
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55

A Big Data Analytics Framework
for IoT Applications in the Cloud

Linh Manh Pham

University of Grenoble Alpes, Grenoble, France

Abstract

The Internet of Things (IoT) is an evolution of connected networks including million chatty embedded devices. A

huge amount of data generated day by day by things must be aggregated and analyzed with technologies of the

“Big Data Analytics”. It requires coordination of complex components deployed both on premises and Cloud

platforms. This article proposes BDAaaS, a flexibly adaptive cloud-based framework for real-time Big Data

analytics. The framework collects and analyzes data for IoT applications reusing existing components such as IoT

gateways, Message brokers and Big Data Analytics platforms which are deployed automatically. We demonstrate

and evaluate BDAaaS with the implementation of a smart-grid use case using dataset originating from a practical

source. The results show that our approach can generate predictive power consumption fitting well with real

consumption curve, which proves its soundness.

c© 2015 Published by VNU Journal of Sciences.

Manuscript communication: received 28 April 2015, revised 20 June 2015, accepted 25 June 2015

Correspondence: Linh Manh Pham, Linh.M.Pham@ieee.org

Keywords: Big Data Analytics, Cloud Computing, Event Stream Processing, Internet of Things.

1. Introduction

Millions of chatty embedded devices such as

wireless sensors, RFID, mobile sensors have been

operating in the connected networks of Internet of

Things (IoT). According to Forbes, the number

of connected things will be approximately 41

billions by the end of 2020 [1]. IoT fully

benefits from economic models offered by up-

to-date technologies from Cloud computing (i.e.

pay-as-you-go style), which improves the quality

of service delivered to customers and helps

them to satisfy their legal and contractual duties.

However, associated IoT services require the

collecting of huge amount of data produced

by swarms of sensors using dedicated gateways

and the analysis these data using “Big Data

Analytics” platforms (BDA for short). The BDA

offers models (e.g. Map-Reduce, ESP, CEP [2])

and technologies (e.g. Hadoop, Storm [3]),

deployed on Cloud [4]. Moreover, deploying

a BDA infrastructure often requires engineers

with skills in various technologies of Cloud

computing, Big Data, IoT as well as knowledge

in diverse business domains such as smart grid,

healthcare, supply chain, etc. Gartner forecasts

that the projects in Big Data will globally create

4.4 million IT jobs by 2015 [5]. However,

this number is underestimated with the billions

of “chatty” connected things which will be

integrated continuously in the next few years.

This practice will create a new kind of job

which requires people who are both business and

domain experts to design and deploy complex

analytic workflows and to interpret big data

results. These experts need the efficient tools to

coordinate all the phases in an automatic manner.

The BDAaaS is a framework to provide

specifications for generating specific cloud-

based PaaS of real-time BDA applications.

L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55 45

The BDAaaS project targets the people who are

not expert of Cloud deployment and configuration

(i.e. D&C process). It enables to build

complex workflows of standard analytics, sensor

data sources and data viz components and to

deploy them both on the IoT gateways and on

virtual servers hosted by one or several Cloud

platforms. Moreover, the framework aims to

design and deploy rapidly SaaS for BDA. The

main motivation of BDAaaS is not only to

ease the provisioning of such real-time BDA

applications but also to collect and analyze data

from IoT gateways to Cloud hosting. The

objectives of the framework are to

• ease the D&C works of the components

involved in the collecting and filtering

workflows from the IoT gateways to the

streaming processors deployed on a Cloud

platform.

• provide statistical/numerical libraries for

topologies of streaming processors fitting

domain specific concerns (e.g. smart-grid

consumption, prediction, etc.).

Moreover, the core of the framework aims to

be agnostic to the protocols (MQTT, MQTT-SN,

M3DA, STOMP, AMQP, CoAP, WebSockets,

WebRTC, XMPP IoT, future HTTP 2.0), the

data formats (BSON, JSON, XML), the data

models (oBIX, OpenADR, ESTI M2M, IPSO

Smart Object), the gateways (ESH, OM2M, Kura,

IoTSys), the brokers (Mosquitto, RabbitMQ,

Kafka), the sensor data stores (MongoDB,

Cassandra, HDFS, TempoDB, InfuxDB, SciDB,

Graphite), the offline/batch Big Data analytics

platforms (Hadoop, Spark), the real-time Big

Data analysis platforms (Storm, S4, Samza,

Spark streaming, MUPD8), the data visualization

and dashboard frameworks (Grafana, Graphite,

OpenEnergyMonitor).

In summary, we make the following

contributions in this article:

• We propose the novel architecture of

BDAaaS, a generic, improvable cloud-based

PaaS framework for real-time BDA.

• We perform experiments which validate

the soundness and efficiency of BDAaaS

using dataset from practical sources. These

experiments are deployed on a hybrid

Cloud environment comprising a private

OpenStack [6] hosting center, the public

Microsoft Azure [7] and Amazon EC2 [8]

Clouds.

The rest of the article is organized as follows.

Section 2 presents the overall architecture and

components of BDAaaS. The proof-of-concept

implementation of BDAaaS using dataset from

practical sources is demonstrated in smart-grid

use case of Section 3. Section 4 discusses

the validating experiment and results on the

aforementioned use case. After highlighting

various related works in Section 5, we conclude

and present future works in Section 6.

2. The BDAaaS Framework

The BDAaaS framework is designed with

a flexible architecture described as a set of

abstract components. When a BDAaaS instance

is deployed on the Cloud, each of these

abstract components will be specialized into a

concrete component. Therefore the components

of framework can be replaced easily to use

new gateway protocols, data stores and so

on. The overall novel architecture of the

BDAaaS framework is depicted in Figure 1.

This architecture is inspired by the lambda

architecture [9] which is a data-processing

architecture designed to deal with massive data

from multiple sources. A lambda system contains

typically three layers: batch processing aiming

to perfect accuracy, speed (or real-time stream

processing) for minimizing latency, and a serving

layer for responding to queries. The architecture

of BDAaaS is composed of the following abstract

components:

• IoT Gateway: this component collects data

from various sensor networks (e.g. enOcean,

Zigbee, DASH7, 6LowPAN, KNX) and

publish them to the brokers. They store

temporally the data when the networks such

46 L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55

Fig. 1: The BDAaaS novel framework implementing lambda architecture.

as Wifi public hotspots, ADSL, 1234G,

SMS, Satellite, Ham radio are not available.

Gateways can be either mobile (from people,

cars to sounding balloons) or static (vending

machines, interactive digital signage).

• Message Broker or Message-as-a-Service:

this component implements the distributed

publish-subscribe patterns with various QoS

properties. These include fault-tolerance,

high-availability, elasticity, causality,

deterministic delivery time, etc.

• NoSQL Store: stores temporal data of

sensors as well as calculated aggregation

data and prediction models.

• Batch Processor: This component

operating at Batch layer is to retrieve

offline data from the storages and perform

batch processing.

• Machine Learning Processor: calculates

offline unsupervised models of offline

big data to parameter the event stream

processing.

• Real-time Event Stream Processor: This

component aims at analyzing in real-time

the stream of sensor data incoming from the

IoT gateways thanks to the brokers to predict

and classify the data.

• D&C Manager: deploys, configures,

adapts the components in a hybrid cloud

infrastructure and on physical machines

(gateways).

• DSL-based Plug-in: for Eclipse and Visual

Studio to design easily the BDA workflows

like components to deploy, sensors to use,

topologies to reuse, etc.

To put more flexible to our framework,

a D&C manager is used to orchestrate the

system autonomously. We developed such

an orchestrator which is described in [10]. It

is a middleware for configuring, installing,

and managing complex legacy application

stacks deployed on the Cloud virtual machines

and on physical machines which dynamically

evolve over time. Designed based on SoA

L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55 47

principal, the orchestrator consists of a simple

DSL (i.e. Domain Specific Language) for

describing configuration properties and

inter-dependencies of service components; a

distributed configuration protocol ensuring the

dynamic resolution of these inter-dependencies;

a runtime system that guarantees the correct

deployment and management of distributed

application across multiple Clouds, physical

devices or virtual machines. The components

can be changed or replaced flexibly using the

orchestrator’s plug-in mechanism. According

to this way, a component can be developed as a

plug-in at design phase and be plugged into the

orchestrator’s core at runtime. The plug-in needs

to conform corresponding interface for specific

type of components. It supports popular IaaS

Cloud platforms such as Amazon EC2, Microsoft

Azure, OpenStack and VMware vSphere [11].

The BDAaaS framework is described as a

deployment plan of the orchestrator. The

components of the framework are then deployed

automatically at runtime in Cloud virtual machine

instances or in embedded Linux boards that can

be installed in real houses, stores, offices and

buildings. Next section discusses in details about

a smart-grid use case of BDAaaS.

3. The Smart-grid Usecase

A smart grid is a nation-wide electrical grid

that uses IoT technologies for monitoring in

real time the behaviors of millions of electric

consumers in order to adjust the electric

production of power suppliers including coal

plants, nuclear plants, solar panel installations,

wind turbines. The goal is to optimize

the efficiency, reliability, economics, and

sustainability of the production and distribution

of electricity for both suppliers and consumers.

For instance, the grid helps consumers to avoid

charging electric batteries of vehicles at peak

load in counterpart of low energy price.

For validation our BDA PaaS, we have

developed an infrastructure for simple smart-grid

application in which the electricity supplier can

forecast the electric load in the next minutes

by analyzing in real time electric consumptions

collected in houses. This PaaS is composed

of well-known open-source components, as in

the case of OpenHAB [12], Mosquitto [13],

RabbitMQ [14], Storm and Cassandra [15],

which implements a part of BDAaaS framework.

We consider BDAaaS as the premise of a real-

time BDA PaaS cloud framework. In the

short term, the infrastructure will be adjusted

dynamically according to the load of sensor

messages’ throughput by the orchestrator. For

instance, additional cloud instances can be added

to the speed layer of the architecture when the

response time goes over a threshold. The detailed

architecture of the BDAaaS infrastructure for the

use case is shown in Figure 2 and its components

are described as follows.

3.1. IoT Gateways

For the sensor data collection, we have chosen

the OpenHAB framework which provides an

integration platform for sensors and actuators

of the home automation. The OpenHAB

platform is based on the Eclipse Equinox OSGi

platform [16]. The communication paradigm

among the inner components of OpenHAB is

Publish-Subscribe [17]. OpenHAB allows the

users to specify DSL-based rules which will be

parsed by its rule engine to update the actuator’s

commands upon sensors state changes using the

OSGi Event Admin internal broker [18]. The

Event-Condition-Action (ECA) paradigm is used

by OpenHAB for executing the home automation

actions. The OpenHAB rule engine evaluates

and executes ECA rules which are written in

a DSL based on Eclipse XText and XTend.

ECA rules are triggered on sensor value changes,

command emission and timer expiration. Events

(e.g. state changes and commands) can be

“imported” or “exported” using bindings for

MQTT, XMPP, Twitter, etc. OpenHAB can be

installed and run on embedded boards, some of

which are Raspberry Pi, Beaglebone Black and

Intel Galileo.

For the smart-grid use case, we have developed

a new OpenHAB plugin (called binding) in order

to replay the sensor log files containing the smart-

48 L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55

Fig. 2: The BDAaaS’s components for the smart-grid use case.

plug measurements (e.g. timestamped load and

work) of each house. OpenHAB-BDAaaS is the

packaging of OpenHAB for the BDA applications

including the plug-in and the data files. This

package can be deployed on both embedded

boards and virtual machines with one instance per

house.

3.2. MQTT Brokers

MQ Telemetry Transport (MQTT) [19] is a

transport data protocol for M2M networks. It

is devised for supporting low-bandwidth and

unreliable networks, as illustrated by satellite

links or sensor networks. MQTT follows the

publish-subscribe pattern between the sensors

and one or more sinks like M2M gateways,

etc. MQTT is now an OASIS standard. The

main robust and open-source implementations of

MQTT brokers are Mosquitto and RabbitMQ.

3.3. Speed Layer for Real-time Analytics

For the speed layer of the lambda architecture,

we have chosen the Apache Storm platform.

Storm is a real-time event-stream processing

system. It is designed to deploy a processing

chain in a distributed infrastructure such as a

Cloud platform (IaaS). Storm can be applied

successfully to the analysis of real-time data and

events for sensor networks (real-time resource

forecasting, consumption prediction), log file

system (monitoring and DDoS attack detection),

finance (risk management), marketing and social

networks (trend, advertising campaign). Initially

developed by Twitter, its challengers are Apache

S4 (Yahoo!), Spark Streaming, Millwheel

(Google), and Apache Samza (LinkedIn). For

the use case, we have developed a new Storm

input components (called spout) in order to

generate sensor tuples from the MQTT brokers

by subscribing on the MQTT topics with one

spout per house.

3.4. Historical Data Storage

In the speed layer, the Storm topology needs to

maintain some execution ongoing state. This is

the case for the sliding window average of sensor

values. To do this we use Storm with Cassandra

for our real-time power consumption prediction.

L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55 49

An Azure VM

VM_AZURE {

alias: VM Azure;

installer: iaas;

children: Storm_Cluster ,

Cassandra;

}

A BeagleBone Black

BOARD_BEAGLEBONE {

alias: BeagleBone Black;

installer: embedded;

children: OpenHAB;

}

Storm Cluster for ESP

Storm_Cluster {

alias: Storm Cluster;

installer: bash;

imports: Nimbus.port , Nimbus.ip;

children: Nimbus , Storm_Supervisor ;

}

OpenHAB: A Home Automation Bus

OpenHAB {

alias: OpenHAB;

installer: puppet;

exports: ip ,

brokerChoice = Mosquitto;

imports: Mosquitto.ip ,

Mosquitto.port;

}

...

Fig. 3: Components of the smart-grid use case under the orchestrator’s DSL.

Cassandra is an open source distributed database

management system (NoSQL solution). It is

created to handle large amounts of data spread

out across many nodes, while providing a

highly available service with no single point

of failure. Cassandra’s data model allows

incremental modifications of rows.

3.5. Visualization Dashboard

For the forecast visualization, we have

developed a simple dashboard displaying charts

of current and predicted consumptions for

suppliers and consumers. The dashboard is

a simple HTML5 webapp using the Grafana,

Bootstrap and AngularJS libraries. The webapp

gets the data from the historical storage and

subscribes to real-time updates through a

websocket.

3.6. D&C Manager

As mentioned, DSL of our chosen Cloud

orchestrator is a hierarchical language which

allows sysadmins to describe naturally multi-

tier complex applications such as Java EE,

OSGi, IoT, etc. Smart grid is a multi-tier

BDA application implementing two layers of

lambda architecture (speed and serving ones)

and other layers including sensor data collecting,

encapsulated message dispersion, etc. Thus it

is a just-right solution for our application. The

configuration of components in smart-grid use

case under the orchestrator’s DSL are excerpted

and shown in Figure 3. We see that some

components may have their children which are

OpenHAB in the case of BOARD BEAGLEBONE

and Storm Cluster, Cassandra in the case of

VM AZURE, respectively. The components at

sublayer, in turn, may contain subcomponents

which are either stubs or not. Puppet and Bash

is some of many choices for configuration tools.

The components can exchange the configuration

information using export/import variables. This

mechanism help resolving inter-dependencies

among components dynamically at runtime. For

instance, like shown in Figure 3 and 4, an instance

of Nimbus exports its port and IP which will be

imported by a specific instance of Storm cluster.

It is worth noting that an instance can be either

exporter or importer like OpenHAB instance in

Figure 3. This exchangeable mechanism is also

detailed in [10]. Overall, we can see how is

easy to describe and replace components with the

hierarchy, which conforms to the design principle

of the BDAaaS itself.

50 L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55

A VM Azure with Nimbus

instance of VM_AZURE {

name: vm-azure -nimbus -1;

instance of Nimbus {

name: nimbus -storm -1;

port: 6627;

}

}

A BeagleBone Board for OpenHAB

instance of BOARD_BEAGLEBONE {

name: board -bb -openhab -1;

instance of OpenHAB {

name: openhab -1;

}

}

A VM EC2 for Message Broker

instance of VM_EC2 {

name: vm -ec2 -mosquitto -1;

instance of Mosquitto {

name: mosquitto -1;

port: 1883;

}

}

A VM OpenStack with Cassandra

instance of VM_OpenStack {

name: vm -openstack -cassandra -1;

instance of Cassandra {

name: cassandra -1;

}

}

...

Fig. 4: Instances of components of the smart-grid use case under the orchestrator’s DSL.

4. Validating Experiments

In order to evaluate our work, we implement

the smart-grid use case on a hybrid Cloud

environment. Each house is represented by an

OpenHAB process which publishes the given

dataset related to the house (approximately

2.5 GB per house). The 2.5 GB dataset

files are preloaded on microSD cards. These

gateways are deployed on Beaglebone Black [20]

embedded boards. The publication is done with

the OpenHABs MQTT binding. The MQTT

topic hierarchy contains a distinct topic for

each house. The Storm topology’s spout (see

Section 4.2) subscribes to the MQTT topics and

then retrieves data by sending them as a stream

of Storm tuples over the analysis chain. The

aggregated data and results are finally stored

in an Apache Cassandra database which is in

our OpenStack private Cloud for safety. The

cluster of MQTT brokers, containing the topics,

and the publishers are hosted on EC2 public

Cloud virtual machines. The Storm cluster

has 3 worker nodes, each corresponding to a

virtual machine instance on the Cloud of Azure

for taking advantage of computing strength of

our granted Microsoft infrastructure. Instead

of deploying on Beaglebone Black, OpenHAB

processes publishing the dataset can also be

deployed and run on any virtual machines or

containers on the Cloud. In either case, the

D&C process is performed automatically by the

chosen orchestrator. Figure 4 shows a short

extract about instances of the experiment under

the orchestrator’s DSL. We can see how this

hierarchical language is successful in describing

the distributed multi-tier complex applications.

4.1. The Dataset

The smart-grid application uses dataset based

on practical records collecting from smart plugs,

which are deployed in private households of 40

houses located in Germany. Those data are

collected roughly every second for each sensor

in each smart plug. It is worth noting that the

data set is gathered in an real-world, uncontrolled

environment, which implies the possibility of

producing imperfect data and measurements. A

measurement scenario is described as follows.

The topmost entity is a house, identified by a

unique house ID. Every house combines one

or more households, identified by a unique

household ID within a house. One or more

smart plugs are installed in every household,

L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55 51

Fig. 5: The Storm topology used in the smart-grid use case.

each identified by an unique plug ID within a

household. Every smart plug contains one or

more types of sensors (e.g. load or work). The

collected data stored preliminarily in a comma-

separated file consisting of 4055 millions of

measurements for 2125 plugs distributed across

40 houses. An one-month period of power

consumption is recorded with the first timestamp

equal to 1377986401 (01/01/2013, 00:00:00)

and the last timestamp equal to 1380578399

(30/09/2013, 23:59:59). All events in the data file

are sorted by the timestamp value with the same

timestamp ordered randomly. The fields included

in this file are:

• id an unique identifier of a gauge

• timestamp timestamp of a gauge

• value value of the measurement

• property character representing for type of

the measurement

• plugID an unique identifier within a

household of a smart plug

• householdID an unique identifier of a

household within a house

• houseID an unique identifier of a house

Our mission is to replay these data and spray it

out by a plug-in of OpenHAB (see Section. 3.1).

The goal of the analysis is the real-time prediction

of power consumption in several thousands of

houses. For the sake of the demonstration, data

induced from smart plugs are stored in individual

files (one per house). Those files are replayed

by OpenHAB threads (each one emulates an IoT

gateway). Each OpenHAB thread sends (i.e.

publishing) the data recorded in the file using

the MQTT protocol. The data are then sent

to the machines running the real-time analysis

platform through MQTT brokers (Mosquitto and

RabbitMQ). The real-time analysis platform is

a Storm topology which analyzes the power

consumption measurements and computes the

overall load in the next half-hour.

4.2. Storm Topology for Real-time Load

Forecasting

Storm is an open source distributed real-time

computation system. It provides a programming

model for implementing real-time processing

on a cluster of physical or virtual machines.

To handle the consumption prediction query in

52 L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55

a continuous and scalable manner we use a

Storm-based solution. The elaborations consist

of queries that are continuously evaluated on

the events supplied as input. Storm cluster is

composed of two kinds of nodes: a master node

which runs a daemon called Nimbus and worker

ones which run a daemon called Supervisor.

The Nimbus is responsible for distributing code

around the cluster, assigning tasks to machines

and monitoring for failures. Each supervisor

listens for works assigned to its node, it starts

and stops worker processes when necessary based

on what Nimbus has assigned to it. Each worker

process executes a subset of a topology; a running

topology may consist of many worker processes

spread across many nodes.

A topology is a graph of computation. Each

node in a topology encompasses a processing

logic, and links between nodes indicate data flows

between these ones. The unit of information

that is exchanged among components is referred

as a tuple, which is a named list of values.

There are two types of components which are

spout and bolt. A spout component encapsulates

the production of tuples. A bolt encapsulates a

processing logic manipulating the tuples such as

filtering.

The communication patterns among components

are represented by streams, unbounded sequences

of tuples that are emitted by spouts or bolts and

consumed by bolts. Each bolt can subscribe to

many distinct streams in order to receive and

consume their tuples. Both spouts and bolts can

emit tuples on different streams as needed.

We pose a solution based on Trident [21],

a high-level abstraction of Storm topology for

doing real-time computing. Our Trident topology

produces a source of streams (e.g. MQTT spout)

that emits a stream of load/work measurements

for each plug. For construct a forecast model that

operates on long term historical data with on live

data, we have two processes which consume this

stream as indicated in Figure 5:

• A first processing step computes average

consumption for N equal-size slices of |s|

seconds for each plug and house (with an

aggregated treatment). We use Cassandra

database to store such data.

• The second processing computes the

consumption forecast for each temporal

resolution (1, 5, 15, 60 and 120 minutes) at

each level, e.g. houses and plugs. To take

into account the long term historical data,

the prediction model uses the stored results

from the first processing chain.

To generalize the query answer, our framework

allows to apply/test several forecasting

paradigms, with possibility to use external

or in-house existing implementation, e.g. in R or

Python. For this particular experiment, the model

determines the per-house prediction value of load

at slice s[i+2] with “i” stands for index of current

slice as follows:

L(s[i + 2]) =
1

2
(L(s[i]) + median({L(s[j])}))

where L(s[i]) is the average load for current

slice s[i] calculated as a sum of average values

for each smart plug within the house. {L(s[j])} is

a set of average load values for all slices s[j] at the

same time window with s[i+2] of days in the past

within the given period.

The diagram in the Figure 5 presents our

suggested topology which is submitted to Storm

clusters for execution.

Fig. 6: Power consumption (effective and prediction)

for house #1.

4.3. Result Discussion

Figure 6 and 7 show the results of predictions

with 1-minute resolution for houses #1 and #30

L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55 53

Fig. 7: Power consumption (effective and prediction)

for house #30.

respectively. The real power consumption is

displayed by a red line and the prediction one

is represented by a green dotted-line. We can

see that the form and trend of the prediction

lines almost fit into the form of real consumption

curves. In the house #1, the drop-down of the

consumption around 50th minute is forecasted

exactly and timely. Moreover, these results have

been obtained soon enough to allow a smooth

analysis of the incoming consumption data from

the smart plugs. This proves for the soundness

and efficiency of proposed framework.

5. Related Work

Since the BDAaaS is a flexible cloud-based

PaaS framework for real-time BDA, we compare

it with Cloud frameworks for BDA and Cloud

frameworks for IoT.

Talia in [22] states that cloud-based analytic

platforms will become popular within a couple

of years. These analytic platforms based on

both open source systems such as Apache

Hadoop, SciDB, etc. and proprietary solutions

such as Storm, Splunk, IBM, InsightsOne,

etc. Data Mining Cloud Framework as a Data

Analytic (DAPaaS) programming environment

for development of BDA applications are

presented, including supports for single-task

and parameter-sweeping data mining programs.

A workflow framework running on Cloud

systems using service-oriented approach and

graph programming is being integrated into the

project. Commercial Big Data as-a-Service

(BDaaS) solutions are currently available and

built on open-source solutions. Proprietary

products of Splunk such as Splunk Storm or

Splunk Cloud [23] are cloud-based services that

consume, search and visualize different sources

of machine data. This multi-tenant DA SaaS

model provides analyzing and monitoring suites

for developers, application support staffs, system

administrators, and security analysts who have to

deal with a bulk of data every single day. Amazon

Kinesis offers real-time processing, scalable data

throughput and volume which accommodate up

to “hundreds of terabytes of data per hour from

hundreds of thousands of sources” [24]. Users

only need to feed a stream and select a size

of shard as input parameters of the framework.

Enriched data is delivered to Amazon storage

such as S3, DynamoDB or Redshift as options

by Kinesoft applications. Druid is designed

for real-time exploratory queries on sheer-size

data set [25]. This analytic data store solution

advocates streaming single and seldom-changing

data sources into Druids cluster, which then

can be queried by client. Recently, ARM had

announced the mbed Device Server. These

Cloud providers offer DA services to the general

PaaS. In comparison with these suppliers, the

BDAaaS project aims to providing a PaaS Cloud

framework for real-time BDA and digesting IoT

data, which covers the D&C process of software

components on both M2M gateways and Cloud

machines.

On the other hand, several Cloud providers

are targeting specially IoT application domains.

They provide mainly a Messaging-as-a-Service

for IoT message brokering and support principal

IoT protocols such as MQTT, STOMP, CoAP,

M3DA, XMMP, AMQP, etc. which are promoted

by various organizations and vendors including

M2M Alliance, ESTI M2M, OASIS, etc. Most

of them provides specific analytic solutions.

However, those solutions are not portable from

one provider to another. Interoperability,

portability and hybrid cloud configuration are

seriously compromised. We mention here several

IoT cloud providers as in the cases of Xively,

Axeda, Open.sen.se, thingworx, SKYNET.im,

54 L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55

ClearBlade, 2lemetry, AirVantage, WSO2 MB,

Eurotech EDC, etc.

A similar scalable cloud-based framework for

Big Data analytics in power grid, validated in a

micro-grid at USC campus, has been proposed by

Simmhan, et al. [26]. This framework provides

a pipeline mechanism to integrate information

from various sources, digest and store them

in static repositories for sharing knowledge.

To purvey agile demand prediction, models of

machine learning are trained over massive set

of data. Although the system is implemented

and orchestrated on hybrid Clouds, the D&C

process on all over the frameworks is performed

manually that is error-prone and time consuming.

Our work proposes a D&C manager to automate

this processes through multiple clouds, including

private, public IaaS and PaaS.

6. Conclusion and Perspectives

This paper demonstrates the BDAaaS project

in the aspects of a novel framework and

its implementation for a smart-grid use case.

The BDAaaS project aims to deliver a self-

adaptive cloud-based framework for real-time

BDA. The BDAaaS framework collects and

analyzes data for IoT services using existing

components such as M2M gateways, Message

brokers or Message-as-a-Service providers and

BDA platforms. For the smart-grid use case,

BDAaaS deploys OpenHAB processes for house

gateways, several MQTT brokers and a Storm

topology which analyze the sensor data stream of

the smart-grid application for power prediction.

These experiments validate the soundness and

efficiency of BDAaaS’s framework.

A perspective to the work is the monitoring and

dynamic reconfiguration of the MQTT brokers

and the Storm topology for scalability and

availability. The architecture should be monitored

and reconfigured in order to adjust the number

of Storm nodes according to the load of MQTT

messages sent by the OpenHAB instances. The

scalability of our topology should thus also be

able to cope with the various dataload in order to

guarantee an efficient analysis. Storm provides

variety of metrics that can be used to see if a

certain bolt becomes a bottleneck in the topology,

we can then increase its parallelism. In addition,

if the resources allocated to the Storm topology

are no longer enough, extra resources can be

provisioned on the Cloud.

A second perspective is the experiment of

the BDAaaS PaaS for a smart-city use case

in the context of an university campus 1. In

this use case, a set of sensor motes collects

environmental data in the university campus

(weather, indoor and outdoor air quality, noise

levels inside university buildings, etc.). The

sensors send the data to an IoT station using

the LoRa communication technology. LoRa 2

enables to send few data at low bitrate and low

power over dozen of kilometres. The data will be

analyzed by the BDAaaS PaaS in order to define

better policies for the campus which is a district

of a city.

References

[1] Forbes, Internet of Things By The Numbers:

Market Estimates And Forecasts, August 2014,

“http://www.forbes.com/sites/gilpress/2014/08/22/

internet-of-things-by-the-numbers-market-estimates-

and-forecasts/”

[2] James Manyika et al., ”Big data: The next frontier for

innovation, competition, and productivity,” McKinsey

Global Institute, Tech. rep. May 2011.

[3] Storm, “http://storm-project.net/,” visited on August

2015.

[4] Ignacio M. Llorente, Key Challenges in Cloud

Computing to Enable Future Internet of Things,

The 4th EU-Japan Symposium on New Generation

Networks and Future Internet, January 2012,

“http://fr.slideshare.net/llorente/challenges-in-cloud-

computing-to-enable-future-internet-of-things-v03”.

[5] Gartner says big data creates big jobs: 4.4 million

IT jobs globally to support big data by 2015.

‘http://www.gartner.com/newsroom/id/2207915,”

visited on August 2015.

[6] OpenStack, “https://www.openstack.org/,” visited on

August 2015.

[7] Microsoft Azure Cloud Platform, “http://www.

windowsazure.com,” visited on August 2015.

[8] Amazon EC2 Cloud Platform, “http://aws.amazon.

com/ec2/,” visited on August 2015.

1http://opensmartcampus.org/
2http://www.semtech.com/wireless-rf/lora.html

L.M. Pham / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 2 (2015) 44–55 55

[9] Lambda Architecture: A state-of-the-art. “http://www.

datasalt.com/2014/01/lambda-architecture-a-state-of-

the-art/,” visited on August 2015.

[10] Pham, L.M.; Tchana, A.; Donsez, D.; Zurczak,

V.; Gibello, P.-Y.; de Palma, N., ”An adaptable

framework to deploy complex applications onto multi-

cloud platforms,” 2015 IEEE RIVF, pp.169,174, 25-28

Jan. 2015 doi: 10.1109/RIVF.2015.7049894

[11] VMware vSphere, “https://www.vmware.com/products/

vsphere,” visited on August 2015.

[12] OpenHAB, “http://www.openhab.org,” visited on

August 2015.

[13] Mosquitto, ‘http://mosquitto.org/,” visited on August

2015.

[14] RabbitMQ, “http://www.rabbitmq.com/,” visited on

August 2015.

[15] Apache Cassandra, “http://cassandra.apache.org,”

visited on August 2015.

[16] OSGi Alliance Specifications, “http://www.osgi.org/

Specifications/HomePage,” visited on August 2015.

[17] Patrick Th. Eugster, Pascal A. Felber, Rachid

Guerraoui, and Anne-Marie Kermarrec. 2003.

The many faces of publish/subscribe. ACM

Comput. Surv. 35, 2 (June 2003), 114-131.

DOI=10.1145/857076.857078

[18] OSGi Event Admin Service Specification, Version 1.3,

OSGi Alliance Specifications, Chapter 113, pp 295-

314

[19] MQ Telemetry Transport, “http://mqtt.org,” visited on

August 2015.

[20] Beaglebone Black, “http://beagleboard.org/bone,”

visited on August 2015.

[21] Trident, “https://storm.apache.org/documentation/

Trident-tutorial.html,” visited on August 2015.

[22] Talia, D., ”Clouds for Scalable Big Data Analytics,”

Computer , vol.46, no.5, pp.98,101, May 2013, doi:

10.1109/MC.2013.162

[23] SplunkCloud, “http://www.splunk.com/en us/products/

splunk-cloud.html,” visited on August 2015.

[24] Amazon Kinesis, “https://aws.amazon.com/kinesis/,”

visited on August 2015.

[25] Druid, “http://druid.io/,” visited on August 2015.

[26] Simmhan, Y.; Aman, S.; Kumbhare, A.; Rongyang

Liu; Stevens, S.; Qunzhi Zhou; Prasanna, V.,

”Cloud-Based Software Platform for Big Data

Analytics in Smart Grids,” Computing in Science &

Engineering, vol.15, no.4, pp.38,47, July-Aug. 2013,

doi: 10.1109/MCSE.2013.39

