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Abstract: In this paper, we study the efficiency of Graph Transformer Network for noisy label 

propagation in the task of classifying video anomaly actions. Given a weak supervised dataset, our 

methods focus on improving the quality of generated labels and use the labels for training a video 

classifier with deep network. From a full-length video, the anomaly properties of each segmented 

video can be decided through their relationship with other video. Therefore, we employ a label 

propagation mechanism with Graph Transformer Network. Our network combines both the feature- 

based relationship and temporal-based relationship to project the output features of the anomaly video 

to a hidden dimension. By learning in the new dimension, the video classifier can improve the quality 

of noisy, generated labels. Our experiments on three benchmark dataset show that the accuracy of 

our methods are better and more stable than other tested baselines. 

Keywords: Anomaly Detection, Graph Transformer Network, Weak Supervised, Noisy Labeling. 

1. Introduction 

Detecting anomaly action   from   video  data 

plays an important role in video-based 

surveillance systems [1, 2]. The definition of 

anomaly actions in a surveillance system is 

highly associated with the semantic meaning of 

the scene, which is to identify the unusual action 

through unusual appearance or motion attributes 

in unsealing locations or times [3]. One of the 
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main challenges for detecting an anomaly event 

in video data is the low frequency of anomaly 

events against normal events. The detectors are 

required to learn the distribution of the temporal 

and spatial patterns to be able to separate 

unusual actions from normal ones. Popular 

approaches include supervised, weak-

supervised, and unsupervised methods. In the 

supervised approach, the context in which 

happens an abnormal action is well-defined. 
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Therefore, instead of learning the action 

distributions, it is possible to treat the abnormal 

action as a class label and employ standard 

video classification models to classify the 

unusual actions [4]. The unsupervised 

approaches work with a broader context, which 

classifies the anomaly actions as rare 

occurrence events. Because of the resemblance 

to real-world settings, this setting is a more active 

research area with popular works such as [5, 6]. 

One of the main advantages of unsupervised 

approaches is that the number of unlabeled, 

normal actions in the video is larger than the 

abnormal ones. Therefore, those approaches are 

less restricted to the scared of training data. 

However, it is required that the detector can 

extract useful features for modeling the 

distribution, which is a challenging task given 

that the surveillance video is a rich source of 

information. The weak-supervised method 

balances the supervised and unsupervised 

approaches.   Employs several abnormal data 

in training. By combining a small number of 

abnormal data with normal data in training, the 

detector can be directed to learning the unusual 

behavior in the videos [7]. 

In a video-based classification approach, 

one way to build the weak label is to mark a 

long video with a normal or abnormal label 

without explicitly stating the start and end of 

the abnormal actions.   The classifier would try 

to identify the small segment from the long 

videos which correspond to the abnormal actions 

(Fig. 1). This setting is the resemblance to 

several benchmark datasets such as CUHK 

Avenue [5] or USCD Ped1/USCD Ped2 [6]. 

To effectively train the video classifier, noisy 

labels for each small segment can be generated 

from the weak label and then used to train the 

classifier [8]. In the domain of video anomaly 

detection, Zhong et al. [9] employ the graph 

representation of video segments within a long 

complete video for filtering the noisy labels. 

They use the Graph Convolution Network 

(GCN) [10] for propagating the label from the 

high-confidence nodes to the low- confidence 

ones. Two types of neighborhoods are 

considered for label propagation including 

features-based adjacency and time-based 

adjacency. After filtering the noisy labels, 

popular architectures for video action classifiers 

are used to learn, such as C3D [11] or TSN [12]. 

Other works use graph structures to mine the 

similarity between segmented videos such as 

[13]. In our approaches, we improve the 

drawback of convolution operations in GCN by 

incorporating the self-attention mechanism of 

Graph Transformer Network (GTN) [14]. The 

usage of attention layers which are built upon the 

convolution layers is two-fold. By employing 

the global self-attention operators, far nodes can 

be connected through their similarity structures. 

In addition to that, the global properties of GTN 

allow multiple types of connection can be 

modeled and projected into the same latent space. 

Our experiments on three benchmark datasets 

including USCD Ped1, USCD Ped 2 and Avenue 

dataset in a weak-supervised setting show that 

the GTN architecture could improve the anomaly 

detection AUC score substantially and be more 

stable than the baselines. In the remainder of the 

paper, we give related works in Section II; our 

methods are described in Section III; Section IV 

illustrates the experiments and results on several 

benchmark datasets; the conclusion and future 

works are present in Section V. 

2. Related Works 

Detecting anomalies in the video is a 

challenging task [1, 2].   Several pioneers work 

as described in [15]. Recent works rely on 

the power of deep neural networks in video 

analysis to detect anomaly actions [16]. On the 

weak-supervised based approach, multi-instance 

learning could be used used as a template for 

motion modeling in the weak monitoring problem 

[9, 17]. For detecting anomaly videos, there is 

some popular dataset benchmark such as CUHK 

Avenue [5] and USCD Ped1/USCD Ped2 [6]. 

The work in [5] employs k-nearest neighbors 

clustering with a motion-field shape description 

on USCD Ped1 to get an AUC of 86.9% on frame- 

level detection. However, their approaches highly 
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depend on several sensitive hyper-parameters 

such as the size of the motion field.     On 

the Avenue dataset,   the DMAD framework 

[18] can reach 92.8% AUC. Nevertheless, the 

framework requires learning an encoder-decoder 

network to memorize the semantics of the scene 

which takes a long time to train. For video  

analysis by using deep neural networks, three 

dimensions convolutional - C3D architectures 

[19] are widely used in video recognition 

applications, especially in action recognition 

problems. It is used as a technique for feature 

extraction. 3D convolutional layers extract both 

spatial and temporal components related to the 

motion of objects, human actions, person-to- 

object interactions, and the appearance of objects, 

people, and that scenes. In addition to that, 

Temporal Segment Network takes a different 

approach by extracting features from random 

videos through convolutional operators in 2D 

and 3D. There are several variants built on TSN 

such as [19, 20]. The TAM architecture [19] 

(Temporal Aggregation Module) employs the 

aggregation module to synthesize features from 

TSN module. The approach in TAM is designed 

to capture the temporal information in the video 

through a hierarchical setting. At a lower layer, 

for recognizing features at different image scales, 

TAM uses the Big-Little Network [19] for 

learning video features. The relationship between 

different frames in the video is then aggregated 

by a depth-wise convolution. The design of TAM 

in extracting temporal features is as efficient as the 

3D convolution in 3D but with fewer parameters. 

In general, the TAM architecture can be 

considered a lightweight module to extract the 

representation of the video. Recently, due to the 

effective performance of Graph Neural Networks 

(GNN), several works on video analysis domains 

employ graph structures to model the spatio- 

temporal relationship of video.   For example, 

the graph is used to improve the object tracking 

results in [21]. In [13], graph structures are used 

to group similar video segments. The authors in 

[22] learn a GNN for video retrieval with text. 

Standard GNN approaches include composing 

feed-forward layers [23] and message-passing 

methods like in [24]. More advanced graph 

learning architecture attempt to adapt successful 

deep network modules from other domains such 

as image and text into the graph domains. Graph 

Convolution Network (GCN) [10] is a promising 

approach that extends the standard convolution 

layer from the image into the graph learning 

domain. The GCN design is based on spectral 

graph theory [25, 26], which decomposes the 

graph signal over the spectral domain and defines 

a series of parameterized filters for convolution. 

The Graph Transformer Network (GTN) [14] 

and other related variants [27, 28] extend the 

well-known attention architecture from the text 

domain into the graph. The main usage of GTN 

for video analysis is its ability to work with 

multiple relations between video elements. 

While standard approaches on GCN can only join 

the heterogeneous graphs at the later embedding 

layers, the works of Yun et. al. can transform 

the multiple-relationship graphs into a meta- 

path graph and employ the attention mechanism 

to improve the learning embedding process. 

Nevertheless, using GNN-based approaches in 

anomaly detection tasks is challenging due to 

the smoothness effect when a noisy signal is 

propagated through the graph [29, 30]. 

3. Video Anomaly Detection with Graph 

Transformer Network 

3.1. Overview 

To be able to detect the video part containing 

anomalies from a long video with the weak label, 

we rely on a video classifier to assign the noisy 

label to each segment video. In our works, we 

employ the setup that each segment video is 

extracted from the long video by using a fixed 

number of frames. Fig. 1 illustrates our approach. 

The long, full-length video is given using 

weak labels, Normal or Anomaly. Given a full-

length video, the part colored red is marked with 

an anomaly labeled. However, while labeling 

such data is take little time, it is not practical to 

work all the full length of the video. 
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Figure 1. Using a weak label from the full video to 

extract segmented samples for training an abnormal 

action detection. 

 

To be able to train a video-action classifier 

to detect the anomalies, we split the data into 

smaller segments with a fixed window length W 

and a steps length s: S 1, S 2, ..., S N with N being 

the number of segmented videos. The S i is labeled 

anomaly (Label 1) if it contains anomaly action, 

otherwise, the label of S i is normal (Label 0). The 

weak-supervised classifier method can only 

access the weak label, which is whether the full-

length video contains anomaly actions or not. 

In this section, we will present the overview 

of our self-supervised method for working with 

weak-label video. It includes two separate 

components: a video classifier to train the 

anomaly detector and generate the noisy labels 

based on the weak label; a filtering step to 

improve the noisy labels. The two main 

components are shown in Fig. 2, which include: 

Action classifier component: Cθ where θ 

serves as the parameters of the trainable deep 

learning model based on the input data. Cθ acts 

as the main learning unit used to generate noise 

labels from the split videos S 1, S 2, ..., S N and to 

learn about noise labels. For each S i, the output 

of Cθ would be the noise label γi, the probability 

Pi, and the feature Xi, where i is the sample index. 

For the selection of Cθ, deep network-based video 

classifiers such as C3D [11], TSN [12], and their 

variants such as TAM [19] can be considered as a 

suitable candidate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of our methods for filtering the 

noisy labels and training an action classifier to detect 

anomaly segments in the video. 

The noise filter component: the action 

classifier Cθ can be used to generate the noisy 

labels Yi and trained on the generated label as in 

a traditional self-supervised approach. However, 

it usually makes the noisy signal generated from 

the action classifier Cθ suppress the useful 

features for differing normal and anomaly 

actions. Therefore, we improve a filtering phase 

based on graph transformer architecture to filter 

out irrelevant signals. 

In our work, we employ label propagation 

based on GTN architecture. The learning GTN 

has the main effect of spreading noisy labels 

based on the relationship of time, which is the 

order of frames in the video, and the relationship 

of features Xi, which is extracted from the action 

classifier Cθ. 

3.2. Noisy labeling for training video anomaly 

detection from a weak label 

Firstly, from the weak label L of the input 

video S, we apply a self-supervised approach to 

generate the noisy label for each segmented S 1, 

S 2, ..., S N with N being the number of segmented 

videos which are extracted from S . For each 

filtering step from 1 to K, the action classifier 

would be used to generate the label, Yi. Firstly, 
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we assume that Cθ is pre-trained on the action 

classifier video dataset and capable of separating 

the usual and unusual segmented video S i. Let 

Pi is the probabilities of a given S i containing 

anomaly actions with label 1: 

Pi = P(Yi|S i, θ)                (1)  

A threshold T is applied to split the output 

Pi into the label Yi, which is 0 - for normal label 

and  1 - for anomaly videos. And then, the 

generated Yi is used to train the classifier Cθ. 

The details of this approach are illustrated in 

Algorithm 1 below: 

Algorithm 1 Extracting and training with 

noisy labels in a self-supervised approach 

Input: 

S 1, S 2, ..., S N: Segmented videos from S with 

weak label L 

Cθ: Action classifier deep learning model  

with parameters θ 

T : Weak signal filter threshold 

K: Number of filtering steps 

Output: 

- Return a trained Cθ model with noise labels 

Algorithm: 

1. If label L=0, assign label Yi = 0 

2. If label L=1, for each step k from 1..K 

a. Generate Pi = P(Yi = 1|S i, θ) 

b. Update the noise label Yi = 1 if Pi ≥ T ,  

otherwise Yi = 0 

c. Train θ with the new list of (S i, Yi) data 

The noisy labels in Step 2 are only valid for 

the anomaly videos. With the videos containing 

only normal action, all the generated Yi is 

assigned 0. In step 2c, the algorithm will 

synthesize all received interference labels and 

proceed to learn and retrain the Cθ model. In this 

simple approach, the interaction between normal 

and abnormal segmented S i is only through the      

Cθ, which is dependent heavily on the first filter 

step at k = 1. In addition to that, the number 

of label anomalies is much lower than the normal 

label. Hence, the filtering process usually results 

in the skew to predict normal labels when the 

number of filtering processes K is increased. 

3.3. Noisy label propagation with Graph  

Transformer Network 

To improve the interaction between the 

normal and abnormal labels in the self-supervised 

learning steps,   we construct a graph based 

on the video-based representation and temporal 

relationship between each sample S i. Several 

works in [9] and [13] propose a similar graph- 

based structure to model the relationship of 

samples or events in a long video.   Given a set 

of segmented video S 1, S 2, ..., S N extracted from 

a weak label sample S with anomaly action, we 

build two undirected graphs with the nodes are 

the set S 1, S 2, ..., S N as follows: 

The feature-based graph: We construct the 

graph as an undirected, no-weight graph AF by 

comparing the feature representation Xi of each 

S i: 


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



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                 (2) 

In our works, we derive Xi directly from the 

representation layer of Cθ, which is a d- 

dimensional vector and is normalized to have a 

unit length value. Therefore, the value of Xi*Xj 

can be cast as the cosine similarity between two 

feature representations of the input videos. The 

constant δ is used to control the number of edges 

in the graph. 

The temporal-based graph: For modeling 

the temporal relationship between two nodes 

representing the segment S i and S j, we define the 

adjacency graph AT as follows: 





=
otherwise    ,0

overlapped  S and  if    ,1 jiS
A

T
ij           (3) 

In the basic graph-based label propagation 

problem, the graph G = (V, E, X), where V is the 

node set of the graph, E is the set of edges that 

contain both the AF and AG and X is the features 

of the nodes. The GTN architecture proposed by 

Yun et. al. [14] employs the concept of meta-

path which connect through multiple 

relationships in graph G. The meta-path is 
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combined from different adjacency matrixes 

with attention-based softmax: 



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kk
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Algorithm 2 Noisy labels propagation by GTN  

Input: 

- S 1, S 2, ..., S N: Segmented videos from S 

with weak label L 

- Cθ: Action classifier deep learning model 

with parameters θ 

- T : Weak signal filter threshold 

- K: Number of filtering steps 

- lowT , highT : The low and high threshold 

Output: 

- Return a trained Cθ model with noise labels 

Algorithm: 

1. If label L=0, assign label Yi = 0 

2. If label L=1, for each step k from 1..K 

a. Generate Pi = P(Yi = 1|S i, θ) 

b. Compute noisy labels: γi = 1 if Pi ≥ 

highT , γi = 1 if Pi ≤ lowT 

c. Label propagation with GTN by (S i, γi) 

d. Update new Pi with output Oi of GTN: Pi 

= (Pi + Oi)/2 

e. Compute Yi using Pi with a threshold of T 

f. Train θ with the new list of (S i, Yi) data 

More precisely, ϕ denotes the channel 

attention pooling over a convex combination of 

the based relationship Al and Ak. Each layer in the 

GTN would perform a channel-based attention 

over the C channels of the input adjacency matrix. 

Therefore, the output of (4) would be an N×N×C 

matrix.   In the output layer, the representation 

H would be a concatenation of every C channel 

through a layer of graph convolution layer as 

follows: 

( )XWÂDconcatH L
cc

1−=               (5) 

 

Given a channel c, with AL is the 

combination over L layers of channel-based 

attention and D is the normalized degree matrix 

of AL. The subscript c denotes the concatenated 

index over the C channels. 

Equation 5 is a standard GCN layer [10] 

that allows the projecting of the input feature 

X into the feature representation, which is an 

h-dimensional space, and learning the target 

output. In our label propagation, H would be 

combined with a classifier layer for filtering noise 

from the output labels of the action classifier 

Cθ. The noise filtering algorithm by GTN will 

differ mainly from the original label filtering in 

Algorithm 1 by using two more thresholds lowT 

and highT to identify labels with high confidence 

and propagation of their labels by GTN. The 

lowT is the low threshold and is used to identify 

the normal label, label 0. The highT is the low 

threshold and is used to identify the anomaly 

label, label 1. The detailed algorithm is described 

as in Algorithm 2. 

The main differences between Algorithm 1 

and Algorithm 2 are steps 2b, 2c, and 2d. We 

start by selecting the lowT and highT as the two 

ends of the region [0, 1], which reflects the labels 

with high confidence. The noisy labels γi are 

then propagated to all the samples of a given full-

length video through the learning of GTN. The 

outputs of GTN, Oi, are combined with the 

prediction output Cθ of to generate the labels to 

train the Cθ itself. Starting from step 2e, 

Algorithm 2 follows Algorithm 1 for training a 

new filter round with Cθ. 

While the usage of a feature-based graph and 

temporal graph is similar to the study in [9], our 

works emphasize the effect of label propagation 

to filter out the noisy signal. In addition to that, 

we focus on learning a joint representation of the 

two graphs through the GTN architecture rather 

than a simple pooling operator as proposed in [9]. 

4. Experiment Results and Discussions 

4.1. Testing Dataset 

In this section, we evaluate our proposed 

model on three benchmark datasets for video 

anomaly detection including USCD Ped 1, USCD 

Ped 2, and Avenue dataset[5]. 
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USCD Ped 1/Ped2: In the work of Lu 

et. al [6], both datasets are split into training 

videos, which contain only normal actions, and 

testing videos which contain abnormal actions. 

The background scene is pedestrians walking on 

the pavement. Meanwhile, abnormal activities 

include a wide range of actions such as driving a 

car, biking, or running actions. Each video in both 

the training and testing set contains 200 frames. 

In the USCD Ped 1 set, there are a total of 30 

training videos with normal actions and 26 testing 

videos. In the USCD Ped 2 set, there are a total 

of 16 training videos and 12 testing videos. The 

frames are black and white. The image size in 

USCD Ped 1 is 158x238 and in USCD Ped 2 is 

240x360. The frames with abnormal actions are 

labeled and appeared only in the test set. 

Avenue dataset [5]: The Avenue dataset is 

recorded in the hallway. The normal actions 

contain people walking individually or in a group. 

The abnormal actions can be divided into several 

groups such as strange actions, wrong movement 

direction, or people with abnormal objects. The 

data is split into a training video set and a testing 

video set. There are 16 training videos and 21 

testing videos. Meanwhile, each frame in the 

testing video set contains a mask that specified 

the region of anomaly action. The length of each 

video in the training set and testing set varies. The 

training video set only contains normal actions. 

The input frames are given with RGB channels 

and 360x640 image sizes. 

As our works focus on a weak-label approach, 

we modify the standard splitting of the train/test 

dataset on the three datasets with a new 

training/testing video set. More specifically, for 

each of the three datasets USCD Ped 1, USCD 

Ped 2, and Avenue, we randomly select half 

of the training videos and 5 testing videos to 

create a weekly training dataset. The remaining 

videos for the original training and testing set 

are grouped into testing videos. To make the 

evaluating pipeline more stable, each new split 

is fixed by a given seed and we carry out our 

evaluation on three different seeds. 

For training the abnormal video classifier 

from the weak label training set, each full video 

in the training and testing set is split into window 

size of W=8 frames with a step length of two 

frames. In the training set, each segmented 

video is associated with a weak label, which 

correspondent to the weak label of the original 

video. In the testing set, the label of segmented 

videos is decided by whether the segmented 

video contains abnormal actions or not. A long 

video from the original weak label abnormal test 

set would correspond to several small, sub- 

segment videos with label normal and anomaly 

new testing samples. 

4.2. Preprocessing and hyper-parameters 

Preprocessing: We follow the same 

procedure for preprocessing each input frame 

which is to resize the frames into 224x224. With 

the USCD Ped 1/Ped 2, as input images are gray 

images, we convert them into 3-channel images 

by multiple the gray images into three channels 

Red, Green, and Blue. With the Avenue dataset, 

input images are given with three-channel RGB, 

therefore we keep the same images and only use 

resize preprocessing. We further scale the value 

to a float in [0, 1] and normalize to zeros mean 

and standard deviation 1 by: 

 mean = [0.485, 0.456, 0.406] 

     std = [0.229, 0.224, 0.225] 

This is the normal standard procedure for 

working with input images. 

For learning video features and training the 

anomaly video classification, the base classifier 

TAM model [18] is used. It is trained on dataset 

Something-Something V2 (SSV2), Kinetics-400 

(Kinetics), and Moments-in-time (MiT). The 

model is used to generate the video features and 

training with noisy labels. The number of output 

features is d=2048. With each filter round, we 

trained the TAM on two epochs with the new 

filtered labels. From our observation, it is not 

profitable for training longer as the models are 

easy to overfit to noise signal rather than the 

signal of anomaly. We used the Adam optimizer 
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with learning rate 1e-4 and Binary Cross Entropy 

for learning the anomaly actions (Label 1) against 

the normal actions (Label 0). 

From the baseline feature extractions and 

video classifications, we implement a GTN 

architecture with 2 layers for the filtering step in 

Algorithm 2. The number of hidden features is 

set at h=256.   With each filtering step, we use 

the lowT and highT threshold at the percentile 

of 20th and 95th, respectively. We lower the 

percentage of the high confidence anomaly label 

as it is expected that the number of anomaly 

actions would be lower than the normal ones. 

More specifically, in each filter round, 25% of 

labels are considered as high confidence outputs 

and used to propagate the labels to the remaining 

nodes in the graph. For the label propagation 

apart, we trained the GTN with 10 epochs and 

then used the output probabilities to assign the 

label for the remaining 75% of datasets. The 

optimizer is also Adam with a learning rate of 1e- 

4 and Binary Cross Entropy loss. 

The updated probability from step 2e in 

Algorithm 2 is used for learning with noisy labels. 

A threshold value T is used to split the output 

probability from the baseline predictions into 

noisy Label 0/1. In our experiment, T is set to 

80 percentiles. For comparison purposes, we test 

our frameworks on 4 baselines including the base 

self-supervised training in Algorithm 1 and the 

GCN filter for weak-supervised anomaly video 

classification as follows: 

Baseline: The baseline illustrates Algorithm 

1. In this approach, we do not use any noisy 

label propagation. The output probability Pi is 

calculated directly from the output of the TAM 

model. All other training parameters are set the 

same as the GTN approach. 

GCN: We adapt the approach in [9] with 

GCN for label propagation in the filtering step 

2d in Algorithm 2. The settings of other hyper- 

parameters such as lowT, highT, training epochs, 

and optimizers are kept the same as GTN. The 

layers GCN is set at 2 layers with. We also keep 

the same dimension of h=256 for hidden 

embedding in GCN label propagation, which is 

the same as GTN. 

Logistic/MLP: we employ two simple 

learning models in the label propagation process, 

which are Logistic Regression and Multi-layer 

Perceptron (MLP). The two models learn directly 

the noisy labels without building the graph. 

Implementation: All of our models, TAM 

and GCN, GTN are set up with Python 3.7, 

Pytorch, and torch-geometry on a workstation 

with NVIDIA GPU 3090. 

4.3. Results and Discussion 

We report the AUC (Area-Under-The Curve) 

on three datasets with the mean and standard 

deviation of 3 different seeds. 

From Table 1, we can see that our proposed 

GTN outperforms the four baseline methods, 

which includes Baseline, Logistic, MLP, and 

GCN on the USCD Ped 1 and Avenue dataset. 

Both the USCD Ped 1 and Avenue datasets come 

with a larger training and testing set. They also 

include more complicated anomaly actions in the 

extracted frames. By letting the label propagation 

through the feature-based graph and the temporal 

graph, both GTN and GCN can improve the AUC 

score from the baseline. Moreover, as the GTN 

can exploit the joint representation from the two 

graphs, it can learn to detect the anomaly better 

than the GCN counterpart. In the case of USCD 

Ped 2, both the GTN and GCN have comparable 

performance and have a slightly improve from 

the Baseline performance. The Logistic and 

MLP approaches are not suitable for propagating 

noisy labels. In comparison with similar works 

in [5] or [27], we note that our works use a 

different train/test split. Therefore, the AUC 

results of the detection frame do not directly 

comparable. In addition to that, the propagation 

noisy labels approach uses the week-supervised 

approach which can learn significantly faster than 

the image-reconstruction approach like in [27]. 
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 Table 1. The average AUC score of each models  

on three datasets 

 

 

 

 

 

Figure 3. An example frame from a segmented video 

is an abnormal action where Baseline, GCN missing 

the prediction (predict 0) and our proposed GTN can 

predict the true label 1. The left is in the input frame 

and the right figure is the mask. 

 

Figure 4. An example frame from a segmented video 

with two abnormal actions where Baseline, GCN, 

and        GTN can predict the label 1. The left is in the 

input frame and the right figure is the mask. 

We plot two examples from the USCD Peds 

2 dataset in Fig. 3 and Fig. 4. In Fig. 3, both three 

models can predict the anomaly actions. 

However, in Fig. 4, both the Baseline and 

the GCN approaches fail to predict the anomaly 

action. From the plot, it can be seen that the GTN 

approach performs well when there is a small 

outlier signal from video embedding features. In 

this case, the GTN model is able to classify the 

Fig. 4 which contains only one region of the 

anomaly action. 

Table 2. The AUC score of using different the 

number of hidden features on the GTN layers 

Number of 

hidden features 

USCD 

Ped 1 

UCSD 

Ped 2 

h = 64 0.62 0.80 

h = 128 0.64 0.75 

h = 256 0.64 0.85 

h = 512 0.59 0.84 

h = 1024 0.60 0.81 

h = 2048 0.59 0.80 

 

To understand more about the effect of 

GTN architecture on label propagation, we first 

alternate the number of hidden features in the 

GTN layers and report the AUC on the USCD Ped 

1, and USCD Ped 2 datasets (Table 2). From the 

results, we can see that the features of the hidden 

layer in GTN be most stable at 256 dimensions 

for learning the anomaly actions on both USCD 

Ped 1 and USCD Ped 2 datasets. Given that the 

output feature of the used video classifier θ is 

2048, keeping the same dimension can hurt the 

performance of the classifier. It can be explained 

that the learned features for recognition actions 

are not well represented in the anomaly properties 

in the weakly supervised setup. The GTN has 

to rely on the temporal and feature relation to 

find the best-projected dimension for filtering 

noise. The next best candidates for the number 

of dimensions are h=64 and h=512. 

Table 3. Ablation study on the effect of different 

graph representations in GTN 

Model USCD Ped 1 

GCN 

GTN-A 

GTN-T 

GTN 

0.59 ± 0.05 

0.59 ± 0.05 

0.56 ± 0.03 

0.63 ± 0.02 

In Table 3, we run an ablation study using 

only one of the two graphs in the noisy label 

propagation phase on the USCD Peds 1. The 

version GTN-A denotes the approach when only 

the adjacency matrix in the feature embedding 

Model USCD Ped 1 UCSD Ped 2 Avenue 

Baseline 

Logistic 

MLP 

GCN  

GTN 

0.57 ± 0.03 

0.58 ± 0.04 

0.59 ± 0.09 

0.59 ± 0.05 

0.63 ± 0.02 

0.84 ± 0.09 

080 ± 0.06 

0.80 ± 0.03 

0.85 ± 0.05 

0.85 ± 0.08 

0.69 ± 0.02 

0.69 ± 0.01 

0.70 ± 0.01 

0.70 ± 0.03 

0.72 ± 0.02 
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domain is used in learning with GTN. The version 

GTN-T denotes the approach when only the 

temporal relationship is used in the learning with 

GTN. While the GTN-A can perform as well as 

the GCN baseline, the GTN-T results in lower 

performance. By combining the two graphs, our 

GTN approach can improve the detection results. 

Table 4. Training performance comparison of the two 

training approaches, Baseline and GTN 

Model 
Train 

Time 

Label 

Propagation 
Increase 

Baseline 95s - - 

GTN 95s 20s 21% 

For the comparison aspect of our performance 

to the standard baseline model TAM, we have 

added a training time per epoch for each of the 

testing models in Table 4. The table shows that 

the label propagation approach base on GTN only 

takes around 15-20% more computing time than 

the baselines. Moreover, the computation 

overhead only happens in the training phase. 

During the testing phase, it would not affect the 

running time of the proposed methods. 

5. Conclusions 

In this paper, we present a label propagation 

based on GTN architecture for improving the 

detection of anomaly videos. Our approach 

builds on the combination of a deep network for 

an action classifier and a filtering phase. By 

combining the feature-based graph and temporal 

graph, the GTN architecture can identify the 

anomaly events more efficiently than other 

baselines. On the AUC score, our proposed 

approach could improve the accuracy of the 

weakly supervised approach significantly. Given 

the flexibility of the proposed method, our 

work can extend to the domain of unsupervised 

learning for detecting anomaly videos. 
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