
VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11

An Algorithm for Graceful Labelings of Certain
Unicyclic Graphs

Pambe Biatch’ Max1, Jay Bagga2, Laure Pauline Fotso1

1University of Yaounde I, Yaounde, Cameroon
2Ball State University, Muncie, Indiana, USA

Abstract

A graceful labeling of a simple graph G is a one-to-one map f from the vertices of G to the set {0, 1, 2, · · · , |E(G)|},
such that when each edge xy is assigned the label | f (x) − f (y)|, the resulting set of edge labels is {1, 2, · · · , |E(G)|},
with no label repeated. We are interested at Truszczynski’s conjecture, that all unicyclic graphs except cycles Cn

with n ≡ 1(mod 4) or n ≡ 2(mod 4), are graceful. Jay Bagga et al. introduced an algorithm to enumerate graceful
labelings of cycles and “sun graphs”. We generalize their algorithm to enumerate all graceful labelings of a class
of unicyclic graphs and provide some experimental results.

c© 2014 Published by VNU Journal of Science.
Manuscript article: received 24 January 2014, revised 14 March 2014, accepted 25 March 2014
Corresponding author: Jay Bagga, jbagga@bsu.edu

Keywords: Unicyclic graph, Labeling algorithm, Graceful labeling

1. Introduction

Given a simple graph G = (V, E) with the
set of vertices V(G) and the set of edges E(G),
f is a vertex (resp. edge) labeling of G if it
is a mapping from V(G) (resp. E(G)) to a set
L of labels. If f is an injection, from V(G) to
{0, 1, · · · , |E(G)|} and if for all edges xy of E(G),
the assigned labels

∣∣∣ f (x) − f (y)
∣∣∣ are all distinct,

then f is called a graceful labeling. A graph G
is graceful if it has a graceful labeling. Rosa [6]
called such a labeling a β-valuation. The term
graceful labeling was first used by Golomb [5].
Graceful labeling traces its origin in 1967 when
Ringel [6] conjectured that every tree T with n
edges, decomposes the complete graph K2n+1 in
2n + 1 subgraphs, all isomorphic to T . To our
knowledge, Ringel’s conjecture is still unsolved.
An attempt of solution was made by Rosa [4]
who showed that if a tree T with n edges is
graceful, then it decomposes the complete graph
K2n+1 in 2n + 1 subgraphs, all isomorphic to T .

He further conjectured that every tree is graceful.
Even though Rosa’s conjecture is still open,
special classes of trees including caterpillars [6],
symmetrical trees [6], trees with at most 4 end-
vertices and trees with diameter at most 5 [9] have
been shown to be graceful.

Rosa [6] showed that a cycle Cn is graceful for
all n except when n ≡ 1(mod 4) or n ≡ 2(mod 4).
This led to the discovery of several classes of
unicyclic graceful graphs. Truszczynski [8]
conjectured that all unicyclic graphs except
the cycles forbidden by Rosa. Bermond [3]
conjectured that lobsters are graceful. In this
paper, we focus our work on Truszczynski’s
conjecture and Jay Bagga et al. algorithm [1].
Jay Bagga et al. [1] designed algorithms to
enumerate graceful labelings of all graceful
cycles and certain classes of graceful unicyclic
graphs. We present a generalization of that
algorithm and use it to generate graceful
labelings of some new classes of unicyclic
graphs.

2 Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11

Fig. 1: Some common graphs.

The rest of the paper is organized as
follows: Section 2 introduces basic definitions
and notation used throughout the paper. Section 3
briefly describes the algorithm of Jay Bagga et
al [1], introduces our new algorithm, explains
a proof of correctness, and presents some
experimental results. We conclude in section 4.

2. Definitions and Notation

In this section, we introduce some definitions
and notation. Definitions of common classes
of graphs such as paths, stars, caterpillars and
unicyclic graphs can be found in standards graph
theory books. Figure 1 illustrates some of the
common graphs. A Cn−unicyclic graph is one
where the cycle has n vertices. We observe that
for unicyclic graphs, the number of vertices is
equal to the number of edges. A symmetrical
tree is a rooted tree in which every level contains
vertices of the same degree.

Given a labeling f of a unicyclic graph G,
a sublabeling is an ordered union of disjoint
subsequences of f . As described in Jay Bagga
et al. [1], a labeling f =< a1, a2, · · · , an >

of Cn can be considered an ordered (circular)

sequence. When f is graceful, then for 1 ≤
k ≤ n, we get n sublabelings S k of f , where
S k is the sublabeling of f which produces edge
labels k, k + 1, · · · , n. We may also consider this
sublabeling S k of f as the ordered union of paths
in Cn containing edges with labels k through n.
For example, given the graceful labeling f =<

4, 15, 0, 16, 2, 11, 3, 13, 1, 14, 7, 9, 12, 6, 10, 5 > of
C16, we have S 13 =< 15, 0, 16, 2 >< 1, 14 >.
Thus S 13 is the ordered union of the two paths
P4 and P2 with vertices labeled 15-0-16-2 and
1-14, respectively. We also observe that for any
graceful labeling f , S n =< 0, n > and S 1 = f .

Adding first (resp. adding last) an element e
to a sublabeling S k of the labeling f results in
inserting e at the first (resp. last) position in
one of the sequences of S k. The operation is
denoted add f irst(S k, e) (resp. addlast(S k, e)).
For example, adding first the element 2 to the
sublabeling < 4, 5, 9 > gives < 2, 4, 5, 9 >.
Adding last the element 1 to the sublabeling <

4, 5, 9 > gives < 4, 5, 9, 1 >. Concatenating
two sublabelings S k1 and S k2 results in applying
addlast(S k1 , e) repeatedly to the elements e of
S k2 . The operation of concatenation is denoted
concat(S k1 , S k2). For example concat(< 4, 5, 2 >
, < 8, 0, 1 >) =< 4, 5, 2, 8, 0, 1 >.

If f =< a1, a2, · · · , an > is a graceful labeling
of a unicyclic graph G of order n, then the
complementary labeling f of f is given by f =<

n − a1, n − a2, · · · , n − an >. Clearly, f is also a
graceful labeling of G.

3. Enumerating graceful labelings of graphs

In this section, we describe an algorithm for
enumeration of graceful labelings of unicyclic
graphs and use it to enumerate graceful labelings
of unicyclic graphs obtained by identifying an
end vertex of a star to a vertex of a cycle, K1,m−1⊕

C4, 3 ≤ m ≤ 15.

3.1. Algorithm of Jay Bagga et al. [1]

The algorithm of Jay Bagga et al. finds
graceful labelings of a cycle Cn by generating
edge labels as it traverses the nodes of an
execution tree. Given a cycle Cn , the algorithm

Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11 3

Level n: 0, n

�� ((
Level n − 1: n − 1, 0, n

��

}}

0, n, 1

��

}}

Level n − 2: 1, n − 1, 0, n n − 2, 0, n, 1

n − 1, 0, n, 2 0, n, 1, n − 1

• ••

Fig. 2: Nodes of the execution tree of the
algorithm of Jay Bagga et al.

starts the computation at level L with L = n,
where level indicates that it is necessary to find a
sublabeling containing two labels ai and a j such
as |ai − a j| = L. At level L = n there exists only
one sublabeling, namely < 0, n > and hence this
is the starting sublabeling. The next step is to find
sublabelings for L = n − 1. In this case, there are
two alternatives: < n − 1, 0, n > and < 0, n, 1 >.
The algorithm splits the computation into two
branches. The left branch uses the sublabeling
< n − 1, 0, n > and the right branch uses the
sublabeling < 0, n, 1 >. The algorithm continues
in this way, computing sublabelings for L = n− 2
by splitting into several branches each time and
recursively calling each branch. The computation
for a particular branch continues until either a
graceful labeling is found or no graceful labeling
is possible. In the last case, a backtracking is
performed. Figure 2 shows the nodes of the
execution tree from level n to n − 2.

Figure 3 shows an example of enumeration of
graceful labelings of the cycle C4 when f =<

1, 3, 0, 4 >, < 3, 0, 4, 2 >, < 2, 0, 4, 1 >, and
< 0, 4, 1, 3 > producing respectively the edge
labels set {2, 3, 4, 3, }, {3, 4, 2, 1}, {2, 4, 3, 1} and
{4, 3, 2, 3}. We observe that the labelings <

1, 3, 0, 4 > and < 0, 4, 1, 3 > are not graceful,
while < 3, 0, 4, 2 > and < 2, 0, 4, 1 > are graceful.

In the next subsection, we present a
generalization of this algorithm which
enumerates graceful labelings of some classes of

Level 4: 0, 4

�� &&
Level 3: 3, 0, 4

�� &&

0, 4, 1

&&

��

Level 2: 1, 3, 0, 4 3, 0, 4, 2 2, 0, 4, 1

0, 4, 1, 3

Fig. 3: Execution tree of the enumeration of
graceful labelings of C4.

v2 vm+1

yyyyyyyy

HHHHHHHHH

vk v1 vm

EEEEEEEE vm+2

vvvvvvvvv

vk+1 vm+3

Fig. 4: Unicyclic graphs K1,m−1 ⊕C4.

graceful unicyclic graphs.

3.2. New Approach for enumerating Graceful
Labelings of unicyclic graphs

Our new approach constructs an execution tree
from the root to the leaves like the algorithm
of Jay Bagga et al. [1]. We consider the class
K1,m−1 ⊕ C4 of unicyclic graphs composed of a
star K1,m−1 with m vertices and a cycle C4 with 4
vertices. Figure 4 shows such a class of unicyclic
graphs. Sekar [7] proved that graphs belonging to
this class of unicyclic graphs are graceful.

We represent a labeling of a graph of this class
by

J s1, s2, · · · , sm, cm+1, cm+2, cm+3 I

where s1 is the label of the central vertex of the
star, s2, s3,· · ·, sm−1 are the labels of the peripheral
vertices of the star. sm is the label of the common
vertex and cm+1, cm+2, cm+3 are the labels of the
vertices of the cycle. In other words,

f (vi) =


si if i ∈ {1, 2, · · · ,m},

ci if i ∈ {m + 1,m + 2,m + 3}.

as shown in figure 5.

4 Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11

s2 cm+1

yyyyyyyy

HHHHHHHHH

sk s1 sm

EEEEEEEE cm+2

vvvvvvvvv

sk+1 cm+3

Fig. 5: Labeling of a graph of the class K1,m−1 ⊕

C4.

Fig. 6: A graceful labeling of K1,8 ⊕C4 produced
by our algorithm.

We use three procedures, Common, StarL and
CycleL which are called whenever the previously
labeled vertex is respectively the common vertex,
a vertex in the star or a vertex in the cycle. The
main algorithm performs all graceful labelings of
a given graceful graph. The label of the common
vertex can be any of the vertex labels. The main
algorithm proceeds as follows:

i. Either assign 0 to the common vertex, or to a
vertex in the star or to a vertex in the cycle.

ii. If the assigned vertex is the common vertex
then procedure Common is called to look for
edge label n. Otherwise if the labeled vertex
is a vertex of the star, procedure StarL is
called to look for edge label n. Otherwise
CycleL is called to look for edge label n.

iii. End.

Figure 6 illustrates an example of a graceful
labeling produced by these procedures. We
describe these procedures next.

3.2.1. Description of the procedure Common
The procedure Common enumerates graceful

labelings of the unicyclic graph K1,m−1 ⊕ C4

starting when the label 0 or m + 3 is assigned to
the common vertex vm. From a previously labeled
vertex, it uses the set of available labels and the
edge label l to be produced to label a new vertex
in the star or in the cycle. If it successfully labels
a vertex in the star or in the cycle, StarL and
CycleL are called to look for edge label l − 1. If
not, the labeling is incomplete and the execution
stops.

i. Suppose l = n and the label 0 is assigned to
the common vertex. There is just one way
of obtaining edge label n: by labeling an
adjacent vertex of the common vertex with
the highest label l. If the labeled vertex is in
the star, it is necessarily s1, otherwise it can
be any of the two neighbors of the common
vertex in the cycle.

ii. If the labeled vertex is in the star, we assign
to a peripheral vertex a vertex label such
that the obtained edge label is n − 1. If the
labeled vertex is in the cycle, we assign to an
adjacent vertex, a vertex label such that the
obtained edge label is n − 1. The procedure
for obtaining edge label n − 2 is similar :
in the star, we assign to a peripheral vertex
a vertex label such that the obtained edge
label is n − 2; in the cycle, we assign to an
adjacent vertex of previously labeled vertex,
a vertex label such that the obtained edge
label is n − 2.

iii. More generally, suppose we have found all
edge labels from n down to k + 1 and we
want to obtain edge label k, for k = n−3, n−
4, · · · , 2, 1.
In the cycle, as in the algorithm of Jay Bagga
et al, we assign, if possible, to an adjacent
vertex of previously labeled vertex, a vertex
label such that the obtained edge label is
k. In the star, we assign if possible to a
peripheral vertex, a vertex label such that the
obtained edge label is k. Else the procedure
stops.

3.2.2. Description of the procedure CycleL
The procedure CycleL labels the vertices of the

cycle. It is a modified version of the algorithm

Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11 5

of Jay Bagga et al. [1]. It uses the available
vertex labels, the previously labeled vertices and
the edge label l to be produced to look for edge
label l − 1. The difference with the algorithm
of Jay Bagga et al is that: if the previously
labeled vertex is the common vertex, it calls the
procedure common to look for the edge label l−1
instead of recursively calling itself as with the
other vertices of the cycle. If CycleL fails in
finding the edge label l, the execution stops and
a backtrack is performed. In the line 3 of the
algorithm CycleL, S represents a subsequence in
S c. Rank is the index of the subsequence in the
sublabeling.

3.2.3. Description of the procedure StarL
The procedure StarL labels the vertices of

the star. It uses the available vertex labels,
the previously labeled vertices, the label of the
central vertex and the edge label l to be produced
to look for edge label l − 1. If StarL is called
for the first time, there are two cases. In the
first case, the label 0 has been assigned to a
vertex of the cycle. Then the previously labeled
vertex can only be the common vertex; in this
case, the central vertex is assigned a label such
that the induced edge label is l. In the other
case (the algorithm started with the assignment
of the label 0 to the central vertex of the star),
independently of the previously labeled vertices,
StarL searches to assign a label to a peripheral
vertex such that the induced edge label is l, this
is done as follows: if the peripheral vertex to
be labeled is the common vertex, it calls the
procedure Common to look for edge label l − 1;
otherwise StarL is recursively called to look for
the edge label l − 1. If StarL fails in finding the
edge label l, the execution stops and a backtrack
is performed.

3.2.4. Main Algorithm and detailed description
of the procedures

The following variables are used in the main
algorithm and the procedures: L is the set
of available vertex labels; m is the number
of vertices of the star; S s is a sublabeling
containing labels of the vertices of the star; S c

is a sublabeling containing labels of vertices
of the cycle; l is the value of the edge label
to be produced; la is an edge label which is
automatically calculated when all the vertices of
the cycle are labeled. S s and S c indicate the
vertices already labeled in the star and in the
cycle, respectively.

Algorithm 1: CycleL
Input : L, m, S s, S c, l, la
Output: L (updated), S c (updated) {∗ S c is a concatenation of

sequences ∗}

begin1
Possibility = ∅2
for w ∈ L do3

for S ∈ S c do4
if |w − f irst(S)| = l then5

{∗ The function f irst (resp. last) returns6
the first (resp. last) element of a
sequence ∗}
Possibility = Possibility7
∪{(w, f irst, rank)}

if |w − last(S)| = l then8
Possibility = Possibility9
∪{(w, last, rank)}

if the number of elements of S c is 4 {∗ All the vertices10
of the cycle are labeled ∗} then

lc = |S c(1) − S c(4)|11

else12
lc = la13

for all (v, position, rank) ∈ Possibility do14
S d = new(S c) {∗ A new sublabeling S d is created15
and elements of S c are copied in S d ∗}

if position = first then16
add f irst(S d(rank), v) {∗ S l(i) returns the ith17
sequence of the sublabeling S l ∗}

else18
addlast(S d(rank), v)19

if all the vertices of the cycle have not been20
labeled then

Call CycleL (L \ {v}, m, S s, S d , l − 1, la)21

Call Commom (L \ {v}, m, S s, S d , l − 1, lc)22

end23

Example 1. Consider the unicyclic graph K1,2 ⊕

C4 in figure 7. The application of the main
algorithm, illustrated in figure 9, produces the
following result:

• (S tart1) shows the labeling of the common
vertex with 0.
(S tart2) presents the labeling of the central
vertex of the star with 0. There are two

6 Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11

Algorithm 2: Main-Algorithm
Input : m
begin1

S s =< >2
S c =< >3
l = m + 34
initialize(L, l)5
add f irst(S s, 0)6
Call StarL (L, m, S s, S c, l, -1)7
S s =< >8
add f irst(S c, 0)9
Call CycleL (L, m, S s, S c, l, -1)10
S s =< >11
S c =< >12
Call Common (L, m, S s, S c, l, -1)13

end14

Algorithm 3: StarL
Input : L, m, S s, S c, l, la
Output: L (updated), S s (updated)

begin1
Possibility = ∅2
for w ∈ L do3

if |w − f irst(S s)| = l then4
{∗ The function f irst returns the first element5
of a sequence ∗}
Possibility = Possibility ∪{w}6

for all v ∈ Possibility do7
S d = new(S s) {∗ A new sublabeling S d is created8
and elements of S s are copied in S d ∗}

addlast(S d , v)9
if all the vertices of the star are not labeled then10

Call StarL (L \ {v}, m, S d , S c, l − 1, la)11

Call Commom (L \ {v}, m, S d , S c, l − 1, la)12

end13

branches: 61 (Labeling of the peripheral
vertex of the star with 6. The procedure
StarL is called to look for edge label 5) and
62 (Labeling of the common vertex with 6.
The procedure Common is called to look for
edge label 5).
(S tart3) presents the labeling of a vertex of
the cycle with 0. There are two branches: 63
(Labeling of the common vertex with 6. The
procedure CycleL is called to look for edge
label 5) and 64 (Labeling of a vertex of the
cycle with 6. The procedure CycleL is called
to look for edge label 5).

• (51) shows the labeling of the common vertex
of the cycle with 5. The procedure Common

Algorithm 4: Common
Input : L, m, S s, S c, l, la
Output: Labeling f , the concatenation of S s and S c // f is

graceful or not
begin1

if All the edge labels have been produced then2
Set f =< > // The empty sequence3
for all labels v in S s do4

addlast(f , v)5

for all label v in S c do6
addlast(f , v)7

if f is graceful then8
Output f9

else10
if there exists a vertex of the star that is not11
labeled then

if l , la then12
Call StarL (L, m, S s, S c, l, la)13

else14
Call StarL (L, m, S s, S c, l − 1, la)15

if there exists a vertex of the cycle that is not16
labeled then

Call CycleL (L, m, S s, S c, l, la)17

end18

•

����
????

• • •

???? •

����

•

Fig. 7: Unicyclic graph K1,2 ⊕C4.

is called to look for edge label 4.
(52) shows the labeling of the common vertex
of the cycle with 5. The procedure Common
is called to look for edge label 4.
(53) shows the labeling of a vertex of the
cycle with 1. There are two branches: 41
(Labeling of the common vertex with 4. The
procedure StarL is called to look for edge
label 3) and 42 (Labeling of the common
vertex with 5. The procedure Common is
called to look for edge label 3).

• And so on...

Figure 8 shows the execution tree of the main
algorithm. In this execution tree, X → Y means
that node Y emanates from node X. At a leaf of
the execution tree, a backtracking is performed

Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11 7

•

�� ##GGGGGGGGGG

{{wwwwwwwwww

Look for 6 Start1 Start2

{{wwwwwwwww

��

Start3

�� !!DDDDDDDD

Look for 5 61

��

62 63 64

��}}zzzzzzzz

Look for 4 51 52 53

}}zzzzzzzz

��
Look for 3 41 42

Fig. 8: Nodes of the execution tree.

or procedure Common is applied. For example,
consider the node (S tart1) in figure 9, procedure
Common is applied on it. Here the vertex label set
is L = {0, 1, 2, 3, 4, 5, 6} and figure 10 illustrates
the execution of the procedure common on the
node (S tart1):

• (S tart1) shows the labeling of the common
vertex with 0. There are two branches: 61
(labeling of the central vertex of the star with
6) and 62 (labeling of an adjacent vertex of
the common vertex in the cycle with 6).

• (61) produces the branches 51 (labeling of
the peripheral vertex of the star with 1) and
52 (labeling of an adjacent vertex of the
common vertex, in the cycle, with 5).
(62) produces the branches 53 (labeling
of the central vertex of the star with 5),
54 (labeling of an adjacent vertex of the
common vertex, in the cycle, with 5) and 55
(labeling of a vertex in the cycle with 1).

• And so on...

At the end of the execution of the procedure
Common, we have 4 graceful labelings:

• J 6, 1, 0, 4, 2, 3 I,

• J 6, 3, 0, 5, 1, 2 I,

• J 5, 1, 0, 6, 3, 2 I,

• J 5, 1, 0, 6, 4, 3 I.

Fig. 9: Execution of procedure Main-Algorithm
on K1,2 ⊕C4.

3.3. Correctness of the algorithm
In this section we present a proof of the

correctness of the algorithm.

Theorem 1. The algorithm achieves a graceful
labeling f =J s1, s2, · · · , sm, cm+1, cm+2, cm+3 I
of K1,m−1 ⊕C4 exactly once.

Proof 1. We prove it by induction on the
sublabeling S k. A sublabeling S k of f is the union

8 Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11

Fig. 10: Execution of procedure Common on the
node S tart1.

of those subsequences of f that produce edge
labels from n down to k. For every sublabeling
S k of f (1 ≤ k ≤ n), our algorithm achieves S k

exactly once.
The algorithm starts by looking for the edge

label n. Thus for the base case, k = n, S n =J
0, n I and the algorithm achieves it at level n at
the the root of the execution tree. Suppose that the
algorithm achieves S k+1 exactly once, let prove
that S k is also achieved exactly once. Suppose
that in S k, the edge label k is obtained by vertex
labels lx (assigned to vertex x)and ly (assigned to
vertex y) in f , so that |lx− ly| = k. There are many
cases (= is part of S i in all these cases):

• xy is an interior edge of a path (illustrated
in figure 11(a)).

• xy is a pendant edge of a path (illustrated in
figure 11(b)).

• e is the edge of the path P2 elsewhere in the
graph (illustrated in figure 11(c)).

• xy is the edge of the path P2 intersecting
another path of S k+1 (illustrated in
figure 11(d)).

When the algorithm tries to achieve S k+1, it
uses exactly one of the four cases described.
Thus, from n down to k the algorithm achieves
S k exactly once. Then for k = 1, S 1 = f and
by induction we can conclude that the algorithm
achieves exactly once.

3.4. Experimental results
We implemented our algorithm to enumerate

graceful labelings of some unicyclic graphs
K1,m−1 ⊕ C4, 3 ≤ m ≤ 15. Table 1 contains all
the graceful labelings of K1,2 ⊕ C4. Figure 12
illustrates the graceful labeling of K1,2 ⊕ C4 in
line 9. The last column of table 2 gives the total
number of graceful labelings of K1,m−1 ⊕ C4. We
observe that since a unicyclic graph G of order n
has n edges, exactly one of the vertex labels from
the set {0, 1, 2, · · · , n} is missing from any graceful
labeling of G. As shown in the results by Jay
Bagga et al. [2], the study of missing labels is of
interest. In table 2, the element on the intersection

Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11 9

Figure 11(a): xy is an interior edge of a path.

Figure 11(b): xy is a pendant edge of a path.

Figure 11(c): e is the edge of the path

Figure 11(d): xy is the edge of the path P2
intersecting

Fig. 11: Correctness of the algorithm.

3
3

��������
2

========

1 1 2 4 6

6 <<<<<<<< 5.

5
��������

0

Fig. 12: Graph K1,2 ⊕ C4 with labeling on line 9.
of table 1.

of column l and row G gives the number of times
the vertex label l is missing from the graceful
labelings of G. For example, the value 12 in
column 8 and row S 9 ⊕ C4 is the number of
times the vertex label 8 is missing from the 82
graceful labelings of K1,8 ⊕C4. Clearly, this table
is symmetric about the middle column or columns
confirming the fact that the for every labeling with
a missing label a, the complementary labeling has

Table 1. 26 Graceful labelings of K1,2 ⊕C4.

No Graceful labeling
1. 2 3 4 1 6 0
2. 5 4 1 6 0 3
3. 3 2 1 6 0 4
4. 4 3 2 6 0 5
5. 1 2 5 3 6 0
6. 3 4 5 2 6 0
7. 1 5 6 0 2 3
8. 1 5 6 0 3 4
9. 2 1 6 0 5 3

10. 4 3 6 0 5 2
11. 0 6 5 3 4 1
12. 0 6 5 2 3 1
13. 0 5 6 4 1 2
14. 0 5 6 3 4 2
15. 0 5 6 3 1 2
16. 6 1 0 2 5 4
17. 6 1 0 3 2 4
18. 6 1 0 3 5 4
19. 6 3 0 2 1 5
20. 5 1 0 2 3 6
21. 5 1 0 3 4 6
22. 4 5 0 3 1 6
23. 2 3 0 4 1 6
24. 6 0 1 3 2 5
25. 6 0 1 4 3 5
26. 0 3 6 4 5 1

the missing label n − a.

In table 3, a dot on the intersection of column l
and row G indicates that the label l is assigned to
the central vertex of the star in G. For example,
the dot on the intersection of column 2 and line
K1,9⊕C4 indicates that 2 is assigned to the central
vertex of K1,9. Table 3 shows that for 6 ≤ m ≤
15 and for any graceful labeling of K1,m−1 ⊕ C4,
the central vertex cannot have a label in the set
{4, 5, · · · ,m − 1}. We next show that this result
holds for all m ≥ 6.

Theorem 2. For m ≥ 6 and for any graceful
labeling of K1,m−1 ⊕C4, the central vertex cannot
have a label in the set {4, 5, · · · ,m − 1}.

Proof 2. Suppose f is a graceful labeling of
K1,m−1 ⊕C4. We observe that for each of the edge
labels m + x, for 0 ≤ x ≤ 3, the vertex labels

10 Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11

Table 2. Number of Graceful labelings of K1,m−1 ⊕C4, 3 ≤ m ≤ 15.

Table 3. Labels of central vertex of the star (K1,m−1 ⊕C4 with 3 ≤ m ≤ 15).

Pambe et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 1–11 11

that are the end points for that edge have labels
m+x+y and y, where 0 ≤ x+y ≤ 3. Now suppose,
on the contrary, that the central vertex has a label
that belongs to the set {4, 5, · · · ,m−1}. Then none
of the edges with labels m + x (0 ≤ x ≤ 3) can
be edges on the star. In other words, these edge
labels are on the edges of C4. Hence the edges of
the star have labels 1, 2, · · · ,m − 1. If the central
vertex has a label in the set {5, · · · ,m − 2}, then
the edge label m − 1 is impossible since the only
vertex labels that achieve this are m − 1 + z and z
for 0 ≤ z ≤ 4. Hence the central vertex must have
label 4 or m − 1.

Since these are complementary labels in f and
f , it is enough to consider one of them. So assume
that the central label is 4. Then to achieve the
edge label m − 1, the common vertex must have
label m + 3. This forces the label 0 on a cycle
vertex adjacent to the common vertex. Also to
achieve the label m − 2 on an edge of the star,
a peripheral vertex must have label m + 2. This in
turn forces the labels 1 and m+1 on the remaining
two vertices of the cycle, with 1 adjacent to m+3.
Since the only ways to achieve edge label m − 3
on the star is to have a peripheral vertex label 1
or m + 1, we get a contradiction. This proves the
result.

An easy generalization of the above argument
leads to the following general result, which we
state below. We omit the proof.

Theorem 3. For n ≥ 4, for m ≥ n + 2 and for any
graceful labeling of K1,m−1⊕Cn, the central vertex
cannot have a label in the set {n, n+1, · · · ,m−1}.

4. Conclusion

An attempt of generalization of the algorithm
of Jay Bagga et al. [1] brought us to introduce
a new algorithm which enumerates graceful

labelings of graceful unicyclic graphs K1,m−1⊕C4,
a star K1,m−1 with m vertices sharing a common
vertex with the cycle C4. For this algorithm which
is linked to the structure of K1,m−1 ⊕C4, there are
three starting points, a vertex in the cycle, a vertex
in the star and the common vertex. The different
starting points ensure that the common vertex
can have any label from the set of labels. We
implemented our algorithm to enumerate graceful
labelings of unicyclic graphs K1,m−1⊕C4, 3 ≤ m ≤
15. Experimental results illustrate that the values
of the label of the common vertex belong to the
set {0, 1, 2, 3, 4, n − 3, n − 2, n − 1, n}.

In our future work, we will seek to derive
general characteristics of graceful unicyclic
graphs which could lead to a more general proof
of the conjecture of Truszczynski.

References

[1] Jay Bagga, Adrian Heinz, M. Mahbubul Majumber,
An Algorithm for Graceful Labelings of Cycles,
Congressus Numerantium 186 (2007), 57-63.

[2] Jay Bagga, Adrian Heinz, M. Mahbubul Majumber,
Properties of Graceful Labelings of Cycles,
Congressus Numerantium, 188 (2007), 109-115.

[3] J. C. Bermond, Graceful graphs, radio antennae and
French windmills, Graph Theory and Combinatorics,
Pitman, London (1979) 18-37.

[4] G. Chartrand and L. Lesniak, Graphs & Digraphs,
Chapman & Hall CRC, New York, (1996).

[5] S. W. Golomb, How to number a graph, in Graph
Theory and Computing, R. C. Read, ed., Academic
Press, New York (1972) 23-37.

[6] A. Rosa, On certain valuations of the vertices of a
graph, Theory of Graphs (Internat. Symposium, Rome,
July 1966), Gordon and Breach, N. Y. and Dunod Paris
(1967) 349-355.

[7] C. Sekar, Studies in Graph Theory, Ph. D. Thesis,
Madurai Kamaraj University, 2002.

[8] M. Truszczynski, Graceful unicyclic graphs,
Demonstatio Mathematica, 17 (1984) 377-387.

[9] S. L. Zhao, All trees of diameter four are graceful,
Graph Theory and its Applications: East and West
(Jinan, 1986), 700-706, Ann. New York Acad. Sci.,
576, New York Acad. Sci., New York, 1989.

