed appropriately due to the sigmoid

activation function then the weights will be

updated by the elementwise multiplication of

output gate and internal state activated by non-

linearity tanh function. With the pivotal

component is the memory cell accommodating

three gates: input, forget, and output gate,

LSTMs has overcome limitations of RNN,

enhancing the ability to remember values over an

arbitrary time interval by regulating the flow of

information inside the memory cell. Therefore,

LSTMs possess a capacity to work tremendously

well on learning features from sequential data

such as documents, connected handwriting,

speech processing, or anomaly detection [43].

Later, a simpler version of LSTM, known as

GRU [44], was also introduced. GRU uses no

hidden memory and fewer gates than LSTMs

does. As a result, GRU has a faster training

process, consumes less memory while maintains

high performance and can compete with LSTMs

in some cases.

5.2. BiLSTM and NLP Applications

Figure 13. A CNN-BiLSTM architecture

for NER task.

RNN and its upgraded versions like LSTM

and GRU can handle sequence data well in NLP

problems. To enrich information encoded in

each step, NLP applications often use a

bidirectional mechanism, known as

Bidirectional LSTM (BiL- STM) or

Bidirectional GRU (BiGRU), in which data is

processed across two opposing LSTM or GRU

networks. The result at each step of these two

opposite networks will be concatenated to the

final representation of each step. In addition,

because CNN is very powerful in feature

extraction, RNN-based architectures often com-

bine with CNN to extract features from the orig-

inal text before racing to be processed in RNN

layers. Figure 13 illustrates architecture of using

CNN-BiLSTM for named entity recognition

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 42

|

[45]. In addition, the same architecture is also

used for sentiment analysis [46], PoS tagging

[47], text classification [36] problems.

6. Sequence-to-sequence Model and Attention

Mechanism

6.1. Sequence-to-sequence Architecture

Sequence-to-sequence (seq2seq) [48] is a

deep-learning architecture initially devised for

machine translation. Its intuition comes from an

observation such that in order to translate a text,

human would first read some parts of the text and

then start to do the translation. NLP researchers

also employ that idea into designing a structure

dubbed as sequence-to-sequence.

Figure 14. An example of a sequence-to-

sequence model.

Basically, sequence-to-sequence model

takes the design principle of comprising 2

components, an encoder and a decoder, as

illustrated in Figure 14. For a vanilla sequence-

to-sequence model, both the encoder and

decoder are recurrent neural networks, but in

order to capture longterm dependencies, we

could choose LSTM or GRU instead. In general,

the encoder has a function to digest and

understand the input text as well as encode the

information into a fixed-shape hidden state.

Output sequences are generated by using the

method of token-by-token, which means the

previously created token will be the next time

step input token. The decoder combines two

source inputs encoder hidden state and current

input token to consider the probability of

generating the next word. The process of

generating output will stop if the sequences

touch the maximum length of the result or the

current token is a special “end” token.

Encoder

For an input sequence x1 , . . . , xT, the encoder

will read and print out a fixed-shaped vector c

taking the context into account. We assume that

the input sequence is X1 • • • xT known that xt is

the tth token and. ht is the hidden state of time

step t. Then, let us express f as the computation

of an RNN unit as follows.

ht = f (xt, ht−1) (4)

Eventually, after passing through all the to-

kens in the sequence, the encoder transforms the

whole sequence into a context vector.

c = q(h1, . . . , hT) (5)

Usually, q function takes the final hidden

state of encoder into context variable c. In order

to make the encoder has better performance,

instead of using unidirectional RNNs which just

focus on previous hidden states, we can use

bidirectional networks to consider both sides -

the previous and after ones.

Figure 15. A simple attention model.

Decoder

As mentioned in the last passage, an encoder

converts the input sequence into a context vectorc.

Hereafter, it is time for the decoder to evaluate the

conditional probability P(yt’ y1, . . . , yt’−1, c) given the

context vector c and past decoded to- kens y1, . . . ,
yt’−1.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 43

At any time-step t’, decoder takes the output

token yt’−1, context variable c and previous de-

coder hidden state st’−1 then transforms them into

current decoder hidden state as below

st’ = g(yt’−1, c, st’−1) (6)

Note that g is a transform function. After

gaining the current decoder hidden

state,sequence-to- sequence will put effort into

estimating the conditional probability by

applying a softmax operation on output layer,

which is a fully-connected layer to transform

final hidden state. Then, the final probability is

calculated by multiple probability of each word

along time steps.

6.2. Attention Mechanism

Sequence-to-sequence model causes the

RNN problems such as vanishing gradient

excessively severe. Although the encoder and

decoder can take LSTM or GRU forms, the

performance still deteriorates for input with a

length approximating 100 tokens, which is

sorely popular in tasks such as machine

translation or text summarization.

Besides, in prominent tasks such as machine

translation, there are a number of alignments be-

tween the output and input. That is, some words in

the output could be linked to some from the input

sequence. For instance, translating from “And the

programme has been implemented” (English) to

”Le programme a et e mis en application” (French),

phrases such as ”programme” and ”mis en

application” shall be mapped to ”pro- gramme” and

”implemented” in the respective order.

Bahdanau et al., [49] proposed an attention

mechanism to implement that concept. The input of

the attention scheme is a query vector q. For a query,

attention returns an output related to the memory

consisting of key and value pairs (k1,v1), ..., (kn, vn).

We will start to derive the output of the attention.

For each key k1, ..., kn, we perform the dot product

with the query to learn the corresponding value. This

operation demands that the query and the key have

the same dimension d. For query and key q, k ∈ Rd ,

Figure 16. Sequence-to-sequence model

with attention.

o compute operations effectively, we often

employ matrix computation. Assuming that in-

put attention has n queries and m key-value pairs.

Length of queries and key is d , while length of

values is equal v. So, we have matrices called

query Q e Rnxd, key K e Rmxd and value V e Rmxv.

Then, the equation becomes

Additive Attention In general, we may utilize

additive attention as the attention scoring func-

tion when queries and keys are vectors of various

lengths. For query and key q e Rq, k e Rk,

α(k, q) = v
⊤
tanh(Wkk + Wqq). (10)

where Wk e Rhxk , Wq e Rhxq are two weight

parameters corresponding to key k, query q

respectively and wv e Rh.

6.3. Enhancement of seq-to-seq Model by Attention

In Figure 16 is an example of using

sequence- to-sequence with attention

mechanism for machine translation. When

endeavoring to generate the next token, the

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 44

hidden representation will attend to the

representations of input tokens. As it can be seen

from Figure 16, with a view to obtain the

attention scores, the system will compute the dot

products between the representation of “he” with

those of the source input. Subsequently, the

computed scores will play a role as the weights

to coalesce the hidden representations of input

tokens to form the attention output. Eventually,

this output will be employed to determine the

logits to generate the output token.

7. Pre-trained Language Models

7.1. Language Models

In NLP, language models are models that can

assign probabilities for a sequence of words or a

sentence. In addition, language models can infer

likelihood for a particular word (or sequence of

words) from a preset input sequence. In math-

ematics methodology, the probability

assignment for a word sequence can be modeled

by chain rule in Equation 11:

where wi denoth the i-th word in a sentence.

7.2. Language Model Construction with RNN

In classical approaches, probability assign-

ment is usually based on n-gram Markov model

[50]. However, with the help of Deep Learning,

recent approaches choose RNN architectures to

train language models because of their out-

performanced leaning capability on large dataset.

Moreover, language models trained from RNN can

be efficiently used as pre-trained language model

for other NLP tasks as described below.

RNN works by using probabilities of previ-

ous words to generate probability for the next

word. The generated word is then used as input

of RNN to produce the next word until the end-

of-sequence word is produced as depicted in

Figure 17. Finally the probability of the whole

sequence is computed as in Equation 11.

Figure 17. Language model with RNN.

Let “Today I go to school. Tomorrow I go to

school too” be an input sequence for RNN. It is

supposed that the corpus only contains words in

this input sequence, then each word in corpus is

a 1 X 7 vector in one-hot presentation. For

example x<0> is a zero vector of size corpus

length, which is 1x7 in this case. The first hidden

state a<0> is a zero vector of any particular size

based on our decision, which is 1 X 5 in this

example. Waa is a 5 X 5 matrix and Wax is a 7 X 5

matrix so a X Waa + x X Wax is a 1 X 5 matrix. The

5 X 7 matrix Way is then used to resize this hidden

state to desired output size 1 X 7. The result is fed

into softmax activation function to produce

output vector y. This output acts as a probability

distribution for each word in corpus. Finally, the

appropriate loss criteria based on y and y is used

to update model’s weights. The whole procedure

is illustrated in Figure 18.

Figure 18. Detailed language model training

procedure at one timestep with RNN.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 45

7.3. Pre-trained Language Models

Since 2018, many state-of-the-art NLP re-

searches are based on pre-trained language mod-

els such as ELMo [32], OpenAI GPT [51] or

ULMFit [52]. There are two existing strategies

for applying pre-trained language

representations to downstream tasks as follows.

- Feature-based: This strategy includes pre-

trained representations as additional features

(e.g., ELMo).

- Fine-tunning: This strategy introduces

taskspecific parameters and fine-tune the pre-

trained parameters (e.g., OpenAI GPT, ULMFit).

Figure 19 illustrates a representative situa-

tion using pre-trained language models for

downstream task using UMLFit. This is a

language model with many LSTM layers stacked

on to each other. This model is first trained with

a very large dataset then fine-tuned on domain

dataset. Finally, with a specific target application

dataset, the model with pre-trained weights is

used as an embedding layer to represent input

values as vector. These representation vectors is

then used as input for other downstream task

such as classification by SVM [53].

Figure 19. Using pre-trained language model

of UMLFit [52].

Limitation of these language models is

unidirectional manner because they restrict the

power of the pre-trained representations. For

example, OpenAI GPT uses left-to-right

architecture whereas ELMo concatenates

forward and backward language models. In

2018, BERT [33] was introduced, which based

on Transformer architecture [54] became a more

comprehensive solution.

7.4. Transformer Model

Figure 20. Transformer architecture [54].

RNN units with their counterparts such as

LSTM and GRU have established state-of-the-

art results in multiple sequence modeling tasks.

Combined with attention, the performance of

problems such as machine translation and text

summarization has been upgraded to a new level.

Nonetheless, there is still one obstacle with those

architectures, which is embedded in the sequen-

tial nature of the input and output. The incapa-

bility to parallelize the computation has caused a

huge overhead in computation time. Trans-

former’s authors proposed an architecture

dubbed as Transformer removing the recurrence

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 46

or convolutional layers. Instead, they suggested

that solely relying on attention is the key to

achieve parallelism. Self-attention is a core

mechanism that connects distinct places of a

single sequence to compute a representation of

it. Almost NLP tasks such as reading

comprehension or learning task-independent

sentence representations have all been effectively

utilized with self-attention.

Seq2Seq Paradigm in Transformer

Furthermore, at first sub-layer, instead of

fully attending to the whole sequence in the

input, for the time step t0, the decoder only

performs attention from the current token to

tokens 1, . . . , t - 1. Thanks to this masking method

and the output tokens are offset by one place, the

predicted token for position i can only be based

on the known outputs at locations less than i.

Self-attention

There is a key factor to differentiate between

the “original” attention and self-attention.

Whereas attention evaluates the alignment of a

token to its previous ones in a recursive manner,

self-attention allows one to fully attend to all of

the tokens in the sequence, making parallelism

possible. In particular, for all keys, queries and

values are packed into matrices K, Q and V. The

attention scoring function used is scaled dot-

product attention. After calculating scoring, we

divide by √𝑑 and then apply softmax function to

show attention distributions on determined values.

The scaling factor
1

√𝑑𝑘

 is to reduce the effect dk

of the dimension to the final output. The reason why

attention function is chosen with scaled dot- product

but not addictive attention is that the for- mer is

much faster and has space-efficient.

Multi-Head Attention

One interesting result of Transformer [54] is that

they found it is advantageous to conduct attention

multiple times with respect to a wide variety of

linear projections. Multi-head attention allows

the model to simultaneously attend to input from

several representation aspects at various locations.

Whilst using a single attention head, model will

learn average of all these aspects, which not detailed.

The detailed equation is as follows.

MultiHead(Q, K, V) = Concat(head1, . . . ,

headh)W
O

where headi = Attention(QWQ, KWK, VWV)

Note that Wi

Q ∈ R
dmodel×dk

, Wi
K ∈ R

dmodel×d
k ,

Wi
V ∈ R

dmodel×dv are parameter matrices for

projecting queries, keys and values. In particular,

dk = dv = dmodel/h where h is the number of heads.

Positional Encoding

In sequential data, positional information

bears an important effect to the semantics of the

sequence. Since Transformer is not estab- lished

on recurrence nature, it must encode an- other

method to take into account that kind of in-

formation.There are several learnt and fixed

positional en- coding types to choose from.

Specifically, Trans- former authors took

advantage of sinusoidal sig- nal, in which they

transported the positions into sine and consine

functions. The positional encod- ings and

embeddings layers have the same dimen- sion,

thus they could be added together. Accord- ing

to the experiment of authors, the first method

second which use sinusoidal signal gain the

nearly identical results.

PE(pos,2i) = sin(pos/100002i/dmodel) PE(pos,2i+1) =

cos(pos/100002i/dmodel)

where pos stands for position and i is the

dimension. That means each dimension in the

encoded vector would represent a sinusoidal wave.

7.5. Transformer-based Language Models

Transformer model has resulted in the

development of a large number of pre-trained

language models. Some outstanding models can

be mentioned as GPT-2 [55], BERT [33] and

Trans- former XL [56]. GPT-2 employs layered

Trans- former decoder layers. In the meanwhile,

BERT employs Transformer encoder layers, and

Trans- former XL provides a recurrent decoder

architecture based on the Transformer decoder.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 47

These days, perhaps the most commonly

utilized Transformer-based architecture in NLP

tasks is BERT. The version landscape of BERT

is depicted in the Figure 21.

Figure 21. Variants of BERT [57] [11].

BERT’s overall architecture is shown in Figure

22, which comprises a stack of Transformer

encoder’s layers. Furthermore, BERT uses two

training techniques during pre-training steps, whose

details are as follows.

Masked LM (MLM)

The concept is straightforward: Masking 15%

of the words in the input with a [MASK] token at

random, then running the full sequence through the

BERT attention-based encoder and forecasting just

the masked words given on the context provided by

the other non-masked words in the sequence. This

basic masking strategy, however, has a flaw: the

model only tries to predict the correct tokens when

the [MASK] token is present in the input, while we

want the model to try to predict the proper tokens

regardless of the masked token’s presentation in the

input. To ad dress this issue,

 15 percent of the tokens chosen for masking

were:

- 80% of the tokens are actually replaced with the

token [MASK].

- 10% of the time tokens are replaced with a

random token.

- 10% of the time tokens are left unchanged.

During training, the BERT loss function only

considers masked token predictions and ignores

non-masked token predictions. As a result, the

model converges far more slowly than models that

are left-to-right or right-to-left.

Next Sentence Prediction (NSP)

The BERT training procedure also uses next

sentence prediction to understand the relationship

between two sentences. For jobs like question

answering, a pre-trained model with this level of

knowledge is useful. During training, the model is

given pairs of sentences as input and is taught to

predict if the second sentence is the same as the next

sentence in the original text. BERT uses a specific

[SEP] token to separate sentences. The model is fed

two input sentences at a time during training, as

follows:

50% of the time the second sentence comes after

the first one.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 48

50% of the time it is a random sentence from the

full corpus.

BERT is then required to predict whether the

second sentence is random or not, with the

assumption that the random sentence will be

disconnected from the first sentence. To

determine if the second phrase is connected to

the first, the entire input sequence is passed

through a Transformer-based model, the final

hidden state of the [CLS] token is transformed

into a 2 × 1 shaped vector by using a simple

classification layer, and the probability of

IsNextSentenceLabel is calculated by softmax -

an activation function.

Knowledge is useful. During training, the

model is given pairs of sentences as input and is

taught to predict if the second sentence is the

same as the next sentence in the original text.

BERT uses a specific [SEP] token to separate

sentences. The model is fed two input sentences

at a time during training, as follows:

- 50% of the time the second sentence comes

after the first one.

- 50% of the time it is a random sentence

from the full corpus.

BERT is then required to predict whether the

second sentence is random or not, with the as-

sumption that the random sentence will be dis-

connected from the first sentence. To determine

if the second phrase is connected to the first, the

entire input sequence is passed through a

Transformer-based model, the final hidden state

of the [CLS] token is transformed into a 2 X 1

shaped vector by using a simple classification

layer, and the probability of IsNextSentence-

Label is calculated by softmax - an activation

function.

Both Masked LM and Next Sentence Pre-

diction are used to train the model. This is to

minimize the combined loss function of the two

strategies. The following are some applications

of BERT’s usage in common NLP tasks:

Text Summarization: the most commonly

used model is BERTSUM [58] to produce

summary by highlighting or identifying key

sentences.

Text Classification: one of the typical Text

Classification is Sentiment Analysis - labeling a

sentence with positive, negative or neutral

emotions.

Question Answering: the input is a question

related to a given text and BERT is asked to mark

the answer by identify two vectors marking the

beginning and the end.

Named Entity Recognition: input is a passage

and the model is requested to find the different

types of entities (Person, Organization, Date,

etc.) that appear in the source.

Figure 22. BERT general architecture [33].

8. Applications of DL Models in NLP

Since introduced, those aforementioned

models have been applied successfully in

various domains, including NLP. Remarkable

applications of those models, together with their

advantages and disadvantages, can be capture at

the quick glance as follows.

Conventional RNN models calculate their

output based on the recent input and their mem-

ory calculated from the previous steps. By

reusing weights on every calculation step, RNN

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 49

is known to be deep in terms of time with a lim-

ited number of parameters. The nature of RNN

makes it suitable for time series data processing

applications. However, these models only have

the “memory of goldfish” and can only perform

well with short history context.

To handle short-term memory and vanishing

gradient problems in RNN, LSTM (Long short-

term memory) as an extended version of RNN

with gating technique to control information

flow over its inferencing steps and this deep

learning model become commonly used in time-

series data forecasting [59-61], speech recogni-

tion [62, 63], robotic tasks [64, 65] and NLP

tasks including text generation [66], text

classification [67], word prediction, next

sentence selection, and sentence topic prediction

[68, 69] . However, in the above applications,

LSTM still suffers from long-term dependency

difficulty. Tackling parallelism in RNNs, Ashish

(2017) [54] designed a new deep learning

sequence-to-sequence architecture that fully

replaced RNNs with atten- tional layers (self

attention and cross attention), shortening

training time and better representing the

relationship of data within the input and gen-

erated sequences. Transformer and its variants

are mostly used in machine translation [70-72],

summarization [73, 74], text generation [75] or

question answering [76-78], etc. This model ar-

chitecture has a limitation of its input sequence

length, leading to text chunking during inferenc-

ing and causing the disruption of information

representation.

BERT was built on the encoder of Trans-

former architecture [79] and trained with mask

and next sentence prediction tasks, thus can “un-

derstand” text sentences and provide a strong

base model for downstream tasks. In applica-

tions that need representation of input sequence

such as sentiment analysis [80, 81], intent pre-

diction [82, 83], POS Tagging [84], named entity

recognition [85-88], event extraction [8991],

relation extraction [88, 92-94]. BERT encodes

the input embedding sequence with selfattention

mechanism in a bidirectional manner, which

means a vector at any position can “see” all other

vectors and represent its meaning based on the

global context without step-by-step projection.

This mechanism is the strength of BERT, but it

is also a constraint stopping BERT to scale up in

terms of sequence length because of the memory

cost of storing matrices and computational cost

of dot products during attention calculation.

9. Conclusion

In the era of the Fourth Industrial Revolu-

tion, digital data have been incrementally gener-

ated in all domains in an automatic manner, call-

ing for intelligent systems to effectively process

them for making useful information and knowl-

edge for human beings. As natural languages are

still the main channel for communication in hu-

man societies, Natural Language Processing has

emerged as one of the important approaches to

response such a call. Especially, with the ad-

vancement of Deep Learning techniques, NLP

researchers find for themselves powerful tools to

handle enormous textual computer-generated data,

which bring NLP tasks to new breaking results.

In this paper, we have introduced an overall

roadmap about the modern approaches in NLP.

As the scientists in this area never cease to ex-

plore novel research directions for practical ap-

plication, currently there are several ongoing in-

terested works still under investigation for fur-

ther processing and extentions, remarkably as

follows.

- Natural Language Generation: This ap-

proach aims at generating natural language from

structured representation or even nontext data,

e.g. images. It can be considered as one of the

most advanced achievement of AI in NLP.

Intered readers can further read related works at

[95, 96].

- Opposite to Natural Language Generation,

Natural Language Understanding (NLU)

converts text into machine-understandable

formalism for further processing in downstream

tasks. Recently, this work has been attracted

much attention in chatbot development, such as

[97-99].

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 50

- Question-Answering: It can be considered

as a classical topic in NLP. However, with the

emerging of DL models, advanced training

methods such as zero-shot training has been

applied with positive result [100-102].

- Machine Reading Comprehension: It is

similar to NLU, however more focusing on

reading long narrative. Similar to NLU, zero-

shot training with deep pre-trained models have

been proposed with remarkable results reported

[103-105].

- Recently, Graph Neural Network (GNN)

has been emerged as a extremely suitable ap-

proach for processing graph-based data. As

semantic graph generation from textual data has

been investigated for a long time, using GNN for

NLP promises a very potential direction for

many related tasks [106-108].

- Using Pointer Generator Network (PGN)

for summarizaion [109]. Perhaps PGN is one of

the most recent techniques for improving

seq2seq model to handle the out- of-vocabulary

problem. The combination of

Transformer/BERT and PGN promises much

room for exploration in this direction.

- Using memory network as a the next gener-

ation of deep neural networks [110]. It is another

direction to manipulate the hidden memory of

recurrent networks more effectively. One can

consider it as counterpart of push-down

automata in the ANN world.

- Developing DL-based models such as

Variational AutoEncoder (VAE) for topic

modeling [111]. Up to now, LDA-based

methods have still been considered the most

appropriate approach for the problem of topic

modeling. However, traditional techniques of

this approach suffer from the scalability problem

when dealing with very large training corpus.

Making use of ANN-based architecture to

simulate LDA process is considered as a good

choice to overcome such problem.

- Developing multi-modal architecture for

NLP such as Visual Question Answering systems

[112]. This direction envisions an interesting

combination of multimedia data processing,

such as image and text. The attention/self-

attention techniques are then evolved as cross-

attention or co-attention once handling such a

task, producing much inspiring results at the

moment.

Acknowledgments

This research is funded by Ministry of Science

and Technology (MOST) within the framework of

the Program "Supporting research, development

and technology application of Industry 4.0" KC-

4.0/19-25 – Project “Development of a Vietnamese-

Bahnaric machine translation and Bahnaric text-to-

speech system (all dialects)” - KC-4.0-29/19-25.

Foremost, the author would like to express

his great appreciation to his students, who

worked tirelessly to contribute in material

preparation for this paper. The names of

contributors are alphabetically listed as Nguyen

Minh Dang, Nguyen Quang Duc, Tran Duy

Khanh, Le Minh Khoi, Bui Ngo Hoang Long,

Bui Le Ngoc Min, Pham Quoc Nguyen, Nguyen

Thanh Thong, Nguyen Vo Thuy Trang, Lu Ngoc

Thien Truc and Bui Cong Tuan.

References

[1] G. Guida, G. Mauri, Evaluation of Natural

Language Processing Systems: Issues and

Approaches, Proceedings of the Institute of

Electrical and Electronics Engineers (IEEE),

Vol. 74, 1986, pp. 1026-1035.

[2] S. J. Russell, P. Norvig, Artificial Intelligence - A

Modern Approach, 2nd Edition. Prentice Hall,

USA, 2003.

[3] D. Soergel, Organizing Information - Principles of

Data Base and Retrieval Systems. Elsevier,

Netherlands, 1985.

[4] P. J. Stone, D. C. Dunphy, M. S. Smith, The

General Inquirer: A Computer Approach to

Content Analysis, American Educational Research

Journal, Vol. 4, 1967, pp. 397,

https://doi.org/10.2307/1161774.

[5] E. Marsh, D. Perzanowski, Muc-7 Evaluation of Ie

Technology: Overview of Results, in Seventh

Message Understanding Conference (MUC-7):

Proceedings of a Conference Held in Fairfax,

Virginia, April 29 - May 1, 1998.

https://doi.org/10.2307/1161774

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 51

[6] D. M. Blei, Probabilistic Topic Models, Communi-

cations of the Association for Computing Machinery

(ACM), Vol. 55, No. 4, 2012, pp. 77-84.

[7] M. W. Madsen, The Limits of Machine

Translation. Center for Language Technology,

Univ. of Copenhagen, Copenhagen, 2009.

[8] L. Bradesko, D. Mladenic, A Survey of Chabot

Systems Through a Loebner Prize Competition,

Proceedings of Slovenian Language Technologies

Society Eighth Conference of Language

Technologies, pp. 34-37, 2012.

[9] I. Mani, M. T. Maybury, Advances in Automatic

Text Summarization, Computational Linguistics,

Vol. 26, pp. 280-281, The MIT Press, USA, 1999.

[10] T. Young, D. Hazarika, S. Poria, E. Cambria,

Recent Trends in Deep Learning Based Natural

Language Processing, IEEE Computational

Intelligence Magazine, Vol. 13, No. 3, 2018,

pp. 55-75,

https://doi.org/10.1109/MCI.2018.2840738.

[11] S. Minaee, N. Kalchbrenner, E. Cambria,

N. Nikzad, M. Chenaghlu, J. Gao, Deep Learning-

based Text Classification: A comprehensive

review, ACM Computing Surveys (CSUR),

Vol. 54, No. 3, 2021, pp. 1-40.

[12] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo,

J. Qiu, L. Zhang, W. Han, M. Huang et al., Pre-

trained Models: Past, Present and Future, AI Open,

2021.

[13] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and

G. Neubig, Pre-train, Prompt, and Predict: A Sys-

tematic Survey of Prompting Methods in Natural

Language Processing, Vol. 55, No. 9, 2023, pp. 1-35,

https://doi.org/10.48550/arXiv.2107.13586.

[14] Z. S. Harris, Distributional Structure, WORD,

Vol. 10, No. 2-3, 1954, pp. 146-162,

https://doi.org/10.1080/00437956.1954.11659520.

[15] G. Salton, C. Buckley, Term-weighting

Approaches in Automatic Text Retrieval,

Information Processing and Management, Vol. 24,

No. 5, 1988, pp. 513523,

https://doi.org/10.1016/0306-4573(88)90021-0.

[16] J. Leskovec, A. Rajaraman, J. D. Ullman, Mining

of Massive Datasets, 2nd ed. Stanford University,

USA, 2014.

[17] M. A. Hearst, Trends & Controversies: Support

Vector Machines, IEEE Intelligent Systems,

Vol. 13, 1998, pp. 18-28,

http://dx.doi.org/10.1109/5254.708428.

[18] M. A. Kumar, M. Gopal, An Investigation on Lin-

ear Svm and Its Variants for Text Categorization,

Second International Conference on Machine

Learning and Computing, pp. 27-31, 2010.

[19] H. Zhang, D. Li, Naive Bayes Text Classifier, 2007

IEEE International Conference on Granular

Computing (GRC 2007), 2007, pp. 708-708,

https://doi.org/10.1109/GrC.2007.40.

[20] M. S. Akhtar, A. Kumar, D. Ghosal, A. Ekbal,

P. Bhattacharyya, A Multilayer Perceptron Based

En­Semble Technique for Fine-Grained Financial

Sentiment Analysis, Proceedings of the 2017

Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2017, pp. 540-546.

[21] D. M. Blei, A. Ng, M. I. Jordan, Latent Dirich­Let

Allocation, The Journal of Machine Learning

Re­Search (JMLR), Vol. 3, 2003, pp. 993-1022,

https://doi.org/10.4236/ojdm.2012.21001.

[22] L. Dong, M. Lapata, Coarse-to-Fine Decoding for

Neural Semantic Parsing, 2018,

https://doi.org/10.48550/arXiv.1805.04793.

[23] Y. Zhang, P. Qi, C. D. Manning, Graph

Convolu­Tion Over Pruned Dependency Trees

Improves Relation Extraction, Association for

Computational Linguistics, Brussels, Belgium,

2018, https://doi.org/10.18653/v1/D18-1244.

[24] Y. Liu, M. Lapata, Text Summarization with

Pre­Trained Encoders, 2019,

https://doi.org/10.48550/arXiv.1908.08345.

[25] Zhang, X. Ma, K. Duh, B. Van Durme, Amr

Parsing As Sequence-to-Graph Transduction,

Association for Computational Linguistics, 2019,

pp. 80-94,

https://doi.org/10.48550/arXiv.1905.08704.

[26] Ghaddar, P. Langlais, A. Rashid, M. R.

Gholizadeh, Context-Aware Adversarial Training

for Name Regularity Bias in Named Entity

Recognition, Transactions of the Association for

Computational Linguistics, Vol. 9, 2021, pp. 586-604,

http://dx.doi.org/10.1162/tacl_a_00386.

[27] H. S. Tze, C. D. Manning, P. Raghavan, Introduction

to Information Retrieval, in Cambridge University

Press, Cambridge, Vol. 39, 2008.

[28] Y. Bengio, R. Ducharme, P. Vincent, C. Janvin, A

Neural Probabilistic Language Model, The Journal

of Machine Learning Research (JMLR), Vol. 3,

2003, pp. 1137-1155,

https://doi.org/10.1162/153244303322533223.

[29] Mikolov, K. Chen, G. CoRRado, J. Dean,

Ef­Ficient Estimation of Word Representations in

Vector Space, 1St International Conference on

Learning Representations, Iclr 2013 - Workshop

Track Pro­Ceedings, 2013, pp. 1-12,

[30] J. Pennington, R. Socher, C. Manning, Glove:

Global Vectors for Word Representation,

Proceedings of the 2014 Conference on Empirical

Meth­Ods in Natural Language Processing

https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.48550/arXiv.1908.08345
https://doi.org/10.48550/arXiv.1905.08704

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 52

(EMNLP), Association for Computational

Linguistics, 2014, pp. 1532-1543.

[31] Joulin, E. Grave, P. Bojanowski, M. Douze,

H. Jegou, T. Mikolov, Fasttext.Zip: Com­Pressing

Text Classification Models, 2016,

https://doi.org/10.48550/arXiv.1612.03651.

[32] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,

C. Clark, K. Lee, L. Zettlemoyer, Deep

Contextualized Word Representations, North

American Chapter of the Association for

Computational Linguistics (NAACL), 2018.

[33] J. Devlin, M. W. Chang, K. Lee, K. Toutanova,

BERT: Pre-Training of Deep Bidirectional

Transform­Ers for Language Understanding, North

American Chapter of the Association for

Computational Linguistics (NAACL), 2019,

pp. 4171-4186.

[34] Goodfellow, Y. Bengio, A. Courville, Deep

Learning. The MIT Press, USA, 2016.

[35] Y. A. Lecun, B. E. Boser, J. S. Denker,

D. Hender­Son, R. E. Howard, W. E. Hubbard, L.

D. Jackel, Backpropagation Applied to

Handwritten Zip Code Recognition, Neural

Computation, Vol. 1, 1989, pp. 541­551.

[36] Y. Kim, Convolutional Neural Networks for

Sentence Classification, Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing (EMNLP). Doha, Qatar:

Association for Computational Linguistics, Oct.

2014, pp. 1746-1751.

[37] C. N. Dos Santos, V. Guimaraes, Boosting Named

Entity Recognition With Neural Character

Embeddings, Proceedings of the Fifth Named

Entity Workshop. Beijing, China: Association for

Computational Linguistics, Jul 2015, pp. 25-33.

[38] M. Labeau, K. Loser, A. Allauzen, Non-Lexical

Neural Architecture for Fine-Grained Pos Tagging,

Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing. Lisbon,

Portugal: Association for Computational

Linguistics, Sep. 2015, pp. 232-237.

[39] D. E. Rumelhart, G. E. Hinton, R. J. Williams,

Learning Representations by Back-Propagating

Errors, Nature, Vol. 323, No. 6088, 1986,

pp. 533-536, https://doi.org/10.1038/323533a0.

[40] Y. Bengio, P. Simard, P. Frasconi, Learning Long-

Term Dependencies With Gradient Descent Is

Difficult, IEEE Transactions on Neural Networks,

Vol. 5, No. 2, 1994, pp. 157-166,

https://doi.org/10.1109/72.279181.

[41] Y. Bengio, N. B. Lewandowski, R. P. Canu,

Advances in Optimizing Recurrent Networks,

Proceedings of the 2013 IEEE International

Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2013, pp. 8624-8628.

[42] F. A. Gers, J. Schmidhuber, F. Cummins, Learning

to Forget: Continual Prediction With LSTM,

Neural Computation, Vol. 12, No. 10, 2000,

pp. 2451-2471.

[43] F. A. Gers, N. N. Schraudolph, J. Schmidhuber,

Learning Precise Timing With LSTM Recurrent

Networks, Journal of Machine Learning Research

(JMLR), Vol. 3, No. 8, 2002, pp. 115-143,

http://dx.doi.org/10.1162/153244303768966139.

[44] K. Cho, B. V. Merrienboer, C Gulcehre,

D. Bahdanau, F. Bougares, H. Schwenk, Y. B. Gio,

Learning Phrase Representations Using Rnn

Encoder-Decoder for Statistical Machine

Translation, Proceedings of the 2014 Conference

on Empirical Methods in Natural Language

Processing (EMNLP). Doha, Qatar: Association for

Computational Linguistics, 2014, pp. 1724-1734.

[45] J. P. Chiu, E. Nichols, Named Entity Recognition

with Bidirectional LSTM-CNNs, Transactions of

the Association for Computational Linguistics,

Vol. 4, 2016, pp. 357-370.

[46] X. Ouyang, P. Zhou, C. H. Li, L. Liu, Sentiment

Analysis Using Convolutional Neural Network,

Proceedings of the 2015 IEEE International

Conference on Computer and Information

Technology; Ubiquitous Computing and

Communications; De­Pendable, Autonomic and

Secure Computing; Perva­Sive Intelligence and

Computing (ICCIT), 2015, pp. 2359-2364.

[47] M. K. Balwant, Bidirectional LSTM Based on Pos

Tags and CNN Architecture for Fake News

Detection, Proceedings of the 2019 10th

International Conference on Computing,

Communication and Networking Technologies

(ICCCNT), 2019, pp. 1-6.

[48] Sutskever, O. Vinyals, Q. V. Le, Sequence to

Sequence Learning With Neural Networks,

Advances in Neural Information Processing

Systems (NIPS), 2014, pp. 3104-3112.

[49] D. Bahdanau, K. Cho, Y. Bengio, Neural Machine

Translation by Jointly Learning to Align and

Translate, The Computing Research Repository

(CoRR), 2015,

https://doi.org/10.48550/arXiv.1409.0473.

[50] P. A. Gagniuc, M. Chains: From Theory to

Implementation and Experimentation, John Wiley

& Sons, Wiley Blackwell, Chichester, West

Sussex, 2017.

[51] Radford, J. Wu, R. Child, D. Luan, D. Amodei,

I. Sutskever, Language Models are Unsupervised

Multitask Learners, Vol. 1, No. 8, 2019, pp. 9.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 53

[52] Howard, S. Ruder, Universal Language Model

Fine-Tuning for Text Classification, Proceedings

of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers). Melbourne, Australia: Association for

Computational Linguistics, Jul. 2018, pp. 328-339.

[53] L. Wang, Support Vector Machines: Theory and

Applications. Springer Science & Business Media,

New York, 2005, Vol. 177.

[54] Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,

Attention Is All You Need, Advances in Neural

Information Processing Systems (NIPS), 2017,

pp. 5998-6008.

[55] Radford, J. Wu, R. Child, D. Luan, D. Amodei,

I. Sutskever, Language Models Are Unsupervised

Multitask Learners, Openai Blog, Vol. 1, No. 8,

2019, pp. 9.

[56] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V.

Le, R. Salakhutdinov, Transformer-Xl: Atten­Tive

Language Models Beyond A Fixed-Length

Context, Proceedings of the 57Th Annual Meeting of

the Association for Computational Linguistics (ACL).

Florence, Italy: Association for Computational

Linguistics, Jul. 2019, pp. 2978-2988.

[57] Github, Must-Read Papers on Pre­Trained

Language Models (PLMS),

https://Github.Com/Thunlp/Plmpapers, 2021

(accessed on: September 1st, 2019).

[58] Y. Liu, Fine-Tune BERT for Extractive

Summarization, The Computing Research

Repository (CoRR), Vol. abs/1903.10318, 2019,

https://doi.org/10.48550/arXiv.1903.10318.

[59] S. Elsworth, S. Guttel, Time Series Forecasting

Using LSTM Networks: A Symbolic Approach,

CoRR, Vol. abs/2003.05672, 2020,

https://doi.org/10.48550/arXiv.2003.05672.

[60] N. Zheng, S. Du, J. Wang, H. Zhang, W. Cui,

Z. Kang, T. Yang, B. Lou, Y. Chi, H. Long, M. Ma,

Q. Yuan, S. Zhang, D. Zhang, F. Ye, J. Xin,

Predicting Covid-19 in China Using Hybrid AI

Model, IEEE Transactions on Cybernetics, Vol. 50,

2020, pp. 2891-2904,

https://doi.org/10.1109/tcyb.2020.2990162.

[61] X. H. Le, H. V. Ho, G. Lee, S. Jung, Application of

Long Short-Term Memory (LSTM) Neural

Network for Flood Forecasting, Water, Vol. 11,

No. 7, 2019, https://doi.org/10.3390/w11071387.

[62] W. Chan, N. Jaitly, Q. Le, O. Vinyals, Listen,

Attend and Spell: A Neural Network for Large

Vocabulary Conversational Speech Recognition,

2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (Icassp), 2016,

pp. 4960-4964.

[63] H. Sak, A. W. Senior, K. Rao, F. Beau- Fays, Fast

and Accurate Recurrent Neural Network Acoustic

Models for Speech Recognition, CoRR,

Vol. abs/1507.06947, 2015,

https://doi.org/10.48550/arXiv.1507.06947.

[64] F. Nicola, Y. Fujimoto, R. Oboe, A LSTM Neural

Network Applied to Mobile Robots Path Planning,

2018 IEEE 16th International Conference on

Industrial Informatics (Indin), 2018, pp. 349-354.

[65] X. Zhao, S. Chumkamon, S. Duan, J. Rojas, J. Pan,

Collaborative Human-Robot Motion Gener­Ation

Using LSTM-Rnn, 2018 IEEE-Ras 18Th

International Conference on Humanoid Robots

(Humanoids), 2018, pp. 1-9.

[66] S. Santhanam, Context Based Text-Generation

Using LSTM Networks, CoRR,

Vol. abs/2005.00048, 2020,

https://doi.org/10.48550/arXiv.2005.00048.

[67] D. S. Sachan, M. Zaheer, R. Salakhutdinov,

Revisiting LSTM Networks for Semi-Supervised

Text Classification Via Mixed Objective Function,

Proceedings of the AAAI Conference on Artificial

Intelligence, AAAI Press, Vol. abs/2009.04007,

2020,

https://doi.org/10.1609/aaai.v33i01.33016940.

[68] S. Ghosh, O. Vinyals, B. Strope, S. Roy, T. Dean,

L. P. Heck, Contextual LSTM (CLSTM) Models

for Large Scale NLP Tasks, CoRR,

Vol. abs/1602.06291, 2016,

https://doi.org/10.48550/arXiv.1602.06291.

[69] Y. Jo, L. Lee, S. Palaskar, Combining LSTM and

Latent Topic Modeling for Mortality Prediction,

CoRR, Vol. abs/1709.02842, 2017,

https://doi.org/10.48550/arXiv.1709.02842.

[70] P. Gao, S. Geng, Y. Qiao, X. Wang, J. Dai, H. Li,

Scalable Transformers for Neural Machine

Translation, CoRR, Vol. abs/2106.02242, 2021,

https://doi.org/10.48550/arXiv.2106.02242.

[71] Z. Wu, Z. Liu, J. Lin, Y. Lin, S. Han, Lite

Transformer With Long-Short Range Attention,

CoRR, Annual Meeting of the Association for

Computational Linguistics, Vol. abs/2004.11886,

2020, https://doi.org/10.48550/arXiv.2004.11886

[72] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong,

L. S. Chao, Learning Deep Transformer Models for

Machine Translation, CoRR, Vol. abs/1906.01787,

2019.

[73] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie,

C. Alberti, S. Ontanon, P. Pham, A. Ravula,

Q. Wang, L. Yang, A. Ahmed, Big Bird:

https://github.com/Thunlp/Plmpapers

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 54

Transformers for Longer Sequences, CoRR,

Vol. abs/2007.14062, 2020.

[74] M. Pietruszka, L. Borchmann, F. Gralinski,

Sparsifying Transformer Models With

Differentiable Representation Pooling, CoRR,

Vol. abs/2009.05169, 2020, Available:

https://arxiv.org/abs/2009. 05169 (accessed on:

September 1st, 2019).

[75] D. Hendrycks, C. Burns, S. Kadavath, A. Arora,

S. Basart, E. Tang, D. Song, J. Steinhardt,

Measuring Mathematical Problem Solving with the

Math Dataset, CoRR, arXiv, Vol. abs/2103.03874,

2021, https://doi.org/10.48550/arXiv.2007.14062.

[76] Z. Zhang, J. Yang, H. Zhao, Retrospective Reader

for Machine Reading Comprehension, Proceedings

of the AAAI Conference on Artificial Intelligence,

AAAI Press, Vol. abs/2001.09694, 2020.

[77] Z. Lan, M. Chen, S. Goodman, K. Gimpel,

P. Sharma, R. Soricut, Albert: A Lite BERT for

Self-Supervised Learning of Language

Representations, CoRR, Vol. abs/1909.11942,

2019, https://doi.org/10.48550/arXiv.1909.11942.

[78] C. Raffel, N. Shazeer, A. Roberts, K. Lee,

S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,

Exploring The Limits of Transfer Learning With A

Unified Text-to- Text Transformer, CoRR,

Vol. abs/1910.10683, 2019,

https://doi.org/10.48550/arXiv.1910.10683.

[79] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT:

Pre-Training of Deep Bidirectional Trans­Formers

for Language Understanding, CoRR,

Vol. abs/1810.04805, 2018,

https://doi.org/10.48550/arXiv.1810.04805.

[80] H. Batra, N. S. Punn, S. K. Sonbhadra, S. Agarwal,

BERT-Based Sentiment Analy­Sis: A Software

Engineering Perspective, CoRR,

Vol. abs/2106.02581, 2021,

https://doi.org/10.48550/arXiv.2106.02581.

[81] M. Hoang, O. A. Bihorac, J. Rouces, Aspect-Based

Sentiment Analysis Using BERT, Proceedings of

the 22Nd Nordic Conference on Computational

Linguistics, Linkoping University Electronic

Press, Sep. Oct. 2019, pp. 187-196.

[82] Q. Chen, Z. Zhuo, W. Wang, BERT for Joint Intent

Classification and Slot Filling, CoRR,

Vol. abs/1902.10909, 2019,

https://doi.org/10.48550/arXiv.1902.10909

[83] Kasthuriarachchy, M. Chetty, G. Karmakar,

D. Walls, Pre-Trained Language Models With

Limited Data for Intent Classification, 2020

International Joint Conference on Neural Networks

(IJCNN), 2020, pp. 1-9.

[84] L. Martin, B. Muller, P J. O. Suarez, Y. Dupont,

L. Romary, É. V. De La Clergerie, D. Seddah,

B. Sagot, Camembert: A Tasty French Language

Model, Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics,

Association for Computational Linguistics,

Vol. abs/1911.03894, 2019, 7203-7219.

[85] X. Wang, Y. Jiang, N. Bach, T. Wang, Z. Huang,

F. Huang, K. Tu, Automated Concatenation of

Embeddings for Structured Prediction, ACL 2021,

Vol. abs/2010.05006, 2020.

[86] W. Zhou, M. Chen, Learning From Noisy Labels

for Entity-Centric Information Extraction,

Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing,

Vol. abs/2104.08656, 2021.

[87] X. Li, X. Sun, Y. Meng, J. Liang, F. Wu, J. Li, Dice

Loss for Data-Imbalanced NLP Tasks, Proceedings

of the 58th Annual Meeting of the Association for

Computational Linguistics, Association for

Computational Linguistics, Vol. abs/1911.02855,

2020, pp 465-476.

[88] Ye, Y. Lin, M. Sun, Pack Together: Entity and

Relation Extraction With Levitated Marker,

Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics,

Association for Computational Linguistics,

Vol. abs/2109.06067, 2021, pp. 4904-4917.

[89] K. Huang, M. Yang, N. Peng, Biomedical Event

Extraction with Hierarchical Knowledge Graphs,

Findings of the Association for Computational

Linguistics: EMNLP 2020, Association for

Computational Linguistics, 2020, pp. 1277–1285.

[90] M. H. Dao, T. H. Truong, D. Q. Nguyen, Intent

Detection and Extraction on Graph Edge-

Conditioned Attention Net­Works with

Hierarchical Knowledge Graphs, CoRR,

Vol. abs/2009.09335, 2020,

https://doi.org/10.48550/arXiv.2009.09335.

[91] S. Li, H. Ji, J. Han, Document-Level Event

Argument Extraction by Conditional Generation,

CoRR, Vol. abs/2104.05919, 2021,

https://doi.org/10.48550/arXiv.2104.05919.

[92] Y. Yao, D. Ye, P. Li, X. Han, Y. Lin, Z. Liu,

Z. Liu, L. Huang, J. Zhou, M. Sun, DocRED: A

Large-Scale Document-Level Relation Extraction

Dataset, roceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

Association for Computational Linguistics,

Vol. abs/1906.06127, 2019, pp 764-777.

[93] B. Xu, Q. Wang, Y. Lyu, Y. Zhu, Z. Mao, Entity

Structure Within and Throughout: Modeling

Mention Dependencies for Document-Level

Relation Extraction, Xu, Benfeng, Proceedings of

the AAAI Conference on Artificial Intelligence,

Vol. 35, No. 16, 2021.

Q. T. Tho / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 31-55 55

[94] S. Lyu, H. Chen, Relation Classification with

Entity Type Restriction, CoRR,

Vol. abs/2105.08393, 2021,

https://doi.org/10.48550/arXiv.2105.08393.

[95] Z. Yan, C. Zhang, J. Fu, Q. Zhang, Z. Wei, A

Partition Filter Network for Joint Entity and

Relation Extraction, CoRR, Proceedings of the

2021 Conference on Empirical Methods in Natural

Language Processing, Vol. abs/2108.12202, 2021.

[96] W. Wang, Z. Zhang, J. Guo, Y. Dai, B. Chen,

W. Luo, Task-Oriented Dialogue System As

Natural Language Generation, Findings of the

Association for Computational Linguistics:

EMNLP 2020, Association for Computational

Linguistics, 2020, pp. 172-182.

[97] P. L. Dognin, I. Padhi, I. Melnyk, P. Das, ReGen:

Reinforcement Learning for Text and Knowledge

Base Generation Using Pretrained Language

Models, Proceedings of the 2021 Conference on

Empirical Methods in Natural Language

Processing, Dominican Republic, Association for

Computational Linguistics, 2021, pp. 1084-1099.

[98] L. Qin, F. Wei, T. Xie, X. Xu, W. Che, T. Liu,

G. Gin: Fast and Accurate Non-Autoregressive

Model for Joint Multiple Intent Detection and Slot

Filling, Proceedings of the 59Th Annual Meeting

of the Association for Computational Linguistics

and The 11Th International Joint Conference on

Natural Language Processing (Volume 1: Long

Papers), Online: Association for Computational

Linguistics, Aug. 2021, pp. 178-188.

[99] H. Zhang, X. Li, H. Xu, P. Zhang, K. Zhao, K. Gao,

Textoir: An Integrated and Visualized Platform for

Text Open Intent Recognition, Proceedings of the

59th Annual Meeting of the Association for

Computational Linguistics and The 11th

International Joint Conference on Natural

Language Processing: System Demonstrations,

Association for Computational Linguistics, 2021,

pp. 167-174.

[100] Banino, J. Balaguer, C. Blundell, Pon- Dernet:

Learning to Ponder, ICML 2021 Workshop

AutoML, 2021.

[101] H. A. Pandya, B. Ardeshna, D. Bhatt, S. Brijesh,

Cascading Adaptors to Leverage English Data to

Improve Performance of Question Answering for

Low-Resource Languages, Proceedings of the 18th

International Conference on Natural Language

Processing (ICON), NLP Association of India

(NLPAI), 2021, pp 544-549.

[102] S. Gholami, M. Noori, Zero-Shot Open­Book

Question Answering, 2021,

https://doi.org/10.48550/arXiv.2111.11520.

[103] L. Xu, X. Zhang, B. Zong, Y. Liu, W. Cheng, J. Ni,

H. Chen, L. Zhao, J. D. Choi, Zero­Shot Cross-

Lingual Machine Reading Comprehension via

Inter-Sentence Dependency Graph, Proceedings of

the AAAI Conference on Artificial Intelligence,

AAAI Press, Vol. 36, 1011, pp. 11538-11546.

[104] Y. Lu, H. Lu, G. Fu, Q. Liu, Kelm: Knowledge

Enhanced Pre-Trained Language Representations

wwith Message Passing on Hierarchical Relational

Graphs, ArXiv, Vol abs/2109.04223,

https://doi.org/10.48550/arXiv.2109.04223.

[105] X. Yuan, Interactive Machine Comprehension with

Dynamic Knowledge Graphs,

https://doi.org/10.48550/arXiv.2109.00077.

[106] Y. Meng, S. Zong, X. Li, X. Sun, T. Zhang, F. Wu,

J. Li, GNN-LM: Language Modeling Based on

Global Contexts Via GNN, ICLR 2022

Conference, 2021.

[107] M. Yasunaga, H. Ren, A. Bosselut, P. Liang,

J. Leskovec, QA-GNN: Reasoning With Language

Models and Knowledge Graphs for Question

Answering, Proceedings of the 2021 Conference of

the North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, Association for Computational

Linguistics, 2021, pp. 535-546.

[108] M. T. Phu, T. H. Nguyen, Graph Convolutional

Networks for Event Causality Identification with

Rich Document-Level Structures, Proceedings of

the 2021 Conference of the North American

Chapter of the Association for Computational

Linguistics: Hu­Man Language Technologies,

2021, pp. 3480-3490.

[109] See, P. J. Liu, C. D. Manning, Get to The Point:

Summarization with Pointer-Generator

Net­Works, Proceedings of the 55th Annual

Meeting of the Association for Computational

Linguistics (Vol­Ume 1: Long Papers). Vancouver,

Canada: Asso­Ciation for Computational

Linguistics, Jul. 2017, pp. 1073-1083.

[110] S. Sukhbaatar, A. D. Szlam, J. Weston, R. F. Gus,

End-to-End Memory Networks, Proceedings of the

28th International Conference on Neural Information

Processing Systems , Ser. Nips’15. Cambridge, MIT

Press, Vol. 2, 2015, pp. 2440-2448.

[111] T. Trinh, T. T. Quan, T. Mai, Nested Variational

Autoencoder for Topic Modeling on Microtexts

With Word Vectors, Expert Systems, Vol. 38,

No. 2, 2021, pp. E12639.

[112] Y. Srivastava, V. Murali, S. R. Dubey,

S. Mukher­Jee, Visual Question Answering Using

Deep Learning: A Survey and Performance

Analysis, International Conference on Computer

Vision and Image Processing, Springer, 2020,

pp. 75-86.

