
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

Original Article

FRSL: A Domain Specific Language
to Specify Functional Requirements

Duc-Hanh Dang∗

VNU University of Engineering and Technology,
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 05 May 2023;
Revised 05 June 2023; Accepted 09 June 2023

Abstract: In software development, obtaining a precise specification of the software system’s func-
tional requirements is crucial to ensure the software quality and enable automation in development.
Use cases are an effective approach for capturing functional requirements. However, the use of am-
biguous or vague language in use cases can result in imprecision. It is essential to ensure that use
case specifications are clear, concise, and complete to avoid imprecision in requirements. This paper
aims to develop a domain specific language called FRSL to precisely specify use cases and to provide
a basis for transformations to generate software artifacts from the use case specification. We define
a metamodel to capture the technical domain of use cases for FRSL’s abstract syntax and provide
a textual concrete syntax for this language. Additionally, we define a formal operational semantics
for FRSL by characterizing the execution of a FRSL specification as sequences of system snapshot
transitions. This formal semantics enables precise explanation of the meaning of use cases and their
relationships and serves as a basis for transformations from the use case specification. We implement
a tool support for this language and evaluate its expressiveness in comparison with current use case
specification languages. This work brings out i) a DSL to specify use cases that is defined based on
a formal semantics of use cases; and ii) a tool support realized as an Eclipse plugin for this DSL.

Keywords: Use Case, UML/OCL, Contract-Based Specification, Model Transformation, Domain
Specific Language (DSML/DSL).

1. Introduction

In software development, use cases are an
effective way to capture functional requirements

∗Corresponding author.
E-mail address: hanhdd@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.803

of the system, ensuring that all stakeholders
have a clear and consistent understanding of
what the software system should do. Use cases
are often specified in the form of narrative text,

87

88 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

providing a detailed description of the steps in-
volved in achieving a particular goal. Use cases
can also be represented in a graphical form [1]
for either a high-level overview of the system’s
functionality or a more detailed description of use
case steps. Use cases can be formalized in several
ways [2] in order to capture the system behavior
from a certain perspective for a verification pur-
pose. However, the use of ambiguous or vague
language in the use case can lead to imprecision.
To bring more automation in the software devel-
opment, use cases should be precisely specified
with a balance between i) the right level of detail
to automatically generate artifacts from the use
case specification; and ii) the understandability
for stakeholders.

There are several approaches available in the
literature to describe and formalize use cases,
according to the surveys conducted in [2, 3].
Current work either introduces use case tem-
plates [4, 5] to enhance the writing, reading
and reviewing of use cases, or provides patterns
and anti-patterns together with guidelines for use
case specification [6, 7]. Many authors propose
using either UML diagrams [1] or formal lan-
guages such as Event-B [8] and graph transfor-
mation [9] or domain specific languages (DSLs)
such as RUCM [10], RSL [11], SilabReq [12],
and USL [13] to precisely specify use cases.
However, current work in the literature tends to
capture use cases from the developer’s point of
view, i.e., only using the concepts from the solu-
tion space, rather than from the problem domain,
to express the specification. Use case relation-
ships are either simplified as alternative flows or
just ignored; The effect of use case actions is of-
ten not explicitly specified.

This paper introduces a DSL called FRSL to
specify use cases, resulting in a precise speci-
fication of the system’s functional requirements.
Specifically, a FRSL specification would provide
a general description of the use case as well the
other detailed information such as use case rela-
tionships, scenarios, and snapshot patterns to ex-

press use case constraints. We define a precise se-
mantics of use case by characterizing the execu-
tion of a FRSL specification as sequences of state
transitions: Each current state is represented by
an object model. This formal operational seman-
tics allows us to precisely explain the meaning of
use cases and the relationships include and extend
between them. It also provides a basis for trans-
formations to automatically generate software ar-
tifacts from a FRSL specification. We implement
a support tool as an Eclipse plugin and then eval-
uate the expressiveness of FRSL compared with
current use case specification languages. The
use case specification language FRSL would help
precisely specify the system’s functional require-
ments and bring more automation in the software
development.

The rest of this paper is organized as fol-
lows. Section 2 surveys related work. Section 3
presents background concepts and motivates this
work with a running example. Section 4 defines
the FRSL’s abstract and textual concrete syntax.
Section 5 provides a formal semantics for it. A
tool support is explained in Section 6. Section 7
evaluates our language. This paper is closed with
conclusions and a discussion of future work.

2. Related Work

Current work in the literature for software re-
quirements specification mainly focuses on func-
tional requirements. Several techniques as sur-
veyed in [14] are proposed to specify non-
functional requirements: Non-functional require-
ments are represented as system properties, that
need to be verified, based on logics such as
first-order predicate logic or temporal logic. To
specify functional requirements, current meth-
ods often represent them in the form of natu-
ral, structured or unstructured languages, or semi-
formal languages like UML using diagrams such
as Use case diagrams, ER diagrams, Interaction
diagrams, or Statecharts. Several modeling lan-
guages such as SysML (Systems Modeling Lan-

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 89

guage [15]) have been proposed to specify com-
plex systems, at different levels of abstraction,
and at the same time, provide traceability be-
tween artifacts such as requirements specification
and test cases. The KAOS (Knowledge Acqui-
sition in autOmated Specification language) was
proposed in [16] to specify a goal-oriented re-
quirement. Formal languages such as algebraic
specifications (e.g., CASL [17]), object-oriented
specification languages (e.g., Object-Z, Alloy,
and Event-B [18]), and metamodeling-based lan-
guages (e.g., UML/OCL) have been employed to
precisely specify functional requirements.

Use cases have been widely used to specify
functional requirements. The surveys conducted
in [2, 3] present the approaches available in the
literature to describe and formalize use cases.
Current approaches on use case specification can
be divided in three groups. First, many use case
templates [4, 5] have been introduced for helping
their writing, reading and reviewing. The work
in [19] proposed an intermediate use case tem-
plate to ease the extraction of class diagrams from
use case specifications. The authors aim to in-
crease either the level of detail or the degree of
formality in the use cases. In [7] a pattern lan-
guage is proposed for use case specification. Sim-
ilarly, the work in [6] focused on to the guide-
lines, suggestions and techniques provided to de-
velop quality use case specification. The authors
introduce anti-patterns together with a template
to define them in order to improve quality in use
case models.

In the second group, many efforts have been
made to formalize use cases even further to bring
more automation to the development process.
They concentrate on developing domain-specific
languages (DSL) that allow specification of tex-
tual use cases and semi-automated generation
of software artifacts within a model-driven ap-
proach. They aim to obtain the balance between
the right level of detail for the generation of ar-
tifacts and the understandability for stakehold-
ers. The authors in [10] introduced RUCM (Re-

stricted Use Case Modeling) as a restricted natu-
ral language (NL) for reducing imprecision and
incompleteness in use case specifications. The
DSL aims to capture all the necessary informa-
tion required for the generation of analysis mod-
els. The approach avoids behavioral modeling
(e.g., Activity and Sequence diagrams) by ap-
plying Natural Language Processing (NLP) to a
more structured and analysable form of use cases.
The work in [11] introduced RSL as a restricted
NL for use case specification. To specify use
cases in RSL the user needs to manually parse
NL sentences by indicating their subjects, verbs,
objects and predicates. The work proposes using
the relation <<invoke>> between scenarios to re-
place the use case relationships <<include>> and
<<extend>>. The work also developed transfor-
mations to obtain UML diagrams and Java pro-
grams from an RSL specification. The authors
in [12] proposed a language for use case speci-
fication named SilabReq. They aim to generate
from use case specifications domain models, the
system operations list, the use case model and ac-
tivity and state diagrams. The work tends to sep-
arate use case specifications into different layers
of abstraction, each of which is suitable to each
stakeholder, including end-users, requirement en-
gineers, business analysts, designers, developers,
and testers. In SilabReq a use case is defined as a
set of scenarios. Each scenario consists of one or
more blocks of actions, and each block contains
actions performed by either the actor or the sys-
tem. Similarly, the work in [20] proposes a DSL
named LUCAM that allows specification of tex-
tual use cases and semi-automated generation of
UML diagrams. The work in [21] proposed an ex-
tension of UML metamodel for use cases. They
aim to incorporate new meta-concepts into UML
for use case behavior specification. A tool named
UCDesc is introduced to support this approach.

In the third group, many authors have at-
tempted to introduce rigor into use case descrip-
tions, as surveyed in [3]. The work in [8] in-
troduces UC-B as a plug-in for the Rodin plat-

90 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

form that supports the authoring and management
of use case specifications with both informal and
formal components. The use case behavior is
formally defined based on Event-B’s mathemat-
ical language. The UC-B automatically generates
a corresponding Event-B model, taken as input
for the Rodin verification tools in order to ver-
ify system level properties. Within the approach,
each use case specification contains a contract
and scenarios. The contract enables to specify
constraints, i.e., pre-conditions, post-conditions
and invariants that apply to the execution of the
use case. The authors in [2, 22–24] suggest em-
ploying UML Sequence diagrams and Activity
diagrams in order to represent the sequences of
interactions described in the use case.

Like our previous work reported in [13, 25],
this work employs OCL conditions to express ac-
tion contracts. Current methods [26–31] in the lit-
erature are often based on NLP techniques to ex-
tract information from the use case specification.
This work captures such an information using
the pre- and postconditions of use case actions.
The constraints are represented based on object-
oriented paradigm. Thus, our use case specifica-
tion (i.e., in FRSL) can be seen as an intermedi-
ate representation that would help narrow the gap
between the requirements and other software ar-
tifacts. Unlike our previous work, use case con-
straints in a FRSL specification can be expressed
with the concepts of not only the solution space,
but also the problem domain, as explained in
Section 4.1.4. Besides, our work provides a pre-
cise semantics of use cases. Thus, the true se-
mantics of extension points and rejoin points, as
discussed in [32], could be precisely defined.

3. Running Example and Background

This section reviews background concepts of
use case modeling and object models that will be
used in the remainder of the paper. We will il-
lustrate the concepts using a Point of Sale (POS)
software example [33].

3.1. Use Case Modeling
Use case was first introduced in [5] as a

means to model the interaction between a soft-
ware system and its environment. They have been
widely used to capture the system’s functional re-
quirements from the user’s perspective. A use
case is defined as follows.
Use Case. A use case is “the specification of se-
quences of actions, including variant sequences
and error sequences, that a system, subsystem, or
class can perform by interacting with outside ob-
jects to provide a service of value” [34]. The out-
side objects here are referred to as actors.
Actor. An actor is “a classifier for entities out-
side a subject that interact directly with the sub-
ject. An actor participates in a use case or co-
herent set of use cases to accomplish an overall
purpose” [34].

Example 1. Figure 1 shows on the right top a
simplified use case model of the POS adapted
from [33]. This example use case model is
represented by a UML use case diagram to-
gether with textual use case descriptions. Con-
sidering the Process Sales use case, the ac-
tor Cashier takes part in this use case in or-
der to meet her/his goals, i.e., to record the
purchased items and collect payment. To help
the primary actor Cashier achieve the main
goal, the system needs to interact with other sec-
ondary actors including AccountingSystem and
CreditAuthorizationService.

A use case is often specified using a de-
scription template [4], which includes two main
parts, as illustrated in Fig. 1. The first part
overviews the use case with fields about the “use
case name”, “actors”, and “pre- and postcondi-
tion”. The precondition (postcondition) needs to
be fulfilled before performing (after finishing) the
use case. The other part of the use case specifica-
tion focuses on use case flows. A use case con-
tains a basic flow and several alternative flows.
The basic flow captures what normally happens
for the use case. If the basic flow is unsuccessful

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 91

Use Case UC3: Handle Credit Payment

Brief Description: The Customer wants to pay by a credit payment.

Primary Actor: Customer

Secondary Actor: PaymentAuthorizationService

Preconditions: Customer is ready to pay the sale by a credit payment.

Postconditions: Customer purchases. Cashier takes bill. Done the sale.

Basic Flow:

1. Customer enters the credit account information.

2. System sends payment authorization request to the external system

 PaymentAuthorizationService, and requests payment approval.

3. System receives payment approval and signals approval to Cashier.

4. System records the credit payment, which includes the payment approval.

5. System presents credit payment signature input mechanism.

6. Cashier asks Customer for a credit payment signature.

 Customer enters signature.

Use Case UC1: Process Sales

Brief Description: The use-case describes Cashier's process sale.

Primary Actor: Cashier

Secondary Actor: AccountingSystem; InventorySystem.

Preconditions: Cashier is identi�ed and authenticated. Customer is ready to buy.

Postconditions: Sale is saved. Tax is correctly calculated.

 Accounting and Inventory are updated. Commissions recorded. Receipts are generated.

Basic Flow:

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. The system creates a new sale and requires the cashier to enter items

4. Cashier enters item identi�er.

5. System records sale line item and presents item description, price,

 and running total with calculated tax.

(*) Cashier repeats steps 4-5 until indicates done.

6. System presents total with taxes calculated.

7. Cashier tells Customer the total and asks for payment.

8. Customer wants to pay the sale by cash. The use case HandleCashPayment is involked.

9. System logs completed sale and sends sale and payment information to

 the external systems AccountingSystem (for accounting and commissions)

 and InventorySystem (to update inventory)

10. Customer leaves with receipt and goods (if any).

Alternative Flows:

8a. Customer wants to pay the sale by credit payment.

 8a.1. The use case HandleCreditPayment is involked.

Extension Points:

E1. PaidByGiftCert: at step 8; when Customer wants to pay with gift certi�cate.

Use Case UC4: Handle Gift Certi�cate

Brief Description: This use case allows the customer to pay with certi�cate.

Primary Actor: Cashier

Preconditions: Customer wants to pay with gift certi�cate.

Postconditions: The sale is partly paid by the gift certi�cate.

Basic Flow:

1. Customer gives gift certi�cate to Cashier. Cashier enters gift certi�cate ID.

2. System displays the balance of the gift certi�cate.

3. Cashier enters an amount to pay part of the total payment.

4. System records the gift payment.

Use Case UC2: Handle Cash Payment

Brief Description: This use-case allows the customer to pay the sale by a cash payment.

Primary Actor: Cashier

Preconditions: Customer is ready to pay the sale by a cash payment.

Postconditions: The sale is paid by a cash payment.

Basic Flow:

1. Customer wants to pay the sale by cash.

2. Cashier enters the cash amount tendered.

3. System presents the balance due, and releases the cash drawer.

4. Cashier deposits cash tendered and returns balance in cash to Customer.

Figure 1. A simplified use case model and its textual description for the POS system (adapted from [33]).

due to any condition, the system would take an al-
ternative flow. The alternative flow is then either
an optional or exceptional behavior or any varia-
tion of the normal behavior. Each use case flow
consists of actions performed either by the sys-
tem or actors. An execution of such a sequence
of actions specified in a use case is referred to as
an instance of a use case or a scenario. A flow is
often further structured into steps or subflows [5].

A use case can participate in the following re-
lationships: generalization, inclusion, and exten-
sion. A use case generalization denotes “the rela-
tionship between a general use case and a more
specific use case that inherits and adds features
to it” [34]. In this work, we concentrate on the
two other relationships.
Inclusion. A use case inclusion denotes “the in-
clusion of the behavior sequence of the supplier
use case into the interaction sequence of a client
use case, under the control of the client use case
at a location the client specifies in its descrip-
tion” [34]. For example, as shown in Fig. 1, the
client use case ProcessSales includes the sup-
plier use case HandleCreditPayment. When

the ProcessSales use case reaches the in-
clusion point at Step8, it begins executing
the HandleCreditPayment use case until it
is complete. Then it resumes executing the
ProcessSales use case at Step9.

Extension. A use case exension is “a relationship
from an extension use case to a base (extended)
use case, specifying how the behavior defined for
the extension use case can be inserted into the be-
havior defined for the base use case” [34]. The
locations of the base use case at which the ex-
tension might be inserted are defined by an exten-
sion point: The extension use case is invoked only
when the current scenario of the base use case
reaches a point where the guard condition defined
by the extension point evaluates to true. When the
execution of the extension use case is complete,
the flow returns to the original use case at the ref-
erenced point. For example, Fig. 1 shows the base
use case ProcessSales extended by the exten-
sion one HandleGiftCertificatePayment at
the extension point E1. The guard condition is
true when the Customer pays by a gift certificate.

92 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

3.2. Object Model
An object model is an effective means to rep-

resent a problem domain. It allows defining con-
cepts of the domain and relationships between
them. The object model also states properties
and constraints to sharpen the domain. An object
model can be represented using a UML class dia-
gram attached with OCL constraints [35]. State-
ments in a use case specification are often ex-
pressed based on the object model. An interpreta-
tion of an object model captures a current system
state referred to as a snapshot. A snapshot is con-
stituted by objects, links, and attribute values.

Example 2. Figure 2 shows an object model for
the POS in the form of a class diagram. Figure 3
shows a snapshot in the form of an object dia-
gram. It is an interpretation of the object model
that is depicted in Fig. 2.

An object model in the form of a class dia-
gram is often attached with OCL conditions, as
explained in [35], for either properties or restric-
tions on the domain. The OCL is a formal lan-
guage with the following characteristics. First,
OCL expressions, which might be either object
constraints or queries, do not have side effects.
Second, the OCL is a typed language. Each
valid (well-formed) OCL expression has a type,
which is the type of the evaluated value of this
expression. The type system of OCL includes ba-
sic types (e.g., Integer, Real, String, and

Boolean), object types, message types, and col-
lection types (e.g., Collection(t), Set(t),

Bag(t), and Sequence(t)) to describe col-
lections of values of type t. Third, OCL is often
employed for different situations: i) to specify in-
variants, i.e., conditions that must be true for all
instances of the class in all system states; ii) to ex-
press pre- and postconditions on operations; iii) to
express guard conditions within a statechart; and
iv) to query a given system state.

Example 3. The POS object model is restricted
by the constraint “For any SalesLineItem de-
scribed by a ProductDescription and for any

Item recorded by the SalesLineItem, we have
the ProductDescription describes the Item,
i.e., there is a link Describes between the
ProductDescription and the Item ”. This
constraint is expressed in OCL as follows.

context SalesLineItem:

self.item->forAll(it:Item |

it.prdtDesc = self.productDesc)

3.3. Research Question
A use case model within model-driven ap-

proaches often needs to be transformed into soft-
ware artifacts such as analysis and design, imple-
mentation, and testing models. As an initial ef-
fort to achieve the goal, we need to tackle the fol-
lowing challenge: How can we obtain a precise
specification of the use case, i.e., that covers the
general description of the use case, use case con-
straints (pre- and postconditions and invariants),
use case actions and scenarios, as well as rela-
tionships between use cases? This work concen-
trates on developing a domain-specific language
to precisely specify use cases, resulting a basis to
define transformations for generating software ar-
tifacts from the use case specification.

4. Specifying the FRSL Syntax

This section introduces a DSL called FRSL to
specify use cases, resulting in a precise specifica-
tion of functional requirements.

4.1. Abstract Syntax
We define a FRSL metamodel as shown in

Fig. 4 for a technical domain of use cases. A
FRSL model provides an overview description of
use cases and captures the detailed information of
use cases as follows: i) The domain model in the
form of a UML/OCL class diagram; ii) The use
case structure that is defined by use case relation-
ships, inclusion and extension; iii) Use case sce-
narios; iv) Snapshot patterns to express the pre-
and post condition of either use cases or steps;
and v) The guard condition of either alternative
flows or rejoining steps or use case extensions.

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 93

Figure 2. The POS object model represented in the form of a class diagram.

Figure 3. A snapshot of the POS represented by an object diagram.

94 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

Figure 4. The FRSL metamodel.

4.1.1. Representing Domain Model
A FRSL specification represents a domain

model in the form of a class diagram. Therefore,
the UML meta-concepts for class diagram and
OCL are embedded into the FRSL metamodel to
represent the domain model.

4.1.2. Representing Use Case Structure
The FRSL meta-concepts to represent the

use case structure mainly include the UML
meta-concepts for use case diagrams [1]:
UseCase, Actor, Include, Extend, and
ExtensionPoint. A use case (extendedUC)
might be extended by other use cases
(extension). Such extensions occur when
the guard condition given by a corresponding
extension point is fulfilled.

4.1.3. Representing Use Case Scenarios
Use case scenarios are represented using

the following FRSL meta-concepts: Step,

ActStep, UCStep, RejoinStep, AltFlow,
Action, ActorAction, and SystemAction. A
step (Step) could be either an action step or a re-
joining step or a use case step w.r.t. ActStep,
RejoinStep, and UCStep. An ActStep step
contains actor/system actions (ActorAction,
SystemAction). A RejoinStep step aims to
determine the next step of the current execu-
tion by evaluating a guard condition. The guard
condition could be expressed by a snapshot pat-
tern (SnapshotPattern). A UCStep step in-
vokes another use case as an included use case
(addition). The basic flow of a use case
(Usecase) is defined by its property firstStep

and the property nextStep of the first step
(Step). Any alternative flow (AltFlow) is de-
fined by the property altFlow of the base step
(Step). The base step here is the first step of the
alternative flow. The guard condition for an alter-
native flow could be also represented by a snap-
shot pattern.

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 95

4.1.4. Representing Snapshots
The remaining FRSML meta-concepts

(SnapshotPattern, ObjVar, VarLink, and
Constraint) represent conditions and use case
states in the form of snapshot patterns.
SnapshotPattern. A snapshot pattern repre-
sents system states, referred to as system snap-
shots. A snapshot includes a set of objects and
links between them. The snapshot needs to satisfy
a given set of constraints. Specifically, a snap-
shot pattern consists of a set of object variables
(objVars), variable links (varLinks), and con-
straints where:

• Each objVar represents an object of the cur-
rent system snapshot;

• Each varLink represents a link between two
objects defined by objVars. The link is in-
stantiated by an association within the do-
main model;

• Each constraint is a restriction on the current
system snapshot, expressed as an OCL con-
dition on objVars.

ObjVar. An object variable of a snapshot pattern
represents either an object of the problem domain
or of the software domain. These domains cor-
respond to the problem world and the machine
solution as explained in [16]. The problem do-
main is part of reality defining the context of the
system-to-be with two parts: i) the software-to-be
as a component of the system-to-be, correspond-
ing to the software domain; and ii) the so-called
environment of the software-to-be, that consists
of the remaining components of the system-to-be.

A current system state, that consists of ob-
jects, links, and constraints, can be seen as a
combination of two snapshots, one belongs to the
problem domain and the other belongs to the soft-
ware domain. These two snapshots could be ex-
pressed by two object diagrams of the same class
diagram. An object of the problem domain is
often tracked by another object of the software
domain. Such a tracking could be expressed by

a link of an association Track. The Track

is a reflexive association from the domain class
DomainClass to itself. Every domain class in-

herits the DomainClass. For example, an object
item:Item of the problem domain, that repre-

sents a physical thing in reality and can not be
directly monitored or controlled by the software,
should be tracked by another object item:Item
of the software domain. The software can only di-
rectly manipulate on this “image” object instead
of the original one.

To explicitly specify that there is no link be-
tween two objects referred to by objVars, we need
to employ so-called negative links, whose isNeg
property is true. We also refer to objVars as
matched objects if the objVars have just been
updated in the current state, i.e., if the objVar

is not a matched object, we have objVar@pre =

objVar. A snapshot pattern represents system
states that satisfy certain constraints. Therefore,
we could employ a snapshot pattern as a condition
expression to express i) the pre- or postcondition
of a use case; and ii) the guard condition for either
invoking an alternative flow or rejoining another
step or extending a use case.

4.2. Concrete Syntax

This section presents a textual syntax for
FRSL. A FRSL specification basically includes
two parts: the domain model and the specifica-
tion of use cases that includes snapshots, scenar-
ios, and use case extension.

4.2.1. Specifying Snapshots
A snapshot pattern includes also so-called

negative objects that existed in the previous
system state and are destroyed in the current
state. They are instantiated by the concept
NegObjVarCS and stated by the syntax of this
form !<objVarName>;. A negative link is spec-
ified by the form !(<varLink>);. Listing 1
shows a snapshot pattern in FRSL for the use case
ProcessSale.

96 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

Listing 1. A FRSL snapshot pattern for the use case
ProcessSales

store: Store;

sale: Sale;

pos: Register;

$payment: Payment;

(sale , pos): CapturedOn;

(sale , payment): PaidBy;

!(store , sale): LogsCompleted;

[sale.isComplete = false]

This pattern contains a matched object payment,
marked by the ‘$’. To represent objVars as in-
stances of the problem domain, its name should
start with the character “ ”. We provide the fol-
lowing syntax to express there is no link between
two objects: !(store,sale):LogsCompleted.
The syntax !object is to state the object is de-
stroyed. Thus, it is no need to explicitly specify
in the post-snapshot the objects and links that are
already appeared in the pre-snapshot.

4.2.2. Specifying Use Case Scenarios
A FRSL specification provides the informa-

tion about primary and secondary actors, sce-
narios, and snapshot patterns to represent the
pre- and postcondition of the use case as well
as extension conditions. In this syntax the
precondition (preSnapshot) and postcondition
(postSnapshot) of the action step are repre-
sented as snapshot patterns.

Listing 2. A FRSL specification for system steps
sysStep step03

description = ’3. The system creates a new sale and

requires the cashier to enter items’

from

_sale: Sale;

_pos: Register;

_cashier: Cashier;

$pos: Register;

$cashier: Cashier;

$curDate: Date;

(cashier , pos): WorksOn;

(_pos , pos): _Tracks;

(_cashier , cashier): _Tracks;

to

sale: Sale;

(sale , pos): CapturedOn;

(_sale , sale): _Tracks;

[sale.oclIsUndefined () = false]

[sale.total = 0]

[sale.date = curDate]

actions

Cashier <- saleInfor: Sequence(OclAny) = Sequence{sale

.id, sale.total};

Cashier <- cashierInfor: Sequence(OclAny) = Sequence{

cashier.name};

end

Listing 2 shows a system step of the use case
ProcessSales. This specification contains two

system actions to display information to the actor
Cashier via the object variables saleInfor and
cashierInfor.

4.2.3. Specifying Use Case Extension
The locations characterized in the extension

point refer to the steps where the extending
use case could be invoked. The form to spec-
ify a location might be either <stepName>

or <stepName01>::<stepName02> or
<stepName>::all. The first form means the
extension should occur at the step <stepName>.
The second form means the extension point
occurs at any step that belongs to part of the
scenario starting at the step <stepName01> and
reaching to the step <stepName02>. The third
form means the extension point could occur at
any step of the scenario starting from the step
<stepName>.

Listing 3. A FRSL specification for use case
extensions

extensionPoint PaidByGiftCert at {step08}

description = ’It occurs as the Customer would pay

with gift certificate ’

when

$_giftCert:GiftCertificate;

end

HandleGiftCertPayment extends ProcessSales at {

PaidByGiftCert}

Listing 3 shows that the use case
HandleGiftCertPayment extends the use
case ProcessSales at Step8.

5. A Formal Semantics

This section aims to define a formal semantics
of the FRSL. Specifically, we characterize the ex-
ecution of a FRSL specification as sequences of
state transitions. Each current state is represented
as an object model, resulting in an operational se-
mantics of the FRSL.

5.1. Preliminaries

An object model is often represented in the
form of a UML class diagram together with OCL
constraints. We could formally define object
model as follows.

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 97

Definition 1 (Object Model). An object model is
the structureM = (CLASS,ATTc,ASSOC,
associates, roles,multiplicities,≺, constraints)
where

1. CLASS ⊆ N is a set of names to represent
classes, where N ⊆ A+ is a non-empty set of
names over alphabetA. Each class c ∈ CLASS
induces a type tc ∈ T whose values refer to ob-
jects of the class.

2. ATTc is the attributes of a class c ∈ CLASS,
defined as a set of signatures a : tc → t, where
the attribute name a is an element ofN , tc ∈ T
is the type of class c, and t ∈ T is the type of
the attribute.

• associates : ASSOC → CLASS+ maps each
association name to a list of participating
classes. The list has at least two elements.
• roles : ASSOC → N+ maps each associa-

tion to a list of role names. Each class of the
association is assigned with a unique role
name.
• multiplicities : ASSOC → P(N0)+ maps

each association to a list of multiplicities.
Each class of the association is assigned
with a multiplicity. The multiplicity is a
non-empty set of natural numbers (an el-
ement of the power set P(N0)+) different
from {0}.

3. ≺ is a partial order on CLASS representing the
generalization hierarchy of classes.

4. constraints are OCL conditions formed by an
OCL algebra, that is an extension of the object
model structure, as explained in [36].

A snapshot as an interpretation of an object
model is constituted by objects, links, and at-
tribute values. A formal definition for snapshots
is provided as follows.

Definition 2 (Snapshot). A snapshot of an object
modelM is the structure σ(M) = (σCLASS,

σATT , σASSOC) such that:

1. For each c ∈ CLASS, the finite set σCLASS(c)
contains all objects of class c ∈ CLASS exist-
ing in the snapshot: σCLASS(c) ⊂ oid(c).

2. FunctionsσATT assign attribute values for each
object in the state. σATT (a) : CLASS(c)→ I(t)
for each a : tc → ATT∗c.

3. For each as ∈ ASSOC, there is a set of
current links: σASSOC(as) ⊂ IASSOC(as). A
link set must satisfy all multiplicity specifi-
cations: ∀i ∈ {1, ..., n},∀l ∈ σASSOC(as):
|{l′|l′ ∈ σASSOC(as) ∧ (πi(l′) = πi(l))}| ∈
πi(multiplicities(as))

where

• I(t) is the domain of each type t ∈ T .

• oid(c) is the objects of each c ∈ CLASS. The
set is often infinite. ICLASS(c) = oid(c) ∪
{oid(c′)|c′ ∈ CLASS ∧ c′ ≺ c}.
• ATT∗c is the direct and inherited attributes of the

class c: ATT∗c = ATTc ∪c≺c′ ATTc′ .

• IASSOC(as) = ICLASS(cp1)× ...× ICLASS(cn) inter-
prets the association as,
where associations(as) = ⟨cp1, cp2, ..., cn⟩,
as ∈ ASSOC, and cp1, cp2, ..., cn are the classes.
Each las ∈ IASSOC(as) is a link.

• πi(l) projects the ith element of the list l.

Example 4. Figure 2 shows an object model in
the form of a class diagram. One of the snapshots
of the object model is presented as in Fig. 3 in the
form of an object diagram.

5.2. Use case meta-concepts
We define a snapshot pattern as a parameter-

ized snapshot. Each action within a use case sce-
nario, performed by either the system or the ac-
tor, is specified by pair of snapshot patterns as the
pre- and postcondition of the action within a con-
tract. This allows us to characterize each use case
scenario as a sequence of snapshot patterns.

Definition 3 (Snapshot Pattern). A snapshot
pattern of an object model CD is a tuple

98 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

⟨ob jVars, varLinks, conds⟩ defining a set of
snapshots of the CD, where

• ob jVars are variables referring to objects of a
snapshot of the CD;

• varLinks represent relationships between the
ob jects;

• conds are OCL conditions within the context
of the CD.

A snapshot of the snapshot set is so-called
matched by the snapshot pattern.

Definition 4 (Operators on Snapshot Patterns).
Let p, q be given as snapshot patterns of an ob-
ject model CD where

• |p| denotes a set of all snapshots each of which
can be matched to p. Such a matching assigns
the variables of p to the objects and links of the
snapshot such that its conds are fulfilled;

• |CD| denotes the set of all snapshots of the CD.

We define logical operators on snapshot patterns
as follows.

• p is a total snapshot pattern, denoted by ⊤, if
|p| coincides with |CD|.
• p is an empty snapshot pattern, denoted by ⊥,

if |p| is empty.

• ¬p denotes a snapshot pattern that satisfies
|¬p| = |CD| \ |p|.
• p ∧ q denotes a snapshot pattern that satisfies
|p ∧ q| = |p| ∩ |q|.
• p ∨ q denotes a snapshot pattern that satisfies
|p ∨ q| = |p| ∪ |q|.

Definition 5 (Refinement & Equivalence of Snap-
shot Patterns). Let p and q be two snapshot pat-
terns of an object model CD.

• We say p refines q, denoted by p ⪯ q, iff ∀s ∈
CD, s |= p =⇒ s |= q.

• We say p is equivalent to q, denoted by p ≡ q,
iff p ⪯ q ∧ q ⪯ p.

Listing 4. Snapshot pattern snapL

$sale_L$: Sale;

reg_L: Register;

($sale_L$, reg_L): CapturedOn;

[$sale_L.total >0$]

Listing 5. Snapshot pattern snapR

$sale_R$: Sale;

reg_R: Register;

sli_R: SalesLineItem;

($sale_R$, reg_R): CapturedOn;

(sli_R , $sale_R$): ContainedIn;

[$sale_R.total =80$]

Example 5. The snapshot pattern snapR as
shown in Listing 5 would refine the snapshot pat-
tern snapL as shown in Listing 4 because: i) Both
snapshot patterns could be matched to the snap-
shot depicted in Fig .3; and ii) Any snapshot
matched by snapR is also matched by snapL. We
could write snapR ⪯ snapL.

Definition 6 (Problem and Software Domain
Model). A software domain model SDM of a soft-
ware system within a problem domain PDM is an
object model such that

• PDM is an object model to represent instances
as individuals of the underlying domain and as-
sociations between them.

• any current system state represented by a snap-
shot of the PDM is also represented by a corre-
sponding snapshot of the SDM;

• any object captured by a class clsP of the
PDM is also represented by a corresponding
class clsS of the SDM. Such a corresponding
could be maintained by the one-one associa-
tion Track(clsP, clsS). Only the agent of the
PDM, i.e., by actor actions, can directly control
or monitor entities of the clsP. The software,
i.e., by system actions, can only indirectly ac-
cess the entities via the corresponding ones of
the clsS as their “image”.

A unified domain model UDM of the PDM and
SDM is an object model that consists of all their
classes, associations, and the tracking associa-
tion.

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 99

Figure 5. An illustration for use case inclusion.

Definition 7 (Use Case). A use case of a sys-
tem within a SDM w.r.t. PDM is a tuple
⟨Σ,S, E, S , s0,→, F, δ⟩ such that1

• Σ = Σe ∪ Σs ∪ {ε, ε′, ε′′} where Σe denotes
actor actions, Σs denotes system actions, and
{ε, ε′, ε′′} handle use case flows;

• S is all the snapshot patterns of the underlying
unified domain model;

• E =
⟨
ep,Es

⟩
where ep denotes an active object

(so-called agent) of PDM as primary actor and
Es denotes agent objects as secondary actors;

• S is a finite non-empty subset of S to represent
states;

• s0 is an initial state, an element of the S ;

• →⊂ S × S × Σ × S × S is a transition relation,
written α

cp1,a,cp2−−−−−−→ β for
⟨
α, cp1, a, cp2, β

⟩
∈→,

such that

– if a ∈ Σe (Σs) then the a is an actor (sys-
tem) action, and both cp1 and cp2 are snap-
shot patterns of PDM (SDM). The cp1 and
cp2 represents the pre- and postcondition of
the a, respectively;

1the ‘E’ in this definition means the ‘Environment’ of the
software, i.e., the actor.

– if a = ε then α ≡ β ∧ cp1 ≡ cp2 and the cp1
is referred to as a constraint for the current
state α;

– if a ∈ {ε′, ε′′} then cp1 ≡ cp2 and the cp1 is
referred to a guard condition of an extension
point (in the case a = ε′) or a rejoining point
(in the case a = ε′′);

– if s0
cp1,ε,cp1−−−−−−→ s0 then the cp1 is referred to as

the precondition of the use case;

– if s
cp2,ε,cp2−−−−−−→ s ∧ s ∈ F then cp2 is referred to

as the postcondition of the use case;

• F is a subset of S containing final states.

• δ : Σ → Bool is a function such that ∃!n,∀0 ≤
i < n,∃!si+1 : si

ai−→ si+1∧δ(ai)∧ sn ∈ F∧∀a ∈
Σ\{a0, ..., an} : ¬δ(a). This function is to check
if an action belongs to the basic flow of the use
case.

A use case model of a system consists of all the
use cases of the system.

Definition 8 (Scenario). A scenario sc of a use
case uc = ⟨Σ,S, A, S , s0,→, δ, F⟩ is a transition

sequence (s0

c1
p1,a1,c1

p2−−−−−−−→ s1

c2
p1,a2,c2

p2−−−−−−−→ ...
cn

p1,an,cn
p2−−−−−−−→

sn) such that {s0, ..., sn} ∩ F = {sn}.

100 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

Figure 6. An illustration for use case extension.

• The scenario sc is referred to as a basic flow
when ∀i ∈ {0, ..., n} : δ(ai).

• We write si
sc
=⇒ s j(∀0 ≤ i < j ≤ n) to denote a

transition sequence of sc. Therefore, we could
write s0

sc
=⇒ sn to denote the scenario sc.

• We write si
sc−→ si+1(∀0 ≤ i < n) to denote a

transition step of sc.

• |sc| denotes all the states of the scenario sc, i.e.,
|sc| = {s0, s1, ..., sn}.
• |uc| denotes all the scenarios of the uc.

Definition 9 (Use Case Inclusion). A use case A
includes a use case B iff ∃sc ∈ |A|, sb

sc
=⇒ se such

that the following conditions are fulfilled.

i) ∀sA ∈ |A|, sb = sA1

sA

=⇒ sAn = se : ∃(sB1

sB

=⇒
sBn) ∈ |B| (a scenario of B) such that

∀1 ≤ i ≤ n, sAi

cA
p1i
,aA

i ,c
A
p2i−−−−−−−−→

sAi+1 , sBi

cB
p1i
,aB

i ,c
B
p2i−−−−−−−−→ sBi+1 : sAi ≡ sBi∧ sAi+1 ≡

sBi+1

∧ cA
p1i
≡ cB

p1i
∧ cA

p2i
≡ cB

p2i
∧ aA

i ≡ aB
i ;

ii) ∀(sB1

sB

=⇒ sBn) ∈ |B|, sB1 ≡ sb, sBn ≡ se :

∃sA ∈ |A|, sb = sA1

sA

=⇒ sAn = se,∀1 ≤ i ≤
n,

sAi

cA
p1i
,aA

i ,c
A
p2i−−−−−−−−→ sAi+1 , sBi

cB
p1i
,aB

i ,c
B
p2i−−−−−−−−→ sBi+1 :

sAi ≡ sBi ∧ sAi+1 ≡ sBi+1 ∧ cA
p1i
≡ cB

p1i

∧ cA
p2i
≡ cB

p2i
∧ aA

i ≡ aB
i .

Example 6. Figure 5 illustrates how the
ProcessSales use case includes the
HandleCreditPayment use case. The de-
scription of these use cases is shown in Fig. 1.
The post-state of Step7 of the ProccessSales,
denoted by SAe

7, coincides with the pre-state of
Step1 of the HandleCreditPayment, denoted
by SBb

1. Since then, each state transition of the
ProccessSales is defined by a corresponding
step of the HandleCreditPayment: (SAb

i , SAe
i)

coincides with (SBb
i , SBe

i). The post-state of the
last step of the HandleCreditPayment, denoted
by SBe

6, coincides with the pre-state of Step9 of
the ProcessSales, denoted by SAb

9.

Definition 10 (Use Case Extension). Let be given
A, B as two use cases of a unified domain model

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 101

UD and p as a snapshot pattern of UD. The
use case A is extended by the use case B from
a so-called extension point p, resulting a new

use case A′ of UD such that ∀sA ∈ |A|, sb
sA

−−→

se, sb

cA
p1,a

A,cA
p2−−−−−−−→ se,∀(sB1

sB

=⇒ sBn) ∈ |B| there ex-

ists a corresponding scenario sA′1

sA′

=⇒ sA′n that ful-
fils the following conditions.

i) sb
sA′−−→ sB1 ∧ sBn

sA′−−→ se ∧ sb
sA′−−→ se;

ii) sb
p,ϵ′,p
−−−−→ sB1 ∧ sBn

⊤,ε′′,⊤−−−−−→ se ∧

sb

¬p∧cA
p1,a

A,cA
p2−−−−−−−−−−−→ se;

iii) ∀1 ≤ i ≤ n, sA′i

cA′
p1i
,aA′

i ,c
A′
p2i

=⇒

sA′ i+1 , sBi

cB
p1i
,aB

i ,c
B
p2i−−−−−−−−→ sBi+1 : sA′i ≡

sBi ∧ sA′ i+1 ≡ sBi+1

∧ cA′
p1i
≡ cB

p1i
∧ cA′

p2i
≡ cB

p2i
∧ aA′

i = aB
i ;

iv) ∀s ∈ |sA|, ((s
sA

=⇒ sb) ⇐⇒ (s
sA′

=⇒ sb)) ∧

((se
sA

=⇒ s) ⇐⇒ (se
sA′

=⇒ s)).

Example 7. Figure 6 illustrates a use case ex-
tension: The ProcessSales is extended by the
HandleGiftCertificatePayment. The exten-
sion point extPointEF1, that refers to Step8 of
the use case ProcessSales as shown in Fig. 1,
would match the post-state SAe

7 of Step7 (rep-
resented by uc1 :: step7). This state coincides
with the state S b and the pre-state SCb

1 of Step1
of the HandleGiftCertificatePayment (rep-
resented by uc3 :: step1). After finishing this ex-
tending use case at the post-state SCe

2, the execu-
tion rejoins the extended use case ProcessSales
at Step9.

6. Tool Support

We have implemented a tool support for
FRSL. The VNU-FRSL tool2 is an open

2https://github.com/vnu-dse/frsl

source project developed based on the frame-
work Xtext and the OCL Eclipse plugin named
OCLInEcore3 [37]. Figure 7 shows part
of the FRSL specification of the use case
ProcessSales. The panel on the bottom-left
of the figure shows operations of the use case
class corresponding the steps of the underlying
use case.

Figure 8 depicts the overall architecture of
VNU-FRSL. The tool is developed based on the
Eclipse platform with a plugin architecture that
allows for extensibility. The plugin architecture
consists of two main parts: the core module and
the additional modules. This design allows for
modular functionality to be added and plugged
to the core module, providing scalability, flexi-
bility, and separation of application features. The
core module allows specifying the abstract syn-
tax, which will be taken as input to other func-
tional modules for generating other artifacts.

Figure 9 shows the VNU-FRSL source code
structure based on the Eclipse architecture. The
left pane of the figure shows the main plugins,
which realized the functions: i) the FRSL spec-
ification; ii) the constraint specification in UM-
L/OCL; iii) the model-to-model transformations
in ATL [38]; and iv) the model-to-text trans-
formations in Acceleo [39]. The FRSL’s ab-
stract syntax is specified based on the Eclipse-
based metamodel system (i.e., as an ecore model).
Meanwhile, the FRSL’s textual syntax is built us-
ing the Eclipse/Xtext technology.

7. Evaluation and Discussion

This section presents an evaluation of the ex-
pressiveness of FRSL in comparison with current
use case specification languages: RUCM [40],
UC-B [8], UC2AD [41], UCM [21], Se-
labReq [12], RSL [11], and USL [13]. Based on
recent surveys [2, 3] of use case specification, we
propose four criteria of expressiveness as follows:

3https://projects.eclipse.org/projects/modeling.mdt.ocl

102 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

Figure 7. The FRSL specification of the use case Process Sales.

Figure 8. The overall architecture of VNU-FRSL.

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 103

Figure 9. The VNU-FRSL source code structure based on the Eclipse architecture.

C1. This criterion is intended to compare the
ability to express use case specification
based on templates. According to the sur-
vey in [2], among many proposal templates,
a use case specification should consist of
two parts: a general description of the use
case and a specification of the use case be-
havior. The behavior specification describes
the flows of events of the use case with two
kinds: the basic flow and alternative flows.
A use case scenario then is obtained as a
combination of the base flow and alternative
ones.

C2. This criterion aims to evaluate the ability to
specify i) the control flow over use case be-
haviors such as branching and looping; and
ii) the control flow for concurrently executed
behaviors.

C3. This criterion concentrates on the ability to
specify actions in the use case behavior de-
scription. A precise specification of actions
with different kinds of actions [11–13, 21]
would open possibility for generating soft-

ware artifacts from use case specifications as
well as for formally verifying system behav-
iors.

C4. This criterion aims to evaluate the ability to
express use case constraints for the follow-
ing situations: i) pre- and postconditions of
scenarios; ii) guard conditions of use case
flows; and iii) pre- and postconditions of ac-
tions. These constraints are also the basis
for generating artifacts and formally verify-
ing use cases.

Table 1 lists the evaluation results for the
above criteria. In the table, we use three char-
acters ‘F’, ‘I’, ‘N’ to denote method specifica-
tion used for each language: ‘F’ stands for formal
specification method, ‘I’ stands for informal spec-
ification method, and ‘N’ means the information
is not captured in the specification. First, consid-
ering the criterion C1, the FRSL language allows
us to express both the general description and the
use case behavior of a use case. This feature is
basically based on the meta-concepts of the FRSL
metamodel as explained in Section 4.

104 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

Table 1. Compare expressiveness between FRSL and the other use case specification languages

Use case information (UC)
RUCM

[40]
UC-B

[8]
UC2AD

[41]
UCM
[21]

SelabReq
[12]

RSL
[11]

USL
[13]

FRSL

(c1)
General information I N N F N N F F
UC flows of events I N I F N N F F
UC scenarios N N N N F F N F

(c2)
UC control flows I N F F N F F F
Concurrent actions N N F N N N F N

(c3) Action types I N N F F F F F

(c4)

Pre- and postconditions of scenarios I F N F N I F F
Guard conditions I F I F N I F F
Pre- and postconditions of actions N F N N N N F F
Problem domain concepts N N N N N N N F

Second, considering the criterion C2, like the
four languages UC2AD, UCM, RSL and USL,
the FRSL allows us to specify the control flows
of a use case. This feature is based on the
meta-concepts RejoinStep and AltFlow, as de-
picted in Fig. 4: Each of them is associated with
the meta-concept SnapshotPattern for a guard
condition. However, unlike USL, FRSL currently
does not support specifying concurrent actions.

Third, considering the criterion C3, like
the languages RUCM, UCM, SelabReq, RSL,
and USL, the FRSL allows specifying actions
with different types. Specifically, the FRSL
supports two basic types ActorAction and
SystemAction. The other types are defined
based on the attributes type and description

of the meta-concept Action.
Finally, considering the criterion C4,

the FRSL allows expressing constraints for
(p1) guard conditions, (p2) pre- and postcondi-
tions of actions, and (p3) pre- and postcondition
of scenarios. As depicted in Fig. 4, this
feature is based on the association between
the meta-concept SnapshotPattern and
each of these meta-concepts: RejoinStep,
AltFlow, and ExtensionPoint (for p1);
ActStep (for p2); UsecasePrecondition and
UsecasePostcondition (for p3). Additionally,
a FRSL specification might refer to the domain
concepts in order to specify actions using pre-
and postconditions, as explained in Section 4.1.4.

Discussion. This section mainly focuses on eval-
uating the expressiveness of FRSL qualitatively.
The aim is to highlight the key features of FRSL
for a precise specification of use cases. A quan-
titative assessment of this feature as well as other
features such as usability is beyond the scope of
this paper. We would take such a task as part of
our future work.

8. Conclusion

In this paper, we propose a domain-specific
language named FRSL (Functional Requirements
Specification Language) to precisely specify use
cases. The FRSL allows us to obtain a precise
specification of functional requirements, thereby
enabling increased automation in software devel-
opment. Specifically, we define the abstract syn-
tax and textual concrete syntax for FRSL, and
provide a formal semantics for it. This formal
semantics enables a precise explanation of the
meaning of use cases and their relationships. Ad-
ditionally, this serves as an initial effort to define
transformations from use cases for the automatic
generation of software artifacts. We have imple-
mented an Eclipse plugin to support the FRSL
and conducted an evaluation to highlight the lan-
guage’s key features and compare it with current
use case specification languages.

In our future plans, we have several goals.
First, we aim to define additional features for

D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106 105

FRSL, such as specifying concurrent actions and
use case generalization. These features will be in-
corporated into FRSL’s formal semantics frame-
work and implemented using the VNU-FRSL
tool. Second, we plan to conduct further stud-
ies to quantitatively evaluate FRSL. Finally, an-
other aspect of our future work involves develop-
ing transformations for automatic generation of
software artifacts from the FRSL specification.

Acknowledgements

This work has been supported by Viet-
nam National University, Hanoi under Project
No. QG.20.54. We wish to thank the anonymous
reviewers for numerous insightful feedback on
the first version of this paper.

References

[1] OMG, Unified Modeling Language 2.5.1, Object Man-
agement Group, 2017.

[2] S. Tiwari, A. Gupta, A Systematic Literature Review
of Use Case Specifications Research, Inf. Softw. Tech-
nol., Vol. 67, No. C, 2015, pp. 128–158,
https://doi.org/10.1016/j.infsof.2015.06.004.

[3] Hurlbut, Russell R., A Survey of Approaches for De-
scribing and Formalizing Use Cases, Tech. rep., Ex-
pertech, Ltd., Wheaton, Illinois (1997).

[4] A. C. Cockburn, Writing Effective Use Cases, 1st Edi-
tion, Addison-Wesley Professional, 2000.

[5] I. Jacobson, Object-Oriented Software Engineering: A
Use Case Driven Approach, Addison Wesley, 1992.

[6] M. El-Attar, J. Miller, Constructing High Quality Use
Case Models: A Systematic Review of Current Prac-
tices, Requirements Engineering, Vol. 17, No. 3, 2012,
pp. 187–201,
https://doi.org/10.1007/s00766-011-0135-y.

[7] A. R. da Silva, D. Savić, S. Vlajić, I. Antović,
S. Lazarević, V. Stanojević, M. Milić, A Pattern Lan-
guage for Use Cases Specification, in: Proc. 20th Int.
European Conf. Pattern Languages of Programs (Eu-
roPLoP), ACM, 2015, pp. 8:1–8:18,
https://doi.org/10.1145/2855321.2855330.

[8] R. Murali, A. Ireland, G. Grov, UC-B: Use Case Mod-
elling with Event-B, in: Abstract State Machines,
Alloy, B, TLA, VDM, and Z, Vol. 9675 of LNCS,
Springer International Publishing, 2016, pp. 297–302,
https://doi.org/10.1007/978-3-319-33600-8 24.

[9] L. Ribeiro, L. Duarte, R. Machado, A. Costa, E. Cota,
J. Santos Bezerra, Use Case Evolution Analysis Based

on Graph Transformation with Negative Applica-
tion Conditions, Science of Computer Programming,
Vol. 198, 2020, pp. 102495,
https://doi.org/10.1016/j.scico.2020.102495.

[10] T. Yue, L. C. Briand, Y. Labiche, aToucan: An Au-
tomated Framework to Derive UML Analysis Models
from Use Case Models, ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 24, No. 3,
2015, pp. 13:1–13:52,
https://doi.org/10.1145/2699697.

[11] M. Smialek, W. Nowakowski, From Requirements to
Java in a Snap: Model-Driven Requirements Engineer-
ing in Practice, Springer, 2015,
https://doi.org/10.1007/978-3-319-12838-2.

[12] D. Savić, S. Vlajić, S. Lazarević, I. Antović, V. Stano-
jević, M. Milić, A. R. da Silva, Use Case Specifi-
cation Using the SILABREQ Domain Specific Lan-
guage, Computing and Informatics, Vol. 34, No. 4,
2016, pp. 877–910.

[13] M.-H. Chu, D.-H. Dang, N.-B. Nguyen, M.-D. Le,
T.-H. Nguyen, USL: Towards Precise Specification of
Use Cases for Model-Driven Development, in: Proc.
8th Int. Symp. Information and Communication Tech-
nology (SoICT), Association for Computing Machin-
ery, 2017, pp. 401–408,
https://doi.org/10.1145/3155133.3155194.

[14] D. Mairiza, D. Zowghi, N. Nurmuliani, An Investiga-
tion into the Notion of Non-functional Requirements,
in: Proc Int. Symp. Applied Computing (SAC), ACM,
2010, pp. 311–317,
https://doi.org/10.1145/1774088.1774153.

[15] M. D. S. Soares, J. Vrancken, Model-Driven User
Requirements Specification using SysML, Journal of
Software, Vol. 3, No. 6, 2008, pp. 57–68.

[16] A. van Lamsweerde, Requirements Engineering -
From System Goals to UML Models to Software Spec-
ifications, Wiley, 2009.

[17] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-
Bruckner, P. D. Mosses, D. Sannella, A. Tarlecki,
CASL: the Common Algebraic Speciÿcation Lan-
guage, Theoretical Computer Science, Vol. 286, 2002,
pp. 153 – 196.

[18] A. Raschke, D. Méry (Eds.), Rigorous State-Based
- 8th International Conference, ABZ , Proceedings,
Vol. 12709 of LNCS, Springer, 2021,
https://doi.org/10.1007/978-3-030-77543-8.

[19] Shweta, R. Sanyal, B. Ghoshal, Automated Class Di-
agram Elicitation Using Intermediate Use Case Tem-
plate, IET Software, Vol. 15, No. 1, 2021, pp. 25–42,
https://doi.org/10.1049/sfw2.12010.

[20] M. A. Miranda, M. G. Ribeiro, H. T. Marques-Neto,
M. A. J. Song, Domain-Specific Language for Au-
tomatic Generation of UML Models, IET Software,
Vol. 12, No. 2, 2018, pp. 129–135,
https://doi.org/10.1049/iet-sen.2016.0279.

106 D.-H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 87–106

[21] M. Misbhauddin, M. Alshayeb, Extending the UML
Use Case Metamodel with Behavioral Information
to Facilitate Model Analysis and Interchange, Soft-
ware & Systems Modeling, Vol. 14, No. 2, 2015,
pp. 813–838,
doi:ttps://doi.org/10.1007/s10270-013-0333-9.

[22] J. M. Almendros-Jiménez, L. Iribarne, Describing Use
Cases with Activity Charts, in: U. K. Wiil (Ed.), Proc.
Int. Conf. Metainformatics (MIS), Vol. 3511 of LNCS,
Springer, 2004, pp. 141–159,
https://doi.org/10.1007/11518358 12.

[23] L. Li, Translating Use Cases to Sequence Diagrams,
in: Proc. 15th Int. Conf. Automated Software En-
gineering (ASE), IEEE Computer Society, 2000,
pp. 293–298,
https://doi.org/10.1109/ASE.2000.873681.

[24] A. Lorenz, H.-W. Six, Tailoring UML Activities to Use
Case Modeling for Web Application Development, in:
Proc. Int. Conf. the Center for Advanced Studies on
Collaborative Research (CASCON), IBM Corp., 2006,
pp. 1–26,
https://doi.org/10.1145/1188966.1189001.

[25] D.-H. Dang, H. Truong, M. Gogolla, Checking
the Conformance between Models Based on Sce-
nario Synchronization, J. UCS, Vol. 16, 2010,
pp. 2293–2312,
https://doi.org/10.3217/jucs-016-17-2293.

[26] S. Tiwari, D. Ameta, A. Banerjee, An Approach to
Identify Use Case Scenarios from Textual Require-
ments Specification, in: Proc. 12nd India Software En-
gineering Conference (ISEC), ACM, 2019, pp. 1–11,
https://doi.org/10.1145/3299771.3299774.

[27] J. S. Thakur, Automatic Generation of Analysis
Class Diagrams from Use Case Specifications, CoRR,
Vol. abs/1708.01796, 2017, pp. 1–41,
https://doi.org/10.48550/arXiv.1708.01796.

[28] T. Skersys, P. Danenas, R. Butleris, Extracting SBVR
Business Vocabularies and Business Rules from UML
Use Case Diagrams, Journal of Systems and Software,
Vol. 141, 2018, pp. 111–130,
https://doi.org/10.1016/j.jss.2018.03.061.

[29] G. Carvalho, D. Falcão, F. Barros, A. Sampaio,
A. Mota, L. Motta, M. Blackburn, NAT2TESTS CR:
Test Case Generation from Natural Language Require-
ments Based on SCR Specifications, Science of Com-
puter Programming, Vol. 95, 2014, pp. 275–297,
https://doi.org/10.1016/j.scico.2014.06.007.

[30] C. Wang, F. Pastore, A. Goknil, L. Briand, Z. Iqbal,
Automatic Generation of System Test Cases from
Use Case Specifications, in: Proc. 24th Int. Conf.

Software Testing and Analysis (ISSTA), ACM, 2015,
pp. 385–396,
https://doi.org/10.1145/2771783.2771812.

[31] E. Sarmiento, J. Leite, E. Almentero, G. Alzamora,
Test Scenario Generation from Natural Language Re-
quirements Descriptions based on Petri-Nets, Elec-
tronic Notes in Theoretical Computer Science,
Vol. 329, 2016, pp. 123–148,
https://doi.org/10.1016/j.entcs.2016.12.008.

[32] P. Metz, J. O’Brien, W. Weber, Specifying Use Case
Interaction: Clarifying Extension Points and Rejoin
Points, The Journal of Object Technology, Vol. 3,
No. 5, 2004, pp. 87–102,
https://doi.org/10.5381/jot.2004.3.5.a1.

[33] C. Larman, Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and
Iterative Development, 3rd Edition, Addison Wesley
Professional, 2004.

[34] J. Rumbaugh, I. Jacobson, G. Booch, The Unified
Modeling Language Reference Manual, 2nd Edition,
Addison-Wesley Professional, 2004.

[35] J. Warmer, A. Kleppe, The Object Constraint Lan-
guage: Getting Your Models Ready for MDA, 2nd
Edition, Addison-Wesley Professional, 2003.

[36] M. Richters, A Precise Approach to Validating UML
Models and OCL Constraints, Ph.D. thesis, Univer-
sität Bremen, Fachbereich Mathematik und Informatik
(2002).

[37] E. D. Willink, Aligning OCL with UML, Electron.
Commun. Eur. Assoc. Softw. Sci. Technol., Vol. 44,
2011, pp. 1–20,
https://doi.org/10.14279/tuj.eceasst.44.664.

[38] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A
model transformation tool, Science of Computer Pro-
gramming, Vol. 72, No. 1-2, 2008, pp. 31–39,
https://doi.org/10.1016/j.scico.2007.08.002.

[39] M. Brambilla, J. Cabot, M. Wimmer, Model-
Driven Software Engineering in Practice, 2nd Edition,
Springer Cham, 2017,
https://doi.org/10.1007/978-3-031-02549-5.

[40] T. Yue, L. C. Briand, Y. Labiche, Facilitating the Tran-
sition from Use Case Models to Analysis Models:
Approach and Experiments, ACM Trans. Softw. Eng.
Methodol., Vol. 22, No. 1, 2013, pp. 5:1–5:38,
https://doi.org/10.1145/2430536.2430539.

[41] S. Tiwari, A. Gupta, An Approach of Generating Test
Requirements for Agile Software Development, in:
Proc. 8th Int. Conf. India Software Engineering Con-
ference (ISEC), Association for Computing Machin-
ery, 2015, pp. 186–195,
https://doi.org/10.1145/2723742.2723761.

