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Abstract: Machine Reading Comprehension (MRC) is a great NLP task that requires concentration 

on making the machine read, scan documents, and extract meaning from the text, just like a human 

reader. one of the MRC system challenges is not only having to understand the context to extract the 

answer but also being aware of the trust-worthy of the given question is possible or not. Thought 

pre-trained language models (PTMs) have shown their performance on many NLP downstream 

tasks, but it still has a limitation in the fixed-length input. We propose an unsupervised context 

selector that shortens the given context but still contains the answers within related contexts. In 

VLSP2021-ViMRC Challenge [1] dataset, we also empirical several training strategies consisting 

of unanswerable question sample selection and different adversarial training approaches, which 

slightly boost the performance 2.5% in EM score and 1% in F1 score. 

Keywords: Machine reading comprehension, Adversarial learning, Vietnamese.* 
 

 

 

1. Introduction  

Machine Reading Comprehension (MRC) is 

a task introduced to test the level at which a 

machine can understand natural languages by 

asking the machine to answer questions based on 

a given context. The early MRC systems were 

designed on a latent hypothesis that all questions 

can be answered according to a given context, 

which is not always true for real-world cases. 

The current MRC task has required that the 

model have to classify unanswerable and 
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answerable questions to avoid giving plausible 

answers. Figure 1 shows an unanswerable 

example from UIT-ViQuAD 2.0 dataset [1]. 

PTMs such as ELMo [2], GPT [3], or BERT [4] 

have been proposed and achieved superior 

results on MRC tasks by capturing contextual 

representation features. Most of BERT-family 

architecture [4] usually face to the limitation of 

fixed input-length. This make a long input must 

be partitioned into smaller segments of 

manageable sizes and leads to the loss of salient 

cross-segment information, the context 
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fragmentation problem. Although researchers  

[5, 6] proposed new architecture to solve this 

problem, these previous works are focus on 

English only. Inspired by selecting salient 

sentences before extract the span answer [7, 8], 

we introduce an unsupervised context selector 

that address the long input context. 

 
Figure 1. An unanswerable MRC example in the 

VLSP2021-ViMRC challenge dataset. The 

highlighted span text in context is the plausible 

answer for the question. 

Adversarial training (AT) [9] is a means of 

regularizing classification algorithms by 

generating adversarial noise to the training data. 

In the Machine Reading Comprehension task, 

AT has been leveraged for learning domain-

invariant representation [10], which made the 

MRC model generalize well to predict answers 

on unseen out-of-domain. The performance of 

models also has been shown the improvement 

while applying Virtual   Adversarial   Training 

(author?) on SQuAD1.1 [12], SQuAD2.0 [13] 

and RACE[14]. According to the benefits of AT, 

we decided to apply several training strategies 

that can boost the model performance across 

MRC tasks which is discussed further in Section 

2.3 and Section 2.4. 

Our contributions   are   summarized   as 

follows: 

• We introduce an unsupervised context 

selector to solve the long context problem. 

•  We introduce a simple strategy to generate 

unanswerable examples, called Question-

Context Shuffle. 

 

• We experiment with different 

adversarial training approaches in MRC. 

We evaluate and experiment with the 

proposed methods on the dataset released by 

VLSP2021-ViMRC Challenge [1]. 

2. Background 

2.1. MRC for Vietnamese 

There are limited studies of understanding a 

text and answering relevant questions for 

Vietnamese. Most of the Vietnamese dataset that 

is close to the MRC task comes from AI 

challenge or Shared-task workshop[1]. It makes 

lack of benchmark datasets for Vietnamese to 

develop robust PTMs or MRC models. Then for 

the first time, UIT-ViQuAD[15] is the first 

public academic dataset in MRC for Vietnamese. 

The author benchmarked the dataset in different 

embeddings, and multilingual PTMs showed the 

best performance on this dataset. 

2.2. Pre-trained Language Models 

PTMs on the large unlabeled corpus has 

shown impressive performance on many 

downstream NLP tasks, proving that they can 

learn universal patterns. There have been several 

applications for using pre-trained language 

models that can capture contextual word 

embeddings, such as ELMo [2], GPT [3], or 

BERT [4] to transfer the knowledge from pre-

training to various downstream tasks.  

For the very first time that BERT has been 

introduced, it significantly outperforms previous 

SOTA models on eleven NLP tasks in GLUE 

[16]. In terms of monolingual language models 

pre-trained for Vietnamese, it has shown 

significant improvements in Named Entity 

Recognition, Parsing, and Natural Language 

Inference tasks. PhoBERT pre-training approach 

is based on RoBERTa [18] which optimizes the 

BERT pre-training procedure for more robust 

performance. 

Given input con text sequence C = {c1, c2, ..., 

cN} and question Q = {q1, q2, ..., qM} where N is 

the context length and M is the question length. 

The model has to verify the question is 

answerable or not, for each answerable 
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predictions, the model is enabled to output the 

correct answer span. The answer span A is either 

a valid span A = {ai, a2, ..., aj} where 1 ≤ i ≤ j ≤ 

N or an empty A = {}. The input model is the 

concatenation of C and Q with special tokens 

[CLS] and [S E P] as [CLS] Q [S E P] C [S E P]. 

We employ a linear layer with Softmax 

operation and feed last-layer hidden 

representation H ∈ RLXd as the input to obtain 

the start/end position probability distributions 

ps, pe respectively. The training objective of 

answer span prediction is defined as cross 

entropy loss for the start and end index position. 

 
where Nk is the number of examples, 𝑦𝑠

𝑘and 𝑦𝑒
𝑘 

are respectively ground-truth start and end 

position of example k. We also employ linear 

layer with Softmax for hCLS ∈ H and use cross 

entropy as loss function for classification 

answerable/unanswerable question. 

 
where 𝑝𝑢

𝑘 is answerable and unanswerable 

probability distributions. U means the number of 

classes (U = 2 in this work). The overview of our 

method architecture is illustrated in Figure 2. 

2.3. Adversarial Training 

Small perturbations to the input images can 

mislead models to predict wrong labels in the 

image classification, and the perturbed inputs are 

called adversarial examples [19]. Then, a simple 

adversarial training method has been proved can 

improve the robustness of the model by training 

on both clean examples and adversarial 

examples [9]. In NLP tasks, a popular approach 

to generate perturbations is to perturb word 

vectors from the embedding layer. In general, 

adversarial training idea is formulated as 

follows: 

                y = fθ(x)             (3) 

y’
 
= fθ(x + noise)               (4) 

 

 
Figure 2. The overview architecture of our method.

where θ is our model weight, x is the 

embedding of the input sequence and noise is 

simply a tensor that is randomly generated with 

normal distribution. Motivated by making the 

MRC model more generalized with diverse 

inputs, we apply adversarial learning, which is a 

noise layer for the input. In this work, we utilize 

R3F [20] that encourages the model to generalize 

with representation changes during training 

without hurting performance. The adversarial 
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training loss lossADV is calculated by the 

following: 

lossADV = KL(y, y’
 

) + KL(y
 

, y’) 
where KL is the KL-Divergence. The final loss 

function is the summation of mentioned loss 

with λ0, λ1 and λ2 are learned weight for each 

task: 

 

2.4. Domain Agnostic (DA) 

Adapting models to a new domain without 

fine-tuning is a challenging problem in deep 

learning. In this paper, we also experiment with 

adversarial training called Domain-agnostic. The 

adversarial training is leveraged for learning 

domain-invariant representation. Specifically, 

the MRC model learns to make the discriminator 

that classifies the joint embedding of context and 

question into the given T domains. If the 

discriminator cannot tell the difference between 

embeddings from different T domains, the MRC 

model learns domain-invariant feature 

representation. 

The discriminator is trained to minimize the 

KL divergence between uniform distribution 

over T classes and discriminator’s prediction: 

 
where l is domain category, U(l) is the uniform 

distribution over T classes and h is the hidden 

representation of both context and question. Nk 

is number of samples of class k and N is total 

samples. 

3. Method 

3.1. Unsupervised Context Selector 

Due to the input sequence may exceeding the 

beneficial length of BERT [4] (256 tokens), the 

losing context results in not only a missing 

answer context but also harm the model by 

learning a noisy sample. We introduce an 

unsupervised context selector that shortens the 

context but still contains the answer within 

related contexts. The context selector takes 

context and question as input then outputs a 

shorter version of the context while ensuring the 

answer must be included. We observe that 

almost all of the questions focus on the entities 

in the question, so we want to take advantage of 

these properties to shorten the context. 

Since the linguistic style and syntactic of both 

context and question from the dataset are formal, 

we decided to use POS-TAGER from 

underthesea which has been trained on a dataset 

that has a similar distribution of the former 

dataset. Given the question, we filter stopwords 

and use POS-TAGER from underthesea to get 

POS output. Then we select important phrases 

based on the following output with tags: 

’N’,’Np’,’V’,’Vp’ to finalize a phrase set N. The 

context is chunked by sentence segmentation 

from NLTK [21], each sentence is scored by the 

occurrence of tokens that are included in the 

extracted phrases. The sentence s has t syllable-

level tokens would be selected if it has a score 

score(s) > 2ϵ as following: 

score(s) = max( f(s) + f(s+1); f (s) + f (s-1)) (8) 

f(s) =∑ 𝑔(𝑡)𝑡𝜖𝑁                                             (9) 

where ϵ = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑡)𝑡∈𝑠;𝑠𝑐𝑜𝑟𝑒(𝑡)#0 , g(t) is the 

number of co-occurrence of an token t in 

the given context and question. We also 

select the previous and next sentence of the 

selected sentence to make a leading sentence and 

augment the surrounding context. 

3.2. Question-Context Shuffle 

According to Table 3, there is an imbalance 

between answerable and unanswerable 

questions. This makes the model easily predict 

plausible answers and mistaken the given 

context and question. We introduce a simple 

strategy called Question-Context shuffle to 

generate unanswerable examples from the 

training set. This approach aims to augment 

more unanswerable samples by getting a random 

irrelevance question for each given context. 

We divide the generated unanswerable 

samples into two types are EXAMPLEShard and 

EXAMPLESeasy. for each context, the selected 

unanswerable questions are from different 

context but the sample title are categorized into 
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EXAMPLEShard while the unanswerable 

questions from different title are categorized into 

EXAMPLESeasy. The title is the main topic of 

many contexts which is shown in Table 1. The 

statistic of the dataset after pre-processing is 

presented in Table 2 in which the total samples 

of two class has been balanced. 
Table 1. Sample structure of UIT-ViQuAD 2.0 

dataset. Each example contains a title corresponds to 

the the category of the context. Each example has 

lots of context, each context contains multiple 

(question,answer,is-possible) triplets 

 

 
Table 2. Statistic of classes of training dataset after 

data augmentation 

 

4. Experimental Results 

4.1. Setup 

We employ RDRSegmenter [22] from 

VnCoreNLP [23] to perform word-level and 

sentence segmentation on UIT-ViQuAD 2.0 

dataset (e.g "Những cá_thể xung_quanh ghi_nhớ 

tôm   tít   bằng   cách   nào   ?"). Our experimental 

models were implemented PyTorch [24] and 

utilize Huggingface’s Transformers [25] for 

pretrained language models. In our 

experiments, almost all experiments used the 

Shuffle-Context Shuffle strategy to make to 

model aware of more data. 

In practice, we have three-phase of training. 

In the first phase, we make the model generalize 

with and warm up with the data by setting the λ0 

= 0.2, λ1 = 0.6, and λ2 = 0.2. We observed that 

the lossADV is converged after the first phase, we 

decided to set λ2 = 0 on every next phase. In the 

second phase, we aim to make the classification 

loss which only saves the checkpoint with the 

lowest loss on the dev set. In the third phase, we 

focus on the start/end index loss, which 

considers only the best checkpoint based on CE 

loss of start/end on dev set. We set the λ0 = 0.9 

and λ1 = 0.1 on the second phase and λ0 = 0.1 

and λ1 = 0.9 on the third phase. 

Table 3. Data analysis of UIT-ViQuAD 2.0 dataset. 

# stands for numbers of samples. Public stands for 

Public testset. Private stands for Private testset. The 

average length unit is calculated in syllable-level 

 

4.2. Dataset 

In VLSP2021-ViMRC Challenge [1], the 

dataset is organized into 3 sets are train/public 

test/private test has 138/19/19 number of articles 

respectively. The analysis of the dataset is shown 

in Table 3. Since there is no dev set, we decided 

to categorize the articles in the training dataset 

into two main sets based on answerable and 

unanswerable questions, making the split dataset 

balanced in categories and no leaked articles. 

Then we randomly split these two sets with a 

ratio of 9/1 before uniting them into a train/dev 

set based on the mentioned ratio. 

4.3. Hyperparameters 

In all experiment settings, we use Adam 

optimizer [26] with a learning rate of 1e-5 

without warm-up steps, batch size of 32. In the 

inference stage, we set the threshold δ is 0.4 to 

determine if the question is answerable or not. 

We set the maximum sequence length for 

context and questions to be 230 and 50 for each 

sample. All experiments are launched with a 
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maximum of 10 epochs and a single A100-40GB 

GPU device. 

4.4. Metric 

We evaluated our models by Exact Match 

(EM) and F1 score for each question-answer 

pair. The EM score measures the percentage of 

predictions that match ground-truth answers in 

character level. The F1 metric aims to care 

equally about precision and recall of the number 

of shared words between the prediction and the 

truth. The precision is the ratio of the number of 

shared words to the total number of words in the 

prediction, while recall is the ratio of the number 

of shared words to the total number of words in 

the ground truth. The higher the F1 and EM 

scores are, the closer ground truth and predicted 

context is. 

4.5. Results 

4.5.1. Main Result 

We use two main PTMs as backbone are: 

PhoBERT that supports a maximum of 256 

tokens, and XLM-Roberta that provides a 

maximum input length is 512 tokens. We 

observed that monolingual models (e.g 

phoBERT [17]) perform better than multilingual 

models (e.g mBERT [4], XLM-Roberta [27]). 

Moreover, training monolinguals on a word-

level dataset improves performance significantly 

due to improved quality of words and reduced 

length of context and question pairs. Using 

methods Context Selector and Adversarial 

Training also slightly improve performance. 

Result experiment is shown on Table 4. 

In terms of the private test set, our method has 

exceeded the baseline +9.76 in F1 score and 

+7.12 in Exact Match score. However, our 

method still shows limitations compare to top-3 

teams and we would discuss them in Section 4.6. 

The result of the top-3 teams and our result in the 

private test is illustrated in Table 5. 

Table 4. Results on the UIT-ViQuAD 2.0 public test set. (R3F, DA) refers to adversarial training methods. (CS) 

refers to Context Selector. ⋆ refers to word-level. w/o QAS refers to without Question-Context shuffle 

 
Table 5. Results on UIT-ViQuAD 2.0 private test set. 

⋆ refer to word-level 

 

 

4.5.2. Context Selector 

We also evaluate our unsupervised Context 

Selector on the train set, which is shown in Table 

6. The probability that the shortened context 

contains an answer shows competitive results 

compared to the raw input. In terms of the 

average context length, the Context Selector 

helps the model to receive salient sentences only 

by reducing from 324,32 tokens to 169,2 tokens. 

The result shows that the Context Selector has 
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crucially reduced the context length while 

retaining the answer in the filtered context. 

4.6. Error Analysis 

We also examined the errors of our method in 

the dev dataset that decrease the evaluation score 

significantly. The major errors are:  

Span error: We found that about 40% of errors 

are span errors. More specifically, the start and 

end index from the model prediction usually is 

shifted from the correct ground truth. We 

hypothesis that this span error may come from 

the annotator’s bias. It is difficult for the model 

to be aware of samples with ambiguous answer 

text. Table 7 shows a few span error examples 

that we have analyzed in VLSP2021-ViMRC 

Challenge. 
Table 6. Results of Context Selector on T-

ViQuAD 2.0 train set. ∗ refers samples that has 

context length > 256 syllable tokens 

 
Misclassify answerable/unanswerable: 

About 35% of errors are failures of 

misclassifying answerable and unanswerable 

questions. According to our experiment on dev 

set, the best threshold δ to classify either the 

answerable question or not is 0.4. It means that 

our model does not generalize for the 

classification of the question when encountering 

out-of-domain questions. 

Context Selector: Since we use the context 

selector to shorten the context length for each 

input sequence, the performance of the whole 

pipeline still depends on the context selector 

output result. We observe that the context 

selector dealt with straightforward questions 

well (e.g., "Tên của vua Nam_Hán là gì?"). 

However, it has two main drawbacks not 

exploiting the training data and depending on 

manual rules. This makes the context selector 

unable to acknowledge the entities in the dataset 

domain and has a limited ability to handle multi-

hop questions. Moreover, the surrounding 

context of the answer may not be sufficient or 

related to the filtered context, which may hurt the 

model on prediction. 
Table 7. Examples of error analysis in VLSP-2021 

MRC. Label refers to Grouth-truth of the question. 

Pred refers to predictions of the model with given 

question 

 

5. Conclusion 

We introduce applied Context Selector to 

overcome the large context problem, which is a 

major limitation of PTMs. We introduce 

Question-Passage shuffle to solve imbalanced 

data by generating unanswerable examples. In 

addition, we investigated the effect of some 

adversarial training methods on the VLSP2021-

ViMRC Challenge dataset. We also show error 

analysis which helps future studies in MRC or 

interested research utilize our method. Our 

experiments demonstrate that adversarial 

training methods improve the MRC model over 

the pre-trained model 1%. 
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