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Abstract 

Exploration and searching in unknown or hazardous environments using multi-robot systems (MRS) is 

among the principal topics in robotics. There have been numerous works on searching and detection of odor, fire 

or pollution sources. In this paper, a modified Particle Swarm Optimization Algorithm (PSO) was presented for 

MRS on detecting light sources, namely APSO. In the proposed algorithm, an integration of conventional PSO 

and Artificial Potential Field (APF) is employed to use swarm intelligence for space exploration and light source 

detection. The formulas for APSO velocities are based on those of PSO and APF. Furthermore, each particle is 

surrounded by an APF that forms repulsive force to prevent collision while the swarm is in operation. The 

simulation results of APSO in Matlab by various scenarios confirmed the reliability and efficiency of the 

proposed algorithm. 
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1. Introduction
*
 

Owing to their robustness to local optima, 

widespread coverage and high degree of 

accuracy, multi-robot systems (MRS) are 

highly efficient in the tasks of space exploration 

and searching in unknown environments. There 

have been numerous works in which MRS was 

used to detect fire, pollutant sources and odor 

sources [1, 2, 3].  

Among a variety of potential algorithms to 

implement on MRS, Particle Swarm 

Optimization (PSO) has  become a natural 

choice for MRS in searching tasks. PSO was 

first introduced by Russel Ebenhart and James 

Kennedy in 1995 [4] and has gained popularity 

among bio-inspired heuristic algorithms 

_______ 
1 This work is dedicated to the 20th Anniversary of the IT 

Faculty of VNU-UET 

* Corresponding author. E-mail.: quyha@vnu.edu.vn 

because of its efficiency, intuitiveness and 

simplicity. Motivated by social searching 

behavior of natural swarm, PSO is especially 

effective in optimization problems and widely 

applied in various fields. Searching tasks of 

MRS are in fact optimization problems, in 

which the robots attempt to locate the regions 

or spots of extreme signal intensity.  

Although the idea of applying PSO to 

multi-robot search is not novel, many problems 

still need to be addressed adequately in order to 

put that idea into practice. Some of them are 

proneness to collision and premature 

convergence. Many of the related works are 

concerned with improving performance of the 

MRS. In [5], the authors concentrated on 

adjusting learning parameters for better results. 

In [6] the PSO algorithm was applied to model 

multi-robot search and the effects of system 

parameters were also evaluated. In [7], Doctor 
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et al. proposed a two PSO loops model to 

control their robot system. The inner loop was 

applied for collective robotic search and the 

outer was used to optimize quality parameters 

of the inner. In [8], Cai et. al. proposed a 

potential field-based PSO algorithm for 

cooperative multi-robots in target searching 

tasks. The problem of premature convergence, 

which may adversely affect performance of 

PSO, was addressed in [9], where Nakisa et. al. 

applied a method based on PSO and Local 

Search.  In spite of various works on 

application of PSO for MRS in the tasks of 

exploration or searching in unknown 

environments, there has not been a standard 

approach with optimal result. All of the PSO-

based algorithms still need further experiments 

and improvements.  

In this paper, we present another approach 

and a specific application: detecting light 

sources or in other words, searching for the 

brightest region in a search space. This method 

is then compared with one of those mentioned 

above. In our simulations, an MRS is 

successfully used to detect light sources (by 

gathering all the swarm robots around the area 

of highest luminance in the search space). In all 

scenarios, each robot (or particle as described in 

PSO) has to move towards the mutual target 

and meanwhile avoid obstacles. For the robot 

swarm to exhibit this behavior, we modified 

PSO algorithm by associating each particle with 

an artificial potential field (APF) that can exert 

repulsive forces to any other particle if their 

distance is less than a predetermined value 

called repulsive radius. This method of 

avoiding collisions is inspired by APF 

algorithm, which was proposed by Oussama 

Khatib in 1986 for single robot path planning 

[10]. APF is widely used nowadays in works on 

MRS that demonstrate the interaction between 

robots and obstacles in their work space [11]. 

The proposed PSO algorithm is named APSO, 

its details will be presented in the next sections. 

The simulation in Matlab shows reliable and 

promising results, which could be applied in 

various further applications such as dynamic 

deployment of robotic systems, flame detection 

or optical wireless charging. 

The methodology and simulation are 

discussed in detail in part 2, the results and 

discussions follow in part 3. Finally, part 4 

concludes this paper with main conclusions and 

directions for further research. 

2. Methodology and simulation 

2.1. Methodology 

2.1.1. Artificial Potential Field 

The APF model is inspired by Artificial 

Physics with quadratic function, where the 

choice of coefficients is commensurate to the 

wireless sensor network of MRS. Myriads of 

architectures for APF have been developed in 

accordance with users’ definitions and specific 

tasks, e.g. deploying mobile sensor networks in 

unknown environment [12], controlling and 

coordinating a group of robots for cooperative 

manipulation tasks [13] or maintaining 

connectivity of mobile networks [14]. In any 

architecture, magnitude of the potential force 

existing around each robot is continuously 

updated based on information collected from its 

immediate surrounding environment and other 

robots via connection network. Therefore, APF 

is used to regulate the relation between robots 

in term of position. Potential force is 

categorized into two main groups: passive force 

and active force. Passive force is generated 

when robot emit signal and determine distance 

to neighboring robots or obstacles by the 

magnitude of reflected signal to avoid obstacle 

or remain relative position with other robots. 

The signal used in the application could be 

infrared, ultrasound, laser or camera [15].  On 

the contrary, active force is generated from 

external signals. These signals are usually 

emitted by other robots and transmitted via 

communication system [11]. In this research, 

APF is only utilized for the purpose of collision 

avoidance and only generates repulsive forces 

on other particles within repulsive region, as 

defined in this formula: 
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where Fmax and k are predetermined constants to 

regulate the magnitude of potential force, FAPFij 

is the APF force exerted on robot i by robot j. rij 

is the end-to-end distance vector from robot j to 

robot i. rij is the module of rij. 

Total force exerted on i-th robot of the 

system is: 

1

 
N

APFi APFij
j=

= åF F  (2) 

where N is the number of robots, FAPFij is zero 

if i = j. The impact of FAPFi on overall velocity 

is controlled by Fmax and k. As Fmax increases, 

the particle is less likely to approach obstacles. 

In subsection 2.1.2, this will be discussed 

further. 

2.1.2 APSO for MRS 

The main contribution of this paper is to 

propose and evaluate the efficiency of APSO, a 

modified PSO algorithm. In this subsection, we 

briefly present principles of PSO and then 

explain APSO in detail. 

In PSO, the swarm consists of 

homogeneous particles that can explore the 

search space collectively. During the 

exploration, the movement of a particle is 

controlled by a velocity comprised of three 

components: inertial, cognitive and social 

velocity. Cognitive velocity leads the particle 

towards its personal best position and social 

velocity leads the particle towards the global 

best. Inertial velocity guides each particle 

towards their previous directions and thus keeps 

particles’ movement smooth [16]. Besides, high 

inertial velocity and cognitive velocity at initial 

steps make the swarm discover search space 

better. The social learning factor should be 

increased and cognitive factor should be 

decreased throughout the exploration in order to 

enlarge the swarm’s coverage at initial steps 

and make it converge faster at final steps. The 

searching process using PSO is implemented in 

four stages: initializing, updating best positions, 

updating velocity and position, and finally, 

checking for stopping criteria. PSO velocities 

and particles’ positions are updated with the 

following formulae: 

1inertial t
w

-
= ´v v    (3) 

1 1 1 1
( )

cognitive t t
a u j

- -
= ´ ´ -v p x   (4)  

2 2 1 1
( )

social t t
a u j

- -
= ´ ´ -v g x  (5) 

t inertial cognitive social
= + +v v v v  (6) 

1t t t
x x v

-
= +   (7) 

where:  

vt: velocity of the swarm at t (time) 

w: inertial factor 

1
a : cognitive coefficient 

2
a : social coefficient 

1
u : random number in [0, 1] 

2
u : random number in [0, 1] 

pt: personal best positions at t 

gt: global best positions at t 

xt: position of the swarm at t 

φ(x): a matrix function that returns a row 

vector with each element being Euclidean norm 

of corresponding column in the matrix 

argument.  

In (4), φ(pt-1 – xt-1) returns a vector. Each 

element of this vector is distance from a 

corresponding particle to its own best position. 

It is noteworthy that both position and velocity 

are vectors, so in the step of updating position, 

they are added directly to get new position, 

without any dimensional conflict. 

To apply PSO to an MRS, each robot is 

modelled as a particle of the swarm and their 

movements in the search space resemble those 

of ideal particles described above. Actual 

implementation of PSO for MRS involves 

additional techniques to solve problems which 

are not covered in its conventional version, 

such as collision avoidance. APSO is developed 

to solve that problem. The steps in APSO are 

basically the same as those of PSO, but the 

velocities and positions are updated with APF-

based formulae. Artificial potential fields are 

also created around every particle in the search 

space. The repulsive force between a particle 

and another particle or an obstacle is given by: 
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max 1
( ) ( (0) ( ))k r H H r= - ´ ´ -F F  (8) 

where r is the distance between the two objects, 

Fmax is the maximum value of the repulsive 

force. H(x) is Heaviside step function. r1 is the 

radius of separation, i.e., repulsive forces are 

only applicable to particles or points whose 

distance to each other is smaller than r1. A robot 

has a limited sensing range, this range must be 

larger than r1. k is a parameter dependent upon 

r1, it is calculated so that F is equal to zero 

when r = r1. Total repulsive force exerted on a 

robot is the sum of all the repulsive forces 

exerted by other objects, according to (8). 

vseparation is defined as the forth component 

velocity, responsible for assuring a collision-

free exploration of the MRS. In 

implementation, vseparation corresponds to total 

repulsive forces on robots in the swarm. 

The set of formulae used to update velocity 

and position in APSO is: 

( )sig k l= ´ +w d    (9) 

1
.

inertial t-
= ´v w v  (10) 

1 1
( ( ) )

cognitive t t
C sig u vj

- -
= ´ - ´ +v p x (11) 

1 1
( ( ) )

social t t
S sig u vj

- -
= ´ - ´ +v g x (12) 

t inertial cognitive social separation
= + + +v v v v v (13) 

1t t t
x x v

-
= +   (14) 

where: 

d: represents immediate population density 

at the position of a robot. 

. ×: element-wise matrix multiplication 

sig(x): element-wise sigmoid function on 

matrix: 

( , )

1
( )( , )

1 x i j
sig x i j

e-
=

+
  (15) 

k, l, u, v: adjusting parameters used to adjust 

values of quantities of interest. 

C: maximum value of vcognitive 

S: maximum value of vsocial 

In Figure 1, the implementation of APSO is 

presented. 

In APSO, sigmoid function is widely used 

because of an appropriate property of the 

sigmoid curve. It exhibits a relationship 

between two quantities, in which the first 

quantity progresses from a small beginning, 

then accelerates and approach its climax as the 

second quantity increase. There are three 

regions on the curve: beginning, acceleration 

and saturation region. 

 

Algorithm: APSO 

1. Initializing  

- Generate the population  

- Evaluate objective function  

2. Update personal best position 

- For each particle, compare fitness of past positions and choose 

the optimum position as its new personal best position 

3. Update global best position 

- Compare personal best positions of particles and choose the 

optimum position as global best position 

4. Update and regulate velocity 

- Update velocity using (13) 

- Limit velocity if needed 

5. Update position 

- Calculate new position using (14) 

- Evaluate objective function for each particle 

6. Check stopping criteria 

- Stop if maximum step is reached or the swarm has converged 

- Otherwise, come back to step 2. 

Figure 1. Implementation of APSO. 
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 Figure 2. Attractive force.  

This property was used to control velocities 

in APSO. vcognitive and vsocial are dependent upon 

the distances of particle to their personal best 

position and global best position. These 

velocities are regulated so that their magnitude 

and the corresponding distance could be 

described by a monotonically increasing 

relationship. With k being negative, (9) gives a 
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lower inertia for a higher population density. 

During the exploration, each robot sees the 

search space as a potential field, with repulsive 

force being proportional to vseparation; attractive 

force proportional to a combination of vcognitive 

and vsocial. The magnitude of attractive force 

could be described by a sigmoid curve (Figure 

2.). The potential field is time-varying. As the 

position of particles change, global and 

personal best positions are always improved. 

Figure 3 shows the potential energy 

configuration for a robot outside of sensing 

range of any others. The robot is also not close 

to any obstacles and its personal best and global 

best positions are respectively (15, 15) and (20, 

-20). The search space is confined in x = [-

50,50] and y = [-50,50].  

 

Figure 3. Potential energy configuration. 

The main difference between PSO and 

APSO is how velocity is updated. In APSO, 

vseparation, a new velocity is introduced. Its 

inertial value depends on immediate population 

density, vcognitive and vsocial are functions of 

distance, described by the sigmoid function. 

This reduces the possibility of collision, 

meanwhile yields a high performance.  

2.1.3. Criteria for convergence 

We claim that the exploration is success 

when the swarm converges atthe point of 

maximum illuminance. The criterion for 

convergence of the swarm in conventional PSO 

is simple and intuitive, as the swarm is said to 

be converged when all the particles is within a 

given radius, e.g. 10
-3

 of smallest dimension of 

the search space, regardless of population size. 

However, in APSO, such criterion is not 

applicable because each particle has to maintain 

a distance to other particles. In our simulation, 

the two following criteria are used to determine 

whether the swarm is converged: 

1. Improvement in best fitness: The swarm 

is said to be making progress if in 10 

consecutive iterations, best fitness is improved 

by at least 0.1%.  

2. Physical convergence: If in 10 

consecutive iterations, the position of the 

swarm’s center of mass does not change 

considerably (less than the radius of a particle) 

and a certain number of particles are at a small 

distance from the center, we said that the swarm 

has physically converged. The number of 

particles and the distance are proportional to 

swarm population. 

In short, if there is no improvement in best 

fitness and the change in the swarm’s position 

is inconsiderable, the swarm is considered to be 

converged and the searching process is 

terminated. It is worth noting that this kind of 

convergence criterion is not absolute 

convergence since not all particles gather 

around the swarm’s center. The operation is 

deemed successful if after convergence, the 

point of highest luminance is covered by the 

swarm and is within a predefined radius from 

global best position. 

2.2. Simulation  

2.2.1. Simulation setup and MRS 

configuration 

In this research, we implement APSO on a 

homogeneous MRS in Matlab environment. 

The radius of each robot (r) is set as unit of 

length. The system has direct communication, 

the communication range is unlimited (beyond 

the limit of search space). r1 is 5×r, i.e. a robot 

can detect obstacles at the distance of 5×r from 

its position. Population size varies between 5, 

10 and 15. Maximum velocity is 1.5×r/step. 

Each robot is able to acquire the illuminance at 

its position via a light sensor on top.  
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If we set r = 1, the search space size is 

100×100. In the Cartesian coordinate system, 

the ranges of x and y coordinates are both [-50, 

50]. We evaluate the effectiveness of the 

modified PSO algorithm in three scenarios with 

the presence of an isotropic source and two real 

light sources: 87517M56FG [17] and 

AVL1XMAMDG [18]. In the simulations, all 

obstacles in the search space are static 

cylindrical obstacles. The radii of cylindrical 

obstacles used in all scenarios are 4.  

  

Figure 4. Scenario 1 - 3D View. 

2.2.2. Detection of light sources in different 

scenarios  

In the first scenario, a single light source is 

placed above the search space at (20, -20) 

(Figure 5). There are four static obstacles at  

(-30, -30), (-20, 30), (0, 0) and (30, 20) as 

illustrated in Figure 4.  
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Figure 5. Scenario 1 - Single isotropic light source. 

In the next two scenarios, we test with real 

light sources. Figure 6. and Figure 7. are 

contour maps of light intensity in regions 

illuminated by AVL1XMAMDG and 

87517M56FG, respectively. 
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Figure 6. Scenario 2 - AVL1XMAMDG. 

In each scenario, three population sizes: 5 

robots, 10 robots and 15 robots are simulated. The 

results acquired after 1000 runs (for each scenario 

and population size) is presented in Figure 9. The 

figures are statistical graphs given for analysis of 

reliability and effectiveness of APSO. 
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 Figure 7. Scenario 3 - 87517M56FG. 
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In a typical run, as the exploration of this 

swarm progresses, the robots move towards 

global best position. As the population size 

increases and the robots have to maintain a 

minimum distance from each other, the swarm 

covers a large area even after convergence. This 

can be seen clearly in Figure 8. 
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Figure 8. Final distribution  

of robot swarm - scenario 2. 

3. Results and discussion 

The main results of these simulations are 

summarized in the following figures and tables. 

The results with MPSO - an algorithm from our 

previous work [19] - are also presented for 

comparison. Figure 9-11 display the 

distribution of step of convergence (SC) in each 

scenario after 100 runs. Figure 12-14 show the 

cumulative distribution of SC. Only data from 

successful operations is included. 

From the figures, it can be concluded that as 

the swarm population increases, the step of 

convergence tends to decrease. However, while 

there is a large gap in performance between the 

5-robot and the 10-robot swarm, there is not 

much improvement when the population 

increases from 10 to 15, regardless which 

algorithm is used. The same pattern can be 

observed in every scenario.  

 
Figure 9. Distribution of SC in scenario 1. 

 

Figure 10. Distribution of SC in scenario 2. 



 H.A. Quy, P.M. Trien / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 1-10 

 

8 

 
Figure 11. Distribution of SC in scenario 3. 

When APSO is applied, there are typically 

less outliers and IQRs are smaller than when 

MPSO is applied. We can come to the 

conclusion that APSO is more stable.  
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Figure 12. CDF of SC in scenario 1. 

Figure 12-14 provide the most accurate way 

to evaluate the effectiveness of APSO when 

time (or number of iterations) is limited. In 

general, to achieve the same rate of success, 

APSO requires less iterations than MPSO. 

In any scenario, if the maximum iteration is 

100, success rate of APSO approaches 100% 

when the swarm population is 10 or 15. The 

corresponding values of MPSO are all lower. If 

the maximum iteration is less than 50, there is 

little possibility that the swarm could converge, 

no matter which algorithm is chosen. In cases 

where number of iterations is restricted, due to 

constraints on energy consumption or time, 

success rate at a given maximum iteration may 

become a crucial value to evaluate an 

algorithm. Table 1 provides data regarding this 

value, with the maximum iteration being 100. 

The data in all the figures consistently 

indicates low performance of the 5-robot 

swarm. Both algorithms are not effective for 

swarms of small population. The swarm with 

larger initial coverage is less prone to premature 

convergence.  

APSO is also compared to the multi-search 

algorithm inspired by PSO in the work of Pugh 

et. al. [6]. With the same constraints and 

conditions on the robot system, the respective 

results are given in Figure 15. Initially, the 

robots are deployed randomly in a square of the 

size 8×8. The target is placed in the center of 

the square. The realistic conditions here are 

wheel slip (10%) and noise (standard normal 

distribution). In such conditions, APSO even 

yields better results. In every case, the result is 

improved when applying APSO.  
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       Figure 13. CDF of SC in scenario 2. 
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Table 1. Success rate at 100
th

 iteration 

N 
Scenario 1 Scenario 2 Scenario 3 

A M A M A M 

5 87 77 70 6 84 58 

10 98 96 97 32 100 99 

15 100 98 100 95 100 100 
D 

O 
Figure 14. CDF of SC in scenario 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                         a)                                                                                              b) 

Figure 15. Distance to target from the swarm’s point of strongest signal detection, 

 averaged over 1000 runs a) multi-search algorithm inspired by PSO. b) APSO. 
 

4. Conclusion and Future works 

In this paper, a modified PSO algorithm, 

namely APSO, is presented for detecting light 

sources. In this algorithm, APF is integrated 

into PSO and a new velocity component is 

introduced to keep the movement of the swarm 

collision-free. Experimental results in Matlab 

environment have shown good performance, 

compared to previous works. With a high 

success rate, this proposed algorithm is 

promising for some practical problems 

involving the utilization of  MRS, such as 

dynamic deployment of robotic systems, flame 

detection or optical wireless charging. 

However, there are still some drawbacks in 

this algorithm, for example, the swarm is 

unable to detect multiple sources. Furthermore, 

it has yet to be tested in complex scenarios.  

In future works, we will focus on dealing 

with them and applying the algorithm on a 

real MRS. 
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