
VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21

Symbolic Round-Off Error between Floating-Point and
Fixed-Point

Anh-Hoang Truong, Huy-Vu Tran, Bao-Ngoc Nguyen

VNU University of Engineering and Technology,
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

Overflow and round-off errors have been research problems for decades. With the explosion of mobile and embed-
ded devices, many software programs written for personal computers are now ported to run on embedded systems.
The porting often requires changing floating-point numbers and operations to fixed-point, and here round-off error
between the two versions of the program often occurs. We propose a novel approach that uses symbolic compu-
tation to produce a precise representation of the round-off error. From this representation, we can analyse various
aspects of the error. For example we can use optimization tools like Mathematica to find the largest round-off error,
or we can use SMT solvers to check if the error is always under a given bound. The representation can also be
used to generate optimal test cases that produce the worst-case round-off error. We will show several experimental
results demonstrating some applications of our symbolic round-off error.

c© 2014 Published by VNU Journal of Science.
Manuscript communication: received 13 September 2013, revised 25 March 2014, accepted 25 March 2014
Corresponding author: Anh Hoang Truong, hoangta@vnu.edu.vn

Keywords: Round-Off Error, Symbolic Execution, Fixed-Point, Floating-Point

1. Introduction

Traditional round-off error [1] is the difference
between the real result and the approximate
result that a computer generates. As computers
may or may not be equipped with floating-point
units (FPU), they may use different numbers
representations: floating-point or fixed-point,
respectively. In addition, the two types of
computers usually have different precisions in
their mathematical operations. As a result, the
two types of computers may produce different
approximation results for the same program
executed with the same input data. The difference
between the approximation results is another
type of round-off errors that we address in this
paper. Historically, round-off error has had
severe consequences, such as those encountered
in a Patriot Missile Failure [2] and Ariane 501

Software Failure [3].

Indeed there are three common types of
round-off errors: real numbers versus floating-
point numbers, real numbers versus fixed-point
numbers, and floating-point numbers versus
fixed-point numbers. This paper is based
on our previous work [4] where we focused
on the last type of round-off errors for two
main reasons. Firstly, with the wide-spread
use of mobile and embedded devices, many
applications developed for personal computers
are now run on these platforms. Secondly,
even with new applications, it is impractical and
time consuming to develop complex algorithms
directly on embedded devices. So, many complex
algorithms are developed and tested on personal
computers that use floating-point numbers before
they are ported to embedded devices that use
fixed-point numbers.

A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21 13

Our work was inspired by the recent
approaches to round-off error analysis [5, 6]
that use various kinds of intervals to approximate
round-off error. Instead of approximation,
we try to build symbolic representation of
round-off errors based on the idea of symbolic
execution [7]. The symbolic representation,
which we called ’symbolic round-off error’, is
an expression over program parameters that
precisely represents the round-off errors of the
program.

The symbolic round-off error allows us to
analyse various aspects of (concrete) round-off
errors. First, to find the maximum round-off
error, we only need to find the optima of the
symbolic round-off error in the (floating-point)
input domain. We usually rely on an external tool
such as Mathematica [8] for this task. Second,
to check if there is a round-off error above a
threshold or to guarantee that the round-off error
is always under a given bound we can construct
a numerical constraint and use SMT solvers to
find the answers. We can also generate test cases
that are optimal in terms of producing the largest
round-off error.

Our main contributions in this paper is the
building of symbolic round-off error between
floating-point and fixed-point computation for
arithmetic expressions, which is extensible for
programs, and the application of the symbolic
round-off error in finding the largest round-
off error. We also built a tool and do some
experimental results which show the advantages
and disadvantages our approach.

The rest of the paper is structured as follows.
The next section is some background. In
Section 3 we extend the traditional symbolic
execution to include round-off error information
so that we can build a precise representation of
the round-off error for a program. Then we
present our Mathematica implementation to find
the maximal round-off error and provide some
experimental results in Section 4. Section 5
discusses related work. Section 6 concludes the
paper.

2. Background

IEEE 754 [9, 10] defines binary representations
for 32-bit single-precision floating-point numbers
with three parts: the sign bit, the exponent, and
the mantissa or fractional part. The sign bit is 0
if the number is positive and 1 if the number is
negative. The exponent is an 8-bit number that
ranges in value from -126 to 127. The mantissa
is the normalized binary representation of the
number to be multiplied by 2 raised to the power
defined by the exponent.

In fixed-point representation, a specific radix
point (decimal point) written ”.” is chosen so
there is a fixed number of bits to the right and a
fixed number of bits to the left of the radix point.
The later bits are called the integer bits. The
former bits are called the fractional bits. For a
base b (usually base 2 or base 10,) with m integer
bits and n fractional bits, we denote the format
of the fixed-point by (b,m, n). When we use a
base for fixed-point, we also assume the floating-
point uses the same base. The default fixed-point
format we use in this paper, if not specified, is
(2, 11, 4).

Example 1. Assume we use fixed-point format
(2, 11, 4) and we have the floating-point number
1001.010101. Then the corresponding fixed-point
number is 1001.0101 and the round-off error is
0.000001.

Note that there are two types of lost bits
in fixed-point computation: overflow errors and
round-off errors. We only consider the latter in
this work, as they are more subtle to track.

3. Symbolic round-off error

In this section we will first present our idea,
inspired from [6], in which we apply symbolic
execution [7] to compute a symbolic round-
off error for arithmetic expressions. Then we
will extend the idea to programs, which will be
simplified to a set of arithmetic expressions with
constraints for each feasible execution path of the
programs.

14 A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21

3.1. Symbolic round-off error

Let R, L and I be the sets of all real
numbers, all floating-point numbers and all fixed-
point numbers, respectively. L and I are finite
because a fixed number of bits are used for their
representations. For practicality, we assume that
the number of bits in fixed-point format is not
more than the number of significant bits in the
floating-point representation, i.e. we assume I ⊂
L ⊂ R.

Let’s assume that we are working with an
arithmetic expression over variables x1, .., xn,
denoted by function y = f (x1, .., xn) where x1, ..xn

and y are in R. For a value x ∈ R we also denote
x′ ∈ L the rounded floating-point value of x, and
x′′ ∈ I the rounded fixed-point value of x′.

As arithmetic operations on floating-point and
fixed-point may be different (in precision), we
denote fl and fi the floating-point and fixed-point
version of f , respectively, where real arithmetic
operations are replaced by the corresponding
operations in L and I, respectively. We denote
the operations in real as +,−,×,÷, in floating-
point as {+l,−l,×l,÷l} and in fixed-point as
{+i,−i,×i,÷i}.

The round-off error analysis in literature
usually focuses on the largest error between f and
fl, which can be formalized:

sup
x j∈R, j=1..n

| f (x1, .., xn) − fl(x′1, .., x
′
n)|

In our setting we focus on the largest round-off
error between fl and fi. Since L is finite, we can
use max instead of sup:

max
x′j∈L, j=1..n

| fl(x′1, .., x
′
n) − fi(x′′1 , .., x

′′
n)|

Alternatively, one may want to check if
there exists a round-off error exceeding a given
threshold θ. In other words, one wants to find if
the following constraint is satisfiable.

∃x′1, .., x
′
n s.t. | fl(x′1, .., x

′
n) − fi(x′′1 , .., x

′′
n)| > θ

Note that here we have some assumptions
which we base on the fact that the fixed-
point function is not manually reprogrammed to

optimize for fixed-point computation. First, the
evaluations of fl and fi are the same. Second, the
scaling of variables in fi is uniform, i.e. all values
and variables use the same fixed-point format.
Third, as mentioned in Section 2, we assume
floating-point and fixed-point use the same base.

Because of the differences in floating-point and
fixed-point representations, a value x′ ∈ L usually
needs to be rounded to the corresponding value
x′′ ∈ I. So we have a non-decreasing monotonic
function r from L to I and for x′ ∈ L, x′ −l r(x′)
(= x′ −l x′′) is called the conversion error. This
error is in L because we assume I ⊂ L. Note that
we need to track this error as it will be used when
we evaluate in floating-point, but not in fixed-
point. In other words, the error is accumulated
when we are evaluating the expression in fixed-
point computation.

As we want to use the idea of symbolic
execution to build a precise representation of
round-off errors, we need to track all errors,
when they are introduced by rounding and then
propagated by arithmetic operations, and also
new errors introduced because of the difference
between arithmetic operations – ×l and ×i in
particular.

To track the error, now we denote a floating-
point x by (xi, xe) where xi = r(x) and xe =

x −l r(x). Note that xe can be negative,
depending on the rounding methods (example
below). The arithmetic operations with symbolic
round-off error between floating-point and fixed-
point denoted by +s, −s, ×s and ÷s are defined in
a similar way to [6] as follows. The main idea in
all operations is to determine the accumulation of
error during computation.

Definition 1 (Basic symbolic round-off error).

(xi, xe) +s (yi, ye) = (xi +l yi, xe +l ye)

(xi, xe) −s (yi, ye) = (xi −l yi, xe −l ye)

(xi, xe) ×s (yi, ye) =(r(xi ×l yi),

xe ×l yi +l xi ×l ye +l xe ×l ye

+l re(xi, yi))

A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21 15

(xi, xe) ÷s (yi, ye) =(r(xi, yi),

(xi +l xe) ÷l (yi +l ye) −l xi ÷l yi

+l de(xi, yi))

where re(xi, yi) = (xi ×l yi) −l (xi ×i yi) (resp.
de(xi, yi) = (xi ÷l yi) −l (xi ÷i yi)) are the round-
off errors between floating-point and fixed-point
multiplication (resp. division).

Note that multiplication of two fixed-point
numbers may cause round-off error so the round
function r is needed in the first part and re(xi, yi)
in the second part. Similarly we have de(xi, yi)
in the definition of ÷s. Addition and subtraction
may cause overflow errors, but we do not consider
them in this work.

The accumulated error may not always
increase, as shown in the following example.

Example 2 (Addition round-off error). For
readability, let the fixed-point format be (10,
11, 4) and let x = 1.312543, y = 2.124567.
With rounding to the nearest, we have
x = (xi, xe) = (1.3125, 0.000043) and
y = (yi, ye) = (2.1246,−0.000033). Apply
the above definition with addition, we have:

(xi, xe) +s (yi, ye) =
(1.3125 +l 2.1246, 0.000043 +l (−0.000033) =
(3.4371, 0.00001)

Example 3 (Multiplication round-off error).
With x, y in Example 2, for multiplication, we
have:

(xi, xe) ×s (yi, ye)
= (r(1.3125 ×l 2.1246), 0.000043 ×l 2.1246
+l 1.3125 ×l (−0.000033) +l 0.000043
×l (−0.000033) +l re(1.3125, 2.1246))

= (r(2.7885375), 0.000048043881
+l re(1.3125, 2.1246))

= (2.7885, 0.000048043881 +l (1.3125 ×l 2.1246)
−l (1.3125 ×i 2.1246))

= (2.7885, 0.000048043881 +l 2.7885375
−l 2.7885)

= (2.7885, 0.000085543881)

As we can see in Example 3, the multiplication
of two fixed-point numbers may cause a round-
off error, so the second part of the pair needs an

additional value re(). This value, like conversion
errors, is constrained by a range. We will examine
this range in the next section.

3.2. Constraints
In Definition 1, we represent a number by two

components so that we can later build symbolic
representation for the round-off error (the second
component). In this representation, the two
components are constrained by some rules.

Let assume that our fixed-point representation
uses m bits for the integer part and n bits for the
fractional part and is in binary. The first part xi is
constrained by its representation. So there exists
d1, .., dm+n such that(

xi =

m+n∑
i=1

dm−i2m−i
)

where d j ∈ {0, 1}.

The xe = x −l r(x) is constrained by the ’unit’
of the fixed-point in base b, which is b−n, where
unit is the absolute value between a fixed-point
number and its successor. With rounding to the
nearest, this constraint is half of the unit:

|xe| ≤ b−n/2.

Like xe, the re() and de() part also have similar
constraints.

3.3. Symbolic round-off error for expressions
In normal symbolic execution, an input

parameter is represented by a single symbol.
However in our approach, it will be represented
by a pair of two symbols and we have the
additional constraints on the symbols.

As we are working with arithmetic
expressions, the symbolic execution will be
proceeded by the replacement of variables in
the expression with a pair of symbols, followed
by the application of the arithmetic expression
according to Definition 1. The final result will
be a pair that consists of a symbolic fixed-point
result and a symbolic round-off error. The
later part will be the one we need for the next
step – finding properties of round-off errors, in
particular its global optima. But before that we
will we discuss the extension of our symbolic
round-off error for C programs.

16 A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21

/*

format: (2, 11, 4);

threshold: 0.26;

x: [-1, 3];

y: [-10, 10];

*/

typedef float Real;

Real rst;

Real maintest(Real x, Real y) {

if(x > 0) rst = x*x;

else rst = 3*x

rst -= y;

return rst;

}

Fig. 1. An example program.

3.4. Symbolic round-off error for programs

Following [6], we simplify our problem
definition as follows. Given a mathematical
function (input and output parameters are
numeric) in the C programming language,
with specifications for initial ranges of input
parameters, fixed-point format and a threshold
θ, determine if there is an instance of input
parameters that causes the difference between the
results of the function computed in floating-point
and fixed-point above the threshold. Similarly to
the related work, we restrict the function to the
mathematical functions without unknown loops.
That means the program has a finite number of
all possible execution paths.

By normal symbolic execution [7] we can
find, for each possible execution path, a pair of
result as an expression and the corresponding
constraints over the input parameters. Now
for each pair, we can apply the approach
presented in Section 3.1, combining with the
path conditions/constraints to produce a symbolic
round-off error for the each path.

Figure 1 is the example taken from [6] that
we will use to illustrate our approach. In this
program we use special comments to specify the
fixed-point format, the threshold, and the input
ranges of parameters.

3.5. Applications of symbolic round-off error

The symbolic round-off error can have several
applications. To find the largest round-off error is
only one of them that we focused here. It can be
used to check the existence of a round-off error
above a given threshold as we mentioned. The
application will depend on the power of external
SMT solvers as the constraints are non-linear in
many programs. Since the symbolic round-off
error is also a mathematical function, it can also
tells us various information about the properties
of the round-off error, such as which variables
make significant contribution to the error. It can
also be used to compute other round-off error
metrics [11], such as the frequency/density of the
error above a specified threshold, or the integral
of error.

4. Implementation and experiments

4.1. Implementation

We have implemented a tool in Ocaml [12]
and used Mathematica for finding optima. The
tool assumes that by symbolic execution the C
program for each path in the program we already
have an arithmetic expression with constraints
(initial input ranges and path conditions) of
variables in the expression. The tool takes
each of these expressions and its constraints and
processes in the following steps:

1. Parse the expression and generate an
expression tree in Ocaml. We use the
Aurochs1 parser generator for this purpose.

2. Perform symbolic execution on the
expression tree with arithmetic operations
to produce a symbolic round-off error
expression together with constraints of
variables in the expression.

3. Simplify the symbolic round-off error
and constraints of variables using the
Mathematica function Simplify. Note that
the constants and coefficients in the input
expression are also split into two parts: the

1http://lambda-diode.com/software/aurochs

A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21 17

fixed-point part and the round-off error part,
both of them are constants. When the round-
off error is non-zero, the simplification can
reduce a lot the size of symbolic round-off
error expression.

4. Use Mathematica to find optimum of the
round-off error symbolic expression with
constraints of variables. We use the
Mathematica function NMaximize for this
purpose. Since Mathematica does not
support fixed-point, we need to build some
utility functions for converting floating-
point numbers to fixed-point numbers, and
for emulating fixed-point multiplication (see
Algorithm 1 and 2).

Algorithm 1: Rounding a floating-point
value to fixed-point value

Input : A floating-point value x
Output: The converted fixed-point value of x
Data : binx stores the binary representation of x
Data : f p is the width of the fractional part
Data : x1 is the result of binx after left shifted
Data : ip is the integer part of x1
Data : digit is the value of nth bit
Data : f ixed: the result of converting

Procedure convertToFixed(x, fp);1

begin2

Convert a floating-point x to binary3

numbers binx;
x1 = Shift left binx by f p bits;4

ip = Integer part of x1;5

Take the (f p + 1)th bit of binx as digit;6

if digit equals 1 then7

if x > 0 then8

ip = ip +l 1;9

else10

ip = ip −l 1;11

f ixed = Shift right ip by f p bits;12

return f ixed13

end14

Algorithm 2 emulate multiplication in fixed-
point on Mathematica with round to the nearest.
Assume that the fixed-point number has f p bits

to represent the fractional part. The inputs of
multiplication are two floating-point numbers a
and b and the output is their product in fixed-
point.

First, we shift left each number by f p bits to
get two integer numbers. Then we take their
product and shift right 2 ∗ f p bits to produce
the raw result without rounding. With round to
the nearest, we shift right the product f p bits,
store it in i mul shr f p, and take the integer and
fractional part of i mul shr f p. If the fractional
part of i mul shr f p is larger than 0.5 then the
integer part of i mul shr f p needs to be increased
by 1. We store the result after rounding it in
i mul rounded. Shifting left i mul rounded f p
bits produces the result of the multiplication in
fixed-point.

4.2. Experimental results

For comparison with [5], we use two examples
taken from the paper as shown in Figure 1 and the
polynomial of degree 5.

We also experimented with a Taylor series of
a sine function to see how the complexity of the
symbolic round-off error develops.

4.2.1. Experiment with simple program
For the program in Figure 1, it is easy to

compute its symbolic expression for the two
possible runs: (x > 0 ∧ x × x − y) and (x <
0 ∧ 3 × x − y).

Consider the first one. Combining with the
input range of x ∈ [0, 3] we get x > 0 ∧ −1 ≤
x ≤ 3, which can be simplified to 0 < x ≤ 3.
So we need to find the round-off error symbolic
expression for x × x − y where 0 < x ≤ 3 and
−10 ≤ y ≤ 10.

Applying Definition 1, we get the symbolic
round-off error:

(xi ×l xi) −l (xi ×i xi) +l 2 ×l xi ×l xe +l x2
e −l ye

and the constraints of variables (with round to the
nearest) are

xi =
∑15

j=1 d j 211− j∧ d j ∈ {0, 1}∧−1 ≤ xi ≤ 3
∧

xi ≥ 0
∧

−0.03125 ≤ xe, ye ≤ 0.03125

18 A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21

Algorithm 2: Fixed-point multiplication
emulation in Mathematica

Input : A floating value a
Input : A floating value b
Output: The product of a ×i b
Data : a shl f p is the result after a after left

shifted f p bits
Data : i a shl f p is the integer part of a shl f p
Data : b shl f p is the result of b after left

shifted f p bits
Data : i b shl f p is the integer part of b shl f p
Data : i mul is the product of i a shl f p and

i b shl f p
Data : i mul shr f p is the result of i mul after

right shifted f p bits
Data : ipart i mul is the integer part of

i mul shr f p
Data : f part i mul is the fraction part of

i mul shr f p
Data : truncate part is result of f part i mul

after left shifted 1 bit
Data : round part is the integer part of

truncate part
Data : i mul rounded is the result after

rounding
Data : result is the product of a and b in

fixed-point

Procedure iMul(a, b);1

begin2

Convert a floating-point x to binary3

numbers binx;
a shl f p = Shift left a by f p bits;4

i a shl f p = Integer part of a shl f p;5

b shl f p = Shift left b by f p bits;6

i b shl f p = Integer part of b shl f p;7

i mul = multiply two integers i a shl f p8

and i b shl f p;
i mul shr f p = Shift right i mul by f p9

bits
and then take the integer and the10

fractional part of imul is that ipart i mul
and f part i mul;
truncate part = Shift left 1 bit11

f part i mul;
round part = Take Integer part of12

truncate part;
i mul rounded = ipart i mul +13

round part; with rounding to the nearest
result = Shift right i mul rounded by f p14

bits;
return result15

end16

Next we convert the round-off error symbolic
expression and constraints to Mathematica syntax
as in Figure 2. Mathematica found the following
optima for the problem:

• With round to the nearest, the maximal error
is 0.2275390625. The inputs that cause
the maximal round-off error are: xi =

2.875; xe = 0.03125 so x = xi +l xe =

2.90625 and yi = 4.125; ye = − 0.03125 so
y = yi +l ye = 4.09375.

• With round towards −∞ (IEEE 754 [9]):
the error is 0.4531245939250891 with xi =

2.8125; xe =
∑− 24

j=− 5 2 j → x = xi +l

xe = 2.874999940395355225 and yi =

4; ye = −
∑− 24

j=− 5 2 j → y = yi +l ye =

3.937500059604644775.

Comparing to [5] we find that using round to the
nearest the error is in [−0.250976, 0.250976] so
our result is more precise.

To verify our result, we wrote a test program
for both rounding methods that generates
100.000.000 random test cases for −1 ≤ x ≤ 3
and −10 ≤ y ≤ 10 and directly computes the
round-off error between floating-point and fixed-
point results. Some of the largest round-off error
results are shown in Table 1 and in Table 2. The
tests were run many times, but we did not find
any inputs that caused larger round-off error than
predicted by our approach.

4.2.2. Experiment with a polynomial of degree 5

Our second experiment is a polynomial of
degree 5 taken from [5]:

P5(x) = 1 − x + 3x2 − 2x3 + x4 − 5x5

where fixed-point format is (2, 11, 8) and x ∈
[0, 0.2]. After symbolic execution, the symbolic

A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21 19

Fig. 2. Mathematica problem for example in Figure 1.

Table 1. Top round-off errors in 100.000.000 tests with round to the nearest

No. x y err
1 2.9061846595979763 -6.530830752525674 0.22674002820827965
2 2.9061341245904635 -4.4061385404330045 0.2267540905421832
3 2.9062223934725107 -3.2184902596952947 0.22711886001638248

round-off error is:

0. +l 3 ×l x2
i −l 2 ×l x3

i
−l5 ×l x5

i −l xe +l 6 ×l x2
i

×lxe +l 4 ×l x3
i ×l xe−l

25 ×l x4
i ×l xe +l 3 ×l x2

e
−l6 ×l xi ×l x2

e +l 6 ×l x2
i

×lx2
e −l 50 ×l x3

i ×l x2
e−l

2 ×l x3
e +l 4 ×l xi ×l x3

e
−l50 ×l x2

i ×l x3
e +l x4

e
−l25 ×l xi ×l x4

e−l

5 ×l x5
e −l 3 ×l iMul[xi, xi]

+l2 ×l iMul[iMul[xi, xi], xi]−l

iMul[iMul[iMul[xi, xi], xi], xi]+l

5 × iMul[iMul[iMul[iMul[xi, xi], xi], xi], xi]

and the constraints of variables with round to the
nearest are

xi =
∑19

j=1 d j 211− j∧ d j ∈ {0, 1}∧
0 ≤ xi ≤ 0.2∧−0.001953125 ≤ xe ≤ 0.001953125∧
0 ≤ xi +l xe ≤ 0.2∧
0.0625 ≤ yr ≤ 0.0625

For this problem, Mathematica
found the maximum 0.007244555 with
xi = 0.12890625; xe = −0.001953125 so
x = xi +l xe = 0.126953125. In [5], their real
error is in [−0.01909, 0.01909] when using
round to nearest, so our result is more precise.

We verify our results with round to the nearest
by directly computing the difference between the
fixed-point and floating-point with 100.000.000
random test cases for 0 ≤ x ≤ 0.2. The largest
error we found is 0.00715773548755 which is
very close but still under our bound.

4.2.3. Experiment with Taylor series of sine
function

In the last experiment, we want to see how
far we can go with our approach, so we use
a Taylor series of sine function. P7(x) =
x−0.166667x3+0.00833333x5−0.000198413x7

where the fixed-point format is (2, 11, 8) and
x ∈ [0, 0.2].

The largest round-off error is 0.00195312 with
xi = 0; xe = 0.00195313 so x = xi +l

xe = 0.00195313. Comparing to the results
in [5], using round to the nearest the error is in
[−0.00647, 0.00647] so our result is much better.

We tried with longer Taylor series but
Mathematica could not solve the generated
problem. We are aware of the scalability of this
approach and plan to try with more specialized
solvers such as raSAT [13] in our future work.

20 A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21

Table 2. Top round-off errors in 100.000.000 tests with round towards −∞

No. x y err
1 2.8749694304357103 -0.874361299827422 0.4523105257672544
2 2.874964795521085 -5.4371633555888055 0.45258593107439893
3 2.8749437460462444 -1.249785289663956 0.4525868325943687

5. Discussion and related work

5.1. Discussion

We have presented a symbolic round-off
error technique that precisely represents round-
off error between floating-point and fixed-point
versions of a program. The symbolic round-
off error enables several applications in error
analysis and test cases generation. Note that
in the above experiments Mathematica gives us
solutions when it found optima. The solutions
can be used to generate test cases for the worst
round-off error.

We are aware of several advantages and
drawbacks with this approach. First, our
approach assumes that Mathematica does not
over approximate the optima. However, even if
the optima is over approximated, the point that
produces the optimum is still likely to be the test
case we need to identify. We can recompute the
actual round-off error when this occurs.

Second, it is easy to see that our approach
may not be scalable for more complex programs.
The round-off error representation will grow
very large in complex programs. Some
simplification strategy may be needed, such
as sorting the contributions to the round-off
error of components in the round-off error
expression and removing components that are
complex but contribute insignificantly to the
error. Alternatively, we can divide the expression
into multiple independent parts to send smaller
problems to Mathematica.

Third, if a threshold is given, we can combine it
with testing to find a solution for the satisfiability
problem, or we can use an SMT solver for this
purpose. We plan to use raSAT [13] for this
application when the tool is available for use.

Finally, we can combine our approach with
interval analysis. The interval analysis will be

used for complex parts of the program, while
other, simpler parts can have precise round-off
errors determined.

Note that the largest round-off error is only
one of the metrics for the preciseness of the
fixed-point function versus its floating-point one.
In our previous work [11], we proposed several
metrics and the symbolic round-off error seems
convenient to compute these metrics as it contains
rich information about the nature of the round-off
error.

5.2. Related works

Overflow and round-off error analysis has
been studied from the early days of computer
science because both fixed-point and floating-
point number representations and computations
have the problem. Most work addresses both
overflow and round-off error, for example [10,
9]. Because round-off error is more subtle and
sophisticated, we focus on it in this work, but our
idea can be extended to overflow error.

As we mentioned, there are three kinds of
overflow and round-off errors: real numbers
versus floating-point, real numbers versus fixed-
point, and floating-point numbers versus fixed-
point numbers. Many previous works focus on
the first two types of round-off errors, cf. [14].
Here we focus on the last type of round-off errors.
The most recent work that we are aware of is of
Ngoc and Ogawa [6, 5]. The authors develop a
tool called CANA for analyzing overflows and
round off errors. They propose a new interval,
the extended affine interval (EAI), to estimate
round-off error ranges instead of the classical
interval [15] and affine interval [16]. EAI avoids
the problem of introducing new noise symbols of
AI, but it is still as imprecise as our approach.

A.H. Truong et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 30, No. 3 (2014) 12–21 21

6. Conclusions

We have introduced symbolic round-off error
and instantiated the symbolic round-off error
between a floating-point function and its fixed-
point version. The symbolic round-off error is
based on symbolic execution extended for the
round-off error so that we can produce a precise
representation of the round-off error. It allows us
to determine a precise maximal round-off error
and to produce the test case for the worst error.
We also built a tool that uses Mathematica to
find the worst error from the symbolic round-off
error. The initial experimental results are very
promising.

We plan to investigate possibilities to reduce
the complexity of the symbolic round-off error
before sending it to the solver. For example,
we might introduce techniques for approximating
the symbolic round-off error. For real world
programs, especially the ones with loops, we
believe that combining interval analysis with
our approach may allow us to find a balance
between preciseness and scalability. We also
plan study the round-off error that may cause the
two versions of the program following different
execution paths.

Acknowledgement

The authors would like to thank the anonymous
reviewers for their valuable comments and
suggestions to the earlier version of the paper.
Special thanks to Prof. Randy Ribler for
improving the presentation of the paper.

References

[1] J. Wilkinson, Modern error analysis, SIAM Review
13 (4) (1971) 548–568.
URL http://dx.doi.org/10.1137/1013095

[2] N. J. Higham, Accuracy and Stability of Numerical
Algorithms, SIAM: Society for Industrial and Applied
Mathematics, 2002.

[3] M. Dowson, The ariane 5 software failure,
SIGSOFT Softw. Eng. Notes 22 (2) (1997) 84–.
doi:10.1145/251880.251992.

[4] A.-H. Truong, H.-V. Tran, B.-N. Nguyen, Finding
round-off error using symbolic execution,
in: Conference on Knowledge and Systems
Engineering 2013 Proceedings, 2013, pp. 105–114.
doi:10.1109/SEFM.2009.32.

[5] T. B. N. Do, M. Ogawa, Overflow and Roundoff Error
Analysis via Model Checking, in: Conference on
Software Engineering and Formal Methods, 2009, pp.
105–114. doi:10.1109/SEFM.2009.32.

[6] T. B. N. Do, M. Ogawa, Combining Testing and Static
Analysis to Overflow and Roundoff Error Detection,
in: JAIST Research Reports, 2010, pp. 105–114.

[7] J. C. King, J. Watson, Symbolic Execution and
Program Testing, in: Communications of the ACM,
1976, pp. 385 – 394. doi:10.1145/360248.360252.

[8] S. Wolfram, Mathematica: A System for Doing
Mathematics by Computer, Addison-Wesley, 1991.

[9] D. Goldberg, What Every Computer Scientist
Should Know About Floating-Point Arithmetic,
in: ACM Computing Surveys, 1991, pp. 5 – 48.
doi:10.1145/103162.103163.

[10] W. Stallings, Computer Organization and
Architecture, Macmillan Publishing Company,
2000.

[11] T.-H. Pham, A.-H. Truong, W.-N. Chin, T. Aoshima,
Test Case Generation for Adequacy of Floating-
point to Fixed-point Conversion, Electronic Notes in
Theoretical Computer Science 266 (0) (2010) 49 –
61, proceedings of the 3rd International Workshop
on Harnessing Theories for Tool Support in Software
(TTSS). doi:10.1016/j.entcs.2010.08.048.

[12] J. B. Smith, Practical OCaml (Practical), Apress,
Berkely, CA, USA, 2006.

[13] V.-K. To, M. Ogawa, raSAT: SMT for Polynomial
Inequality, Tech. rep., Research report (School of
Information Science, Japan Advanced Institute of
Science and Technology) (2013).

[14] M. Martel, Semantics of roundoff error propagation
in finite precision calculations, in: Higher-Order and
Symbolic Computation, 2006, pp. 7 – 30.

[15] A. Goldsztejn, D. Daney, M. Rueher, P. Taillibert,
Modal intervals revisited : a mean-value extension to
generalized intervals, in: In International Workshop
on Quantification in Constraint Programming
(International Conference on Principles and Practice
of Constraint Programming, CP-2005), Barcelona,
Espagne, 2005.
URL http://hal.inria.fr/hal-00990048

[16] J. Stolfi, L. d. Figueiredo, An introduction to affine
arithmetic, in: Tendencias em Matematica Aplicada e
Computacional, 2005.

