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Abstract

This paper introduces a framework for modeling and verifying safety properties of component-based systems

(CBS) by extracting their models from designs in the form of UML 2.0 sequence diagrams. Given UML 2.0

sequence diagrams of a CBS, the framework extracts regular expressions exactly describing behaviors of the

system. From these expressions, the proposed framework then generates accurate operation models represented

by labeled transition systems (LTSs). After that, these models are used to modular check whether given designs

satisfy required safety properties by using the assume-guarantee reasoning paradigm. This framework is not only

useful for modeling and verifying designs at design phase, but also for effectively rechecking the correctness of

CBS in the context of software evolution. Implemented tools and experimental results are also presented in order

to show the feasibilities and effectiveness of the proposed framework.
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1. Introduction

The specification and verification approaches

nowadays play an important role in guaranteeing

software quality. The assume-guarantee

verification [11] has been considered as a

potential method for solving the state space

explosion problem when checking of large scale

CBSs. It can be applied at both design and

implementation phases. However, the current

researches in regards to this method often assume

that the models of systems under checking are

already available. This makes the methods

✩ This work is dedicated to the 20th Anniversary of the IT

Faculty of VNU-UET.
∗ Corresponding author. Email: luanlc@utt.edu.vn

difficult to be applied in practice because

generating models for systems is a hard problem.

The method presented in [12] had mentioned

a way of using the model generated from the

design artifacts to check safety properties of

the system implementation. However, the paper

did not describe in details how to use and

what kind of artifacts of design level to use to

generate component models that will be used

in verification. In [15], the author proposed a

way to check the consistency of software designs

by a set of consistency rules defined by users.

However, the method is not used for verifying

system designs against safety properties. In

regards to the system verification, the research

carried out in [16] also addresses the problem
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of verifying properties of systems through its

given UML 2.0 sequence diagrams. However,

that is for each of the separate fragments and

properties are written in PPTL. Moreover, the

method in [16] has not solved the problem

for the whole sequence diagrams when all

of the fragments are integrated. Although

the mentioned researches have addressed an

important part of the verification process, they

have not shown a complete method of how to

do design verification of CBSs. On the other

hand, there are other studies that focus on

generating models for CBS. Nevertheless, they

have not been integrated with any verification

method. The method proposed in [17] is used

to generate models from sets of traces by

doing experiment on components and bases

on the Thompson algorithm [1]. The model

generation method in [13] is used to retrieve

extended finite state machines from interactive

traces. The work presented in [9] generates

finite state models from source code of software

programs written in Java. While these researches

have great contribution in model generation,

they have not been integrated the generated

models with any verification method. From the

above reason, this paper proposes a framework

to integrate model generation methods with

verification ones in order to be applied in the real

software development world. The framework

generates regular expressions for the behaviors

of CBS from sequence diagrams. It then parses

these expressions to create operation models

in the form of LTSs that exactly describe the

system behaviors. In the end, it applies the

assume-guarantee reasoning paradigm to check

if the system satisfies a given property. This

method of verification prevents us from the

state explosion problem. This framework is not

only useful in design phase but also in system

maintenance when the design is changed. The

paper is organized as follows. At first, we present

some background definitions which are used

in Section 2. An overview of the framework

is described in Section 3. Section 4 shows

algorithms to generate regular expressions from

given sequence diagrams. The mechanism

to generate models from the result regular

expressions of Section 4 is shown in Section 5.

The generated models are then used in automatic

verification in Section 6. The implemented tool

and experimental results are shown in Section 7.

Finally, we conclude the paper in Section 8.

2. Background

In this section, we present some basic concepts

which will be used in this paper.

LTSs. This paper uses Labeled Transition

Systems (LTSs) to model behaviors of

components. Let Act be the universal set of

observable actions and let τ denote a local action

unobservable to a component’s environment. We

use π to denote a special error state. An LTS is

defined as follows.

Definition 1. (LTS). An LTS M is a quadruple

〈Q, αM, δ, q0〉 where:

• Q is a non-empty set of states,

• αM ⊆ Act is a finite set of observable

actions called the alphabet of M,

• δ ⊆ Q×αM∪{τ}×Q is a transition relation,

and

• q0 ∈ Q is the initial state.

Traces. A trace σ of an LTS M is a sequence of

observable actions that M can perform starting at

its initial state.

Definition 2. (Trace). A trace σ of an LTS M

= 〈Q, αM, δ, q0〉 is a finite sequence of actions

a1a2...an, such that there exists a sequence of

states starting at the initial state (i.e., q0q1...qn)

such that for 1 ≤ i ≤ n, (qi−1, ai, qi) ∈ δ, qi ∈ Q.

Note 1. The set of all traces of M is called

the language of M, denoted by L(M). Let σ =

a1a2...an be a finite trace of an LTS M. We use

[σ] to denote the LTS Mσ = 〈Q, αM, δ, q0〉 with

Q = {q0, q1, ..., qn}, and δ = {(qi−1, ai, qi)}, where

1 ≤ i ≤ n.
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Parallel Composition. The parallel composition

operator ‖ is a commutative and associative

operator that combines the behavior of two

models by synchronizing the common actions

to their alphabets and interleaving the remaining

actions.

Definition 3. (Parallel composition operator).

The parallel composition between M1 =

〈Q1, αM1, δ1, q
1
0
〉 and M2 = 〈Q2, αM2, δ2, q

2
0
〉,

denoted by M1‖M2, is defined as follows. If

M1 =
∏

or M2 =
∏

, then M1‖M2 =
∏

, where
∏

denotes the LTS 〈{π}, Act, ø, π〉. Otherwise,

M1‖M2 is an LTS M = 〈Q, αM, δ, q0〉 where

Q = Q1×Q2, αM = αM1 ∪ αM2, q0 = (q1
0
, q2

0
),

and the transition relation δ is given by the

following rules:

(i)
α ∈ αM1 ∩ αM2, (p, α, p′) ∈ δ1, (q, α, q

′) ∈ δ2

((p, q), α, (p′, q′)) ∈ δ
(1)

(ii)
α ∈ αM1\αM2, (p, α, p′) ∈ δ1

((p, q), α, (p′, q)) ∈ δ
(2)

(iii)
α ∈ αM2\αM1, (q, α, q

′) ∈ δ2

((p, q), α, (p, q′)) ∈ δ
(3)

Safety LTSs, Safety Property, Satisfiability

and Error LTSs.

Definition 4. (Safety LTS). A safety LTS is a

deterministic LTS that contains no π states.

Note 2. A safety property asserts that nothing

bad happens for all time. The safety property

p is specified as a safety LTS p = 〈Q, αp, δ, q0〉

whose language L(p) defines the set of acceptable

behaviors over αp.

Definition 5. (Satisfiability). an LTS M satisfies

p, denoted by M |=p, if and only if ∀σ ∈ L(M):

(σ↑αp) ∈ L(p), where σ↑αp denotes the trace

obtained by removing from σ all occurrences of

actions a < αp.

Note 3. When we check whether an LTS M

satisfies a required property p, an error LTS,

denoted by perr, is created which traps possible

violations with the π state. perr is defined as

follows:

Definition 6. (Error LTS). An error LTS of

a property p = 〈Q, αp, δ, q0〉 is perr = 〈Q ∪

{π}, αp, δ′, q0〉, where δ′ = δ ∪ {(q, a, π) | a ∈ αp

and 6∃q′ ∈ Q : (q, a, q′) ∈ δ}.

Remark 1. The error LTS is complete, meaning

each state other than the error state has outgoing

transitions for every action in the alphabet. In

order to verify a component M satisfying a

property p, both M and p are represented by

safety LTSs, the parallel compositional system

M‖perr is then computed. If the state π is

reachable in the compositional system then M

violates p. Otherwise, it satisfies p.

Assume-Guarantee Reasoning. An assume-

guarantee formula/rule is defined as follows.

Definition 7. (Assume-guarantee formula/rule).

Let M be a component, p be a property, and

A(p) be an assumption about M’s environment.

An assume-guarantee formula/rule is a triple

(〈A(p)〉 M 〈p〉) representing the compositional

formula A(p)‖M‖perr, where M, A(p), and perr

are presented by LTSs.

Note 4. We use the formula 〈true〉 M 〈A〉 to

represent the compositional formula M‖Aerr. The

formula 〈A(p)〉 M 〈p〉 is true if whenever M

is part of a system satisfying A(p), then the

system must also guarantee p. In order to check

the formula, where both A(p) and p are safety

LTSs, we compute the compositional formula

A(p)‖M‖perr and check if the error state π is

reachable in the composition. If it is, then the

formula is violated, otherwise it is satisfied.

Definition 8. (Assumption). Given two models

M1 and M2, and a required safety property p,

A(p) is an assumption if and only if it is strong

enough for M1 to satisfy p but weak enough to be

discharged by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉

M2 〈A(p)〉 both hold). Equivalently, A(p) is an

assumption if and only if L(A(p)‖M1)↑αp ⊆ L(p)

and L(M2)↑αA(p) ⊆ L(A(p)).

3. Framework architecture

Figure 1 shows the architecture of the proposed

framework. Sequence diagram designs of
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Fig. 1: The proposed framework for verifying designs in

the form of sequence diagrams

systems are in the form of an xmi file. They

are analyzed to generate corresponding regular

expressions. These expressions then are used to

generate models. Finally, the framework uses

those models and assume-guarantee reasoning

paradigm to do modular check to see if given

systems satisfy predefined safety properties in the

form of LTSs. If designs satisfy properties, the

assumption is returned. Otherwise, they violate

properties, a counter example is also returned.

Details about each of the process are described

in Sections 4, 5, and 6.

4. Generating Regular Expression from

Sequence Diagrams

In this section, we present algorithms

that generate regular expressions of software

components’ actions from sequence diagrams

of design phase. Given a UML 2.0 sequence

diagram in the form of xmi file, it is analyzed

to get basic fragments such as opt, break, etc.

The corresponding regular expressions of some

of them are then generated. These fragments

are opt, break, critical, strict, consider, ignore.

Algorithms for generating regular expressions

corresponding to the other fragments of

loop, alt, par/seq can be found in [18].

4.1. Analyzing Sequence Diagrams

Given a sequence diagram in the form of xmi

file, we use Algorithm 1 to analyze it to have a

list of fragments and their relationships.

Algorithm 1 describes the process to analyze

the sequence diagram in an xmi file. The result

data is an array of Fragment or Message sorted

by the time of execution and an array of life line

Algorithm 1: Analyze sequence diagram

1 begin

2 create stack with an Operand on top

3 create array li f elineList and array

messageList

4 forall the element in xmi file do

5 if meet open tag then then

6 switch element do

7 case Li f eLine

8 create new lifeline and

add to li f elineList; break

9 case Fragment

10 create new fragment and

push to stack; break

11 case Operand

12 create new operand and

push to stack; break

13 case Message

14 create new message and

add to messageList;break

15 case EventOccurrence

16 create new

eventoccurrence and add

to the Operand on the top

of stack; break

17 case Constraint

18 create new constraint and

add to the Fragment on

the top of stack; break

19 endsw

20 else if meet close tag then

21 if element is Operand then

22 op = stack.pop()

23 add op to the Fragment on

top of stack

24 else if element is Fragment then

25 f m = stack.pop()

26 add f m to the Operand on the

top of stack

27 end

28 end

29 end

30 end
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(li f eline). At first, the algorithm initiates a stack

that contains an Operand (line 2), this Operand

is used to store the array of fragment or message

in the data structure. Next, it initiates an array

of Li f eLine and an array of messages (line 3).

When parsing the xmi file, if the algorithm meets

an open tag (line 5), it bases on the tag’s type to

process. If the tag type is Fragments (line 9) or

Operand (line 11), add these objects to stack. If

the tag type is Li f eLine (line 7) or Message (line

13), add object to the corresponding array. If the

tag is EventOccurrence (line 15) or Constraint

(line 17), add these objects to the object that is

on top of the stack. If the algorithm meets a

close tag (line 20) that is Operand (line 21) or

Fragment (line 24), get these object from the

top of stack and then add them to the object

on the top of stack. After reading all of the

elements in the xmi file, we have an array of

Fragments and events inside operands on the

top of stack, an array of the Li f eLine and

an array of messages. The couple of events

will be replaced by the corresponding messages.

4.2. Generating Sub-Regular Expressions for opt

Fragments

Algorithm 2 describes the regular expression

generation process for the opt fragment. The opt

fragment contains only one operand which can be

executed or not. Therefore, the regular expression

corresponding to the opt fragment contains the

regular expression of operand concatenate with

“|” and λ, where λ is a special character represents

the empty regular expression.

Algorithm 2: Generate sub regular

expression for opt Fragments

1 begin

2 create regex is empty

3 regex = regex + operand.getRegex() + |

+ λ

4 return regex

5 end

4.3. Generating Sub-Regular Expressions for

break / critical / strict Fragments

Algorithm 3 describes the regular expressions

generation process for the break, critical and

strict fragments. The break fragment is

only meaningful when it is embedded in the

loop fragment. Therefore, the break’s regular

expression is the concatenation of the operands

inside the break. The same with the critical and

strict fragments. The fragment critical only has

meaning when embedded in the par fragment.

The strict fragment describes the sequences of

actions. Therefore, the result regular expression

includes the concatenation of sub-expressions

corresponding to the operands inside the strict.

Algorithm 3: Generate sub regular

expression for break/critical/strict

Fragments

1 begin

2 create regex is empty

3 forall the operand in f ragment do

4 regex = regex + operand.getRegex()

5 end

6 return regex

7 end

4.4. Generating Sub-Regular Expressions for

consider Fragments

Algorithm 4 describes the process of

generating regular expression for the consider

fragment. The consider fragment contains a list

of messages need to be kept. If messages in the

consider operands are not in this list, they are

removed. Line 3 to line 7 is the process of finding

and removing messages not in considerList.

Line 8 to line 10 is the process of creating

regular expression after removing unneeded

messages. The regular expression of the consider

fragment consists of the sub-regular expressions

corresponding to operands belong to consider

fragments concatenated to each other.
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Algorithm 4: Generate sub regular

expression for consider Fragments

Input : considerList is an array which

contains messages that need to be

kept

Output: The regular expression

corresponding to the consider

fragment

1 begin

2 create regex is empty

3 forall the element in consider fragment

do

4 if element is message and not in

considerList then

5 remove element

6 end

7 end

8 forall the operand in consider fragment

do

9 regex = regex + operand.getRegex()

10 end

11 return regex

12 end

4.5. Generating Sub-Regular Expressions for

ignore Fragments

Algorithm 5 describes the process of

generating the corresponding regular expression

for the ignore fragments. The ignore fragment

contains a list of messages that need to be

removed. If messages of operands are included in

this list, they need to be removed. The removing

process is from line 3 to line 7. Line 8 to line 10 is

to generate the corresponding regular expressions

of the ignore fragments. The resulting regular

expression is the concatenation of the sub-regular

expressions corresponding to operands.

5. Generating Models from Regular Expressions

From the regular expressions returned by the

previous section, we can apply several algorithms

to generate the corresponding component models.

In our study, we applied three algorithms to

Algorithm 5: Generate sub regular

expression for ignore Fragments

Input : ignoreList is an array which

contains messages that need to be

ignored

Output: The regular expression

corresponding to the ignore

fragment

1 begin

2 create regex is empty

3 forall the element in ignore fragment do

4 if element is message and in

ignoreList then

5 remove element

6 end

7 end

8 forall the operand in ignore fragment do

9 regex = regex + operand.getRegex()

10 end

11 return regex

12 end

generate software models in the form of LTSs

from the given regular expressions retrieved

from the previous step. These algorithms are:

Thompson [1], L∗ [4] and CNNFA [5, 7].

Each algorithm has its own advantages and

disadvantages. We should consider using which

algorithm bases on our specific scenarios.

5.1. Generating Models using Thompson Algorithm

Thompson algorithm is a very simple and

easy to understand way to build models of

components in the form of NFAs from given

regular expressions of observable behaviors. The

details of the algorithm can be found in [17, 1].

Given a regular expression RL, the Thompson

algorithm will generate a corresponding ǫ −NFA

as follows:

• If a ∈ Σ is a symbol of the alphabet, then

a is an atomic regular expression. The NFA

that recognizes the regular language of {a}

is generated as shown in Figure 2, where i
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is the initial state, f is the final state and

(i, a, f ) is the unique transition of the NFA.

i f
a

Fig. 2: Generating an NFA that recognizes {a}.

• Suppose that N(s) and N(t) are non-

deterministic finite automata corresponding

to the regular expressions s and t

respectively, then

– (s).(t) is a regular expression that

represents the language L(s).L(t). The

automaton accepting this language is

built as shown in Figure 3. The initial

state is the initial state of N(s), the final

states are the final states of N(t) and the

algorithm adds empty transitions from

the final states of N(s) to the initial

state of N(t).

i f
N(s) N(t)

Fig. 3: An NFA recognizes regular expression (s).(t).

– (s) + (t) is a regular expression that

represents the language L(s)∪L(t). An

ǫ−NFA that corresponds to the regular

expression (s) + (t) is built as shown in

Figure 4. In this case, the initial state

called i and ǫ−transitions from i to the

initial states of N(s) and N(t) are added

to the automaton. After that, it adds a

final state called f and ǫ − transitions

from the final states of N(s) and N(t)

to f . As a result, we have the ǫ − NFA

that is the union of N(s) and N(t).

– (s∗) is a regular expression that

represents the language L(s∗). An ǫ −

NFA that corresponds to the regular

expression (s∗) is built as shown in

Figure 5. In this case, the initial state

is called i. An ǫ − transition from f

to the initial state of i is added to the

i f

ǫ

N(s)

ǫ

ǫ N(t) ǫ

Fig. 4: An NFA recognizes regular expression (s) + (t).

automaton. As a result, we have the

ǫ − NFA that is the N(s∗).

i f

ǫ

N(s)

Fig. 5: An NFA recognizes regular expression (s∗).

5.2. Generating Models using L∗ Algorithm

The L∗ is used to generate the M models that

can describe the behaviors of the component C.

In order to generate models, the L∗ algorithm

depends on a Teacher that answers two kinds

of question. The first kind is the membership

question. With σ ∈ Σ∗, Teacher answer true if

σ ∈ L(C) and vice versa. Next, Teacher answers

the equivalence query. That is whether the Mi

model can describe the whole behavior of the

component C or not. If the model can describe

the model exactly, Mi becomes the model of C.

Otherwise, Teacher provides a counter example

cex to L∗ to learn again (e.g: cex ∈ L(C) \ L(Mi)

or cex ∈ L(Mi) \ L(C)) in order to generate new

model that can describe the component better.

In order to represent behaviors of models, the

L∗ algorithm uses the table V,W,T that is defined

as follows:

• V ∈ Σ∗ is a set of prefixes. Prefixes represent

classes or states.

• W ∈ Σ∗ is a set of suffixes. Suffixes represent

the differences of languages.

• T : (S ∪ S .Σ).E → {true, f alse}, where

the operator “.” means that given two sets
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of sequences P and Q, P.Q = {pq|p ∈ P, q ∈

Q}, where pq represents the concatenation of

the event sequences p and q. With a string s

in Σ∗, T (s) = true means s ∈ U, otherwise

s < U.

Algorithm 6 describes the model generation

process using the L∗ learning algorithm. The

algorithm requires the component (C) and a

maximum length of sequence of actions in the

component (n). At first, the algorithm initiates the

OT with V = {λ}, W = {λ}, T = TC and Σ = ΣC

(λ is the empty string) (line 2). Next, the table

is updated by using the component C to answer

whether a specific action can be performed on the

component (line 4). After updating, the algorithm

checks whether the table is closed or not. If

the table is not closed, va is added to V where

v ∈ V, a ∈ Σ (line 6) and the table is updated

again (line 7). After the table updating process,

we have a corresponding model candidate that

represents the behaviors of the component. The

OT table is used by VC algorithm [3] to check

whether the corresponding model can represent

the behaviors of the given component or not (line

9). If the model can represent the component,

that model is returned by the algorithm (line 12).

Otherwise, a counter example is provided by VC

to the learning process to generate a new better

model. The counter example is analyzed to find

the smallest suffix that is not in the suffixes set

of the OT table (line 14). The found suffix is

added to the set of suffixes W. The OT table

is then updated and the algorithm L∗ generates a

new better model (line 4).

5.3. Generating Models using CNNFA algorithm

The key idea when using the CNNFA

algorithm to generate models corresponding to

regular expressions is that it uses an algorithm

to parse the given regular expression into basic

and non-basic blocks. A basic block is a valid

sub-regular expression that contains at least one

symbol in the alphabet. Non-basic blocks are

parts of the regular expression separated by

basic blocks. While doing that, it constructs

the CNNFA representations for basic blocks

Algorithm 6: Generate models using L∗

algorithm

Input : Component C, maximum length n

1 begin

2 OT = (V,W,T ) with V = {λ},

T = TC ,Σ = ΣC

3 while true do

4 Update OTi by T

5 while OTi is not closed do

6 add va to V (v ∈ V, a ∈ Σ)

7 update OTi by T to make it

closed

8 end

9 con f orm = VC(OTi,C, n)

10 if con f orm = true then

11 create LTS Mi from OTi

12 return Mi

13 else

14 v′ = minimum suffix(conform)

that is not in W

15 Add v′ to Mi of OTi

16 end

17 end

18 end

and perform reduction steps (from line 4 to

line 20). When the algorithm halts, if there

is only one CNNFA representation, we can

build the corresponding models for the given

regular expression. Otherwise, the given regular

expression is not valid. The algorithm uses a

stack (line 1) of elements, each of them is either

a symbol from R, or a record Np that stores a

CNNFA representation of the corresponding sub-

regular expression. Detailed information about

the models generation process using CNNFA

algorithm can be found in [19]. The parsing

algorithm is shown in algorithm 7.

5.4. Discussion

From the details of the above algorithms

when generating models, we can see that the

generated models are not optimal. We need

to perform additional tasks to optimize the

generated models. These tasks are converting
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Algorithm 7: Generate models using

CNNFA algorithm

1: Initialize the stack to empty.

2: for each input symbol c in a left-to-right scan

through R do

3: Push c onto the stack.

4: repeat

5: if topmost elements of the stack = λ then

6: Replace by CNNFA representation of λ.

7: else if topmost elements of the stack = a, an

alphabet symbol then

8: Replace by CNNFA representation of a.

9: else if topmost elements of the stack =

NJ |NK then

10: Replace by CNNFA representation of

NJ|K .

11: else if topmost elements of the stack =

NJ NK then

12: Replace by CNNFA representation of

NJK .

13: else if topmost elements of the stack = N∗
J

then

14: Replace by CNNFA representation of

NJ∗ .

15: else if topmost elements of the stack = (NJ)

then

16: Replace by NJ .

17: else

18: break;

19: end if

20: until the above steps can no longer be applied

21: end for

models from NFAs to DFAs, then minimizing

the returned DFAs to have the optimal models

using Hopcroft algorithm [2]. You can also

notice that the result models are not LTSs while

the required inputs of the assumption generation

process are LTSs. We notice that if the state

of the component is accepting state every time

an action is performed, then all states of the

generated models are accepting states. Therefore,

those models are LTSs. We can use them in

the assumption generation process. Another

important point here is that in [17], the generation

process is limited by a MaxLength represent for

the longest testable trace against the component

under checking. Generally, using Thompson

algorithm [1] to parse regular expressions to

generate the corresponding models is not limited

by any MaxLength. Therefore, in Table 3,

we don’t have any MaxLength information for

the model generation method using Thompson

algorithm.

6. Assume-Guarantee Verification of

Component-Based Software

Let M1,M2, ...,Mn be models of the system

under checking. These models are generated

from Section 5. We need to verify whether the

system satisfy a predefined safety property p or

not. In this paper, we use assume-guarantee

reasoning approach proposed in [11, 14] to do

this (e.g., to check the formula M |= p, where

M = M1‖M2‖...‖Mn).

For this purpose, the models are divided

into two classes (e.g., fixed and extensional

components). Let M1,M2, ...,Mi be fixed

components and Mi+1, ...,Mn(0 < i < n) be

extensional components, M f = M1‖M2‖...‖Mi

and Me = Mi+1‖...‖Mn are compositional

models of the fixed and extensional components,

respectively. These compositional models and

the property p are inputs of the assume-guarantee

verification method in order to check the system.

The goal of the assume-guarantee verification

method is to verify whether the system satisfies

the property p without composing M f with Me.

For this purpose, an assumption A(p) is generated

by applying the L* learning algorithm [4, 6] such

that A(p) is strong enough for M f to satisfy

p but weak enough to be discharged by Me

(i.e., 〈A(p)〉 M f 〈p〉 and 〈true〉 Me 〈A(p)〉 both

hold, called assume-guarantee rules) [11, 14].

From these assume-guarantee rules, this system

satisfies p without verifying on the whole system.

In order to obtain such appropriate assumptions,

this method applies the assume-guarantee rules

in an iterative process presented in Figure 6. At

each iteration i, a candidate assumption Ai is

produced based on some knowledge about the

system under checking and the results of the

previous iterations. The following two steps

of the assume-guarantee rules are then applied.

Step 1 checks whether M f satisfies p in an
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Fig. 6: Framework for the L*-based assumption generation.

environment that guarantees Ai by computing the

formula 〈Ai〉 M f 〈p〉. If the result is f alse, it

means that this candidate assumption is too weak

for M f to satisfy p. The candidate assumption

Ai therefore must be strengthened with the help

of the produced counterexample cex. Otherwise,

the result is true. In this case, Ai is strong enough

for the property to be satisfied. Then the step 2

is applied for checking whether the component

Me satisfies Ai by computing the formula 〈true〉

Me 〈Ai〉. If this step returns true, the property p

holds in the compositional system M f ‖Me and the

algorithm terminates. Otherwise, this step returns

f alse. In this case, a further analysis is required

to identify whether p is indeed violated in the

system M f ‖Me or the candidate Ai is too strong

to be satisfied by Me. Such analysis is based

on the produced counterexample cex. For the

purpose, the L* algorithm must check whether

the counterexample cex belongs to the unknown

language U = L(AW), where AW is the weakest

assumption which restricts the environment of

M f no more and no less than necessary for p to be

satisfied [10]. If it does not, the property p does

not hold in the system M f ‖Me. Otherwise, Ai is

too strong for Me to satisfy. The consequence

of this is the candidate assumption Ai must be

weakened (i.e., behaviors must be added with the

help of cex) in the next iteration i + 1. A new

candidate assumption may of course be too weak,

and therefore the entire process must be repeated.

7. Experimental Results

In order to show the correctness and feasibility

of the proposed framework, we implemented

tools to support it. We have tested the method

for several systems [8] that contain typical

fragments in sequence diagrams until generating

the corresponding assumptions. The regular

expression generation time is shown in Table 1.

Table 1: Regular expression generation time

No. System Time (ms)

1 Mod channel M1 2.0

2 Mod channel M2 2.0

3 Mod1 M1 4.0

4 Mod1 M2 40.0

5 Mod2 M1 5.0

6 Mod2 M2 4.0

7 Read Write M1 2.0

8 Read Write M2 2.0

9 Simple channel M1 1.0

10 Simple channel M2 2.0

11 Two channel M1 1.0

12 Two channel M2 2.0

13 GasOverControler 9.0

We then test the model generation process

by using the three algorithms of L∗, Thompson,

CNNFA. The generation time is presented in the

table 2. The size of generated models is shown

in the column |M|. The columns |δ| shows the

number of transitions in generated models. The

generated time (in milliseconds) is shown in the

column Time(ms). The maxlength in case of

generating models using L∗ methods is shown in

the column MLen. “Out” in the columns Time

means “Out of memory”, this is the case we could

not generate the model using the corresponding

algorithm.

From Table 2, we have the following

observations:

• Using these testing systems, generating

models using Thompson algorithm is faster

than the other two methods using L∗ and

CNNFA algorithm.
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Table 2: Model generation time

No. Test data
L∗ Thompson CNNFA

|M| |δ| MLen Time |M| |δ| Time |M| |δ| Time

1 Mod channel M1 4 3 3 01.44 3 3 00.17 3 3 00.39

2 Mod channel M2 5 5 4 20.29 3 4 00.26 3 4 11.68

3 Mod1 M1 6 6 3 16.09 5 6 00.75 5 6 26.61

4 Mod1 M2 7 8 4 53.00 5 7 00.83 5 7 233.51

5 Mod2 M1 6 6 3 15.81 5 6 00.75 5 6 76.79

6 Mod2 M2 7 9 4 48.41 5 8 01.02 5 8 421.91

7 Read Write M1 4 3 3 11.63 3 3 00.24 3 3 00.59

8 Read Write M2 4 3 3 14.55 3 3 00.20 3 3 00.74

9 Simple channel M1 4 3 3 11.06 3 3 00.22 3 3 01.73

10 Simple channel M2 4 3 3 15.05 3 3 00.20 3 3 00.74

11 Two channel M1 6 6 3 16.06 5 6 00.80 5 6 25.59

12 Two channel M2 6 6 3 18.55 5 6 00.76 5 6 27.66

13 GasOverControler - - 9 Out 6 10 66.28 7 14 4,668.43

Table 3: Assumption Generation Result

No. System Verification result Time (ms)

1 Read Write acquireRead.acquireWrite 05.50

2 Mod1 OK 13.58

3 Mod2 OK 05.68

4 Mod channel in.send.send.in 00.54

5 Simple channel OK 09.21

6 Two channel OK 02.26

7 GasOverControler OK 13.11

• With the big system (GasOverControler),

using L∗ algorithm cannot generate the

models of the system due to out of memory.

• Using the L∗ algorithm to generate the model

of system is limited by the maxlength of the

traces recognized by the models.

The time of the assumption generation process

is shown in Table 3.

8. Conclusion

We have presented a framework for automated

design verification for component-based

software. The method generates regular

expressions from one of the outputs of the

design phase (sequence diagrams). Models

corresponding to these regular expressions

are then generated. These models are used

to verify whether the design satisfies the

predefined property or not. The whole process

can be re-executed when the design is changed.

Experimental result shows that this method is

feasible with the time of the verification process.

Although the proposed framework can help us

to automatically verify system designs in the form

of sequence diagrams, it still contains several

issues. The first issue is that it is still slow when

testing with large systems. The second is that the

models generated and used during verification is

in the form of LTSs. This is only one kind of

model specification. Currently, the framework

is not for other kinds. Last but not least, the

framework is only applied for safety properties.

What about liveness and fairness ones. Besides,

the framework can be extended to generate test
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paths, test cases and help testing automatically. It

can be very helpful for such organizations that not

have much testing resources.

We are finding a way to apply the method to

some practical and larger systems to prove its

effectiveness. We are also extending the method

using other kinds of output of design phase (e.g.,

class diagrams, state-chart diagrams, etc.) so that

the given system can be verified in all aspects of

design automatically.
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