
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

Towards Model-checking Probabilistic Timed
Automata against Probabilistic Duration PropertiesI

Van Hung Dang1,∗, Miaomiao Zhang2, Dinh Chinh Pham1

1 VNU University of Engineering and Technology, Hanoi, Vietnam
2School of Software Engineering, Tongji University, Shanghai, China

Abstract

In this paper, we consider a subclass of Probabilistic Duration Calculus formula called Simple Probabilistic
Duration Calculus (SPDC) as a language for specifying dependability requirements for real-time systems, and
address the two problems: to decide if a probabilistic timed automaton satisfies a SPDC formula, and to decide
if there exists a strategy of a probabilistic timed automaton satisfies a SPDC formula. We prove that the both
problems are decidable for a class of SPDC called probabilistic linear duration invariants, and provide model
checking algorithms for solving these problems.

Received 25 November 2015, revised 20 December 2015, accepted 31 December 2015

Keywords: Probabilistic Duration Calculus, Probabilistic Timed Automata, Model-checking,
Markov Decision Process.

1. Introduction

In 1992, Chaochen Zhou, Hoare C.A.R and
Anders Ravn introduced Duration Calculus [1]
as a logic for reasoning about real-time systems.
The calculus has attracted a great deal of
attention, and was then developed further in
many other works because of its rich meanings.
Many of those works have been summarized
in the monograph [2]. For specifying the
dependability of real-time systems, a kind of
probabilistic extension of Duration Calculus has
been introduced in [3, 4]. No rigorous syntax has
been introduced in these papers, and the authors
just focused on the development of techniques
for reasoning instead of the ones for checking.
A version with a proof system of Probabilistic
Duration Calculus with infinite interval was then

I This research was funded by Vietnam National Foundation
for Science and Technology Development (NAFOSTED)
under grant number 102.03-2014.23.
∗ Corresponding author. Email: dvh@vnu.edu.vn

developed by Dimitar Guelev [5], and in [6]
we have shown that the calculus is useful for
reasoning about QoS contracts in component-
based real-time systems.

For Duration Calculus, some techniques for
checking if a timed automaton satisfies a duration
calculus formula written in the form of linear
duration invariants have been developed [7, 8,
9, 10, 11, 8]. However, to our knowledge,
not many works have been done for checking
if a probabilistic real-time system satisfies a
PDC formula. This is, perhaps, because in
the model of probabilistic systems, there is too
much randomization and nondeterminism, and
this makes model checking too complicated.

Kwiatkowska et al in [12, 13] proposed a
variant of probabilistic timed automata that
allows probabilistic choice only at discrete
transitions. To resolve the nondeterminism
between the passage of time and discrete
transitions they used the concept of strategy
which is essentially a deterministic schedule

58

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 59

policy. Then, the set of executions of a
probabilistic timed automaton according to a
strategy forms a Markov chain, and hence the
satisfaction of a probabilistic timed CTL formula
by this set can be defined, and then based on
the region graph of the timed automaton the
satisfaction of a probabilistic timed CTL formula
by the timed automaton can be also verified.
The idea of fixing a strategy when studying the
probabilistic behavior of a probabilistic timed
automaton restricts the scope of the verification
problem significantly, making the checking
problem more tractable. Then, verifying the
set of all strategies against a given probabilistic
property can be done by searching for the “worst
case” strategy according to the probabilistic
property and then apply the verification technique
to it. This idea is a motivation for us to reconsider
the problem of checking a probabilistic
timed automaton for a PDC formula that
we gave up before.

In this paper, we introduced a simple
probabilistic extension of DC called Probabilistic
Duration Calculus for specifying dependability
requirements of real-time systems. The extension
is conservative in the sense that a formula of
DC is also a formula of PDC with semantics
adapted to probabilistic domain. PDC also
consists of formulas representing the constraints
for the probability of the satisfaction of a
DC formula by a strategy for an interval.
We use the behavioral model proposed by
Kwiatkowska et al to define the semantics of
our logic. Since probabilistic timed CTL and
PDC are not comparable, and since for many
probabilistic properties PDC is more convenient
to specify, a model checking technique for
checking probabilistic timed automata against
PDC properties is useful. To solve this problem,
we first develop a technique to decide if a strategy
in a probabilistic timed automaton satisfies a
PDC formula of a certain form. This technique
is essentially an extension of our technique
developed earlier in [10, 9] to check if a timed
automaton satisfies a DC formula in the form
of linear duration invariants or discretisable DC
formulas based on searching in the integral

reachability graph of the timed automaton. Then,
we generalize this technique to achieve our goal
with a model-checking algorithm.

The first version of this paper was published
in [14]. In this extended version, in addition to
the problem of verification, we formulate also
the problem of strategy synthesis, i.e. to decide
if there is a strategy for a probabilistic timed
automaton that satisfies a probabilistic linear
duration invariant and show that this problem is
also solvable. We provide all proof details and
algorithms for doing model-check.

Our paper is organized as follows. In the
next section we present the Probabilistic Timed
Automata model. Section 3 presents syntax
and semantics of our PDC. Our main results is
presented in Section 4 where we formulate our
model checking problem and give our solution to
it. The last section is the conclusion of the paper.

2. Probabilistic Timed Automata

In this section, we recall the concepts
of probabilistic timed automata model and
probabilistic timed structure as its semantics
from [15, 12]. We use a simple model of
gas burners to illustrate the concepts as its
requirement specification is a typical example for
time duration properties.

Probability distributions and Markov decision
processes. A discrete probability distribution
over a set S is a mapping p : S → [0, 1] such
that the set {s | s ∈ S and p(s) > 0} is finite, and∑

s∈S p(s) = 1. The set of all discrete probability
distributions over S is denoted by µ(S).

A Markov decision process is a tuple
(Q, Steps), where Q is a set of states, and
Steps : Q → 2µ(Q) is a function assigning
a set of probability distributions to each state.
The intuition is that the Markov decision
process traverses the state space by making
transitions determined by Steps: in a state s, the
process selects nondeterministically a probability
distribution p in Steps(s), and then makes a
probabilistic choice according to p as to which
state to move to. As in [12] we label the action
selecting a probability distribution with a letter

60 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

from Σ, and assume that Steps : Q → 2Σ×µ(Q) and
Σ is a set of actions. The intuition now becomes
that the Markov decision process traverses the
state space by making transitions determined by
Steps: in a state s, the process performs an
action a ∈ Σ selecting nondeterministically a
probability distribution p in Steps(s), and then
makes a probabilistic choice according to p as to
which state to move to. So, a transition is of the
form s

a,p
−→ s′, where (a, p) ∈ Σ × µ(Q) is the

label of the transition. We also assume a labeling
function L : Q → 2AP, where AP is a set of
atomic propositions, that associates a state s with
the set of atomic propositions that hold at state
s. Then, a labeled Markov decision process is
a tuple (Q, Steps, L).

Labeled paths (or execution sequences)
are nonempty finite or infinite sequence of
consecutive transitions of the form

ω = s0
l0
−→ s1

l1
−→ s2

l2
−→ . . . ,

where si are states and li are labels for transitions.
For a path ω, let f irst(ω) denote the first state
of ω, and if ω is finite then let last(ω) denote
the last state of ω. |ω| is the length of ω and is
defined as the number of transition occurrences
in ω which is ∞ if ω is infinite. For k ≤ |ω|,
let ω(k) denote the kth state of ω, and step(ω, k)
denote the label of the kth transition in ω. For
two paths ω = s0

l0
−→ s1

l1
−→ s2

l2
−→ . . . sn

and ω′ = s′0
l′0
−→ s′1

l′1
−→ s′2

l′2
−→ . . . such that

sn = s′0, the concatenation of ω and ω′ is defined

as ωω′ = s0
l0
−→ s1

l1
−→ s2

l2
−→ . . . sn

l′0
−→ s′1

l′1
−→

s′2
l′2
−→

Clocks, clock valuations, clock constraints. Let
R≥0 denote the set of non negative real numbers.
A clock is a real-valued variable which increases
at the same rate as real time. Let C = {x1 . . . , xn}

be a set of clocks. A clock valuation is a function
ν : C → R≥0 that assigns a real value to each
clock. Let (R≥0)C denote the set of all clock
valuations, and 0 denote the clock valuation that
assigns 0 to each clock in C. For a set of clocks
X ⊆ Cwe denote by ν[X := 0] the clock valuation
that assigns 0 to all clocks in X and agrees with ν

on all other clocks. For t ∈ R≥0, we write ν + t
for the clock valuation that assigns ν(x)+ t to each
clock x ∈ C. A constraint over C is an expression
of the form xi ∼ c or xi − x j ∼ c, where i , j,
i, j ≤ n and ∼∈ {<,≤, >,≥} and c ∈ N. A clock
valuation ν satisfies a clock constraint xi ∼ c
(xi − x j ∼ c) iff ν(xi) ∼ c (ν(xi) − ν(x j) ∼ c). A
zone ofC is a convex subset of the valuation space
(R≥0)C described by a conjunction of constraints.
For a zone ζ and a set of clocks X ⊆ C the set
{ν[X := 0] | ν ∈ ζ} is also a zone, and is denoted
by ζ[X := 0]. Let ZC denote the set of all zones
of C.

Probabilistic timed automata and probabilistic
timed structures. Timed automata were
introduced in [16] as a model of real-time
systems. They are extended with discrete
probability distribution to model probabilistic
real-time systems. In the sequel, let AP be a given
set of atomic propositions.

Definition 1. A probabilistic timed automaton
(PTA) is a tuple G = (S,L, s̄,C, inv, prob,
〈τs〉s∈S) consisting of

• a finite set S of nodes, a start node s̄ ∈ S, a
finite set C of clocks,

• a function L : S → 2AP assigning to
each node of the automaton a set of atomic
propositions that are supposed to be those
that are true in that node, a function inv :
S → ZC assigning to each node an invariant
condition,

• a function prob : S → 2µ(S×2C) assigning
to each node a set of discrete probability
distributions on S × 2C,

• a family of functions 〈τs〉s∈S where, for any
s ∈ S, τs : prob(s) → ZC assigns to each
p ∈ prob(s) an enabling condition.

The last item in the definition says that all the
probabilistic choices according to a probabilistic
distribution (selected at a node) have the same
enabling condition. The probabilistic timed
automaton behaves nearly in the same way as a

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 61

x>=30

x:=0

x<=2

x:=0

1

1

Nonleak

s3

x<=1

Leak

s1

Leak

x<=2

s2

x<=1

0.20.8

x:=0

x<=1 1x:=0

a

c

d

b

Fig. 1: A probabilistic timed automaton
for a simple gas burner.

timed automaton does, except that it has to select
a probability distribution at each discrete step.

We denote by ZC(G) the set of all clock zones
occurring in G,

ZC(G) = {inv(s) ∈ ZC | s ∈ S}∪
{τs(p) ∈ ZC | s ∈ S and

p ∈ prob(s)}.

Example 1. Fig. 1 shows a probabilistic timed
automaton for a simple gas burner.

The system starts at the node s1, with the
gas valve is opened without flame being on,
hence gas is leaking. At this state, there are
two nondeterministic choices. The first choice
denoted by transition a is that with the probability
1, the flame is turned on within one second (x ≤
1) and the system moves to node s3 for which
gas is not leaking. The second choice denoted
by transition b is as follows: with the probability
0.8, the flame is turned on within one second and
the system moves to node s3 for which gas is not
leaking, and with probability 0.2 the flame fails to
be on within one second, and the system moves to
node s2 for which gas is still leaking. In state
s2, with probability 1, the gas valve is closed
successfully within 2 seconds since the time the
system entered s1 last time, and the system moves
to node s3. At state s3, the gas burner will move
to the state s! only after it has stayed there at
least 30 seconds. Formally, in this example, the

function prob is given as: prob(s1) = {p0, p1},
prob(s2) = {p2}, prob(s3) = {p3}, where
p0(s3, {x}) = 1, p1(s3, {x}) = 0.8, p1(s2, ∅) =

0.2. p2(s3, {x}) = 1, p3(s1, {x}) = 1, and
τs1(p0) = τs1(p1) = {x ≤ 1}, τs2(p2) = {x ≤ 2}
and τs3(p3) = {x ≥ 30}. The function inv is
defined as inv(s1) = {x ≤ 1}, inv(s2) = {x ≤ 2}
and inv(s3) = true. The labels of states are given
by function L defined as L(s1) = L(s2) = leak,
and L(s3) = nonleak.

As in [12] we use probabilistic timed structures
as underlying semantics model for PTA.

Definition 2. A probabilistic timed structure M
is a labeled Markov decision process (Q, Steps, L)
where Q is a set of states, Steps : Q → 2R

≥0×µ(Q)

is a function which assigns to each state q ∈ Q
a set Steps(q) of pairs of the form (t, p), where
t ∈ R≥0 and p ∈ µ(Q), and L : Q → 2AP is a state
labeling function.

Function Steps specifies the set of transitions
that M can choose nondeterministically at each
state. Therefore, if at state q ∈ Q, M chooses
(t, p) ∈ Steps(q), then after t time units have
elapsed, a probabilistic transition is made to state
q′ with probability p(q′). A path of M is a
nonempty finite or infinite sequence:

ω = q0
t0,p0
−→ q1

t1,p1
−→ q2

t2,p2
−→ . . .

where qi ∈ Q, (ti, pi) ∈ Steps(si), and pi(qi+1) > 0
for all 0 ≤ i ≤ |ω|. For a given probabilistic timed
structuresM we denote by Path f in (Pathin f) the
set of finite (infinite) paths, and by Path f in(q)
(Pathin f (q)) the set of paths in Path f in (Pathin f)
that start from state q. Let ω be infinite. A
position of ω is a pair (i, t), where i ∈ N and
t ∈ R≥0 such that 0 ≤ t ≤ ti. The state at
position (i, t) is denoted by stateω(i, t). Given
two positions (i, t) and (j, t′) of ω, we say (j, t′)
precedes (i, t) (in ω, written by (j, t′) ≺ (i, t)) if
j < i or j = i and t′ < t.

Definition 3. For any path ω of a probabilistic
timed structure M and 0 ≤ i ≤ |ω| we define
Dω(i), the elapsed time until the ith transition, as
follows: Dω(0) = 0 and for any 1 ≤ i ≤ |ω|:

Dω(i) =
∑i−1

j=0 t j.

62 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

An infinite path ω is said to be divergent iff
for any t ∈ R≥0, there exists j ∈ N such that
Dω(j) > t. Let ω be infinite. For each state
q ∈ Q, we define a {0, 1}-valued function
qω : R≥0 → {0, 1} as

qω(t) =

1 iff there exists a position (i, t′) s.t.

t′ > 0, stateω(i, t′) = q and
t = Dω(i) + t′,

0 otherwise.
Intuitively, qω(t) = 1 means that in the path ω,
state q is present in an interval (t − δ, t] for some
δ > 0, and otherwise qω(t) = 0.

The concept of strategy was introduced in
the literature (see, e.g. Kwiakowska [12]) as a
schedule for resolving all the nondeterministic
choices of the model. Note that we have
restricted ourselves to discrete probability
distributions only.

Definition 4. A strategy (or scheduler) of a
probabilistic timed structure M = (Q, Steps, L)
is a function A mapping every nonempty finite
path ω of M to a pair (t, p) such that A(ω) ∈
Steps(last(ω)), and the empty path ε to a state in
Q. LetA be the set of all strategies ofM.

Let us denote a prefix of length i of ω by ω(i),
and define for a given strategy A

PathA
f in =

ω ∈ Path f in

∣∣∣∣∣∣∣∣∣
A(ε) = ω(0), and
step(ω, i) = A(ω(i))
for 0 ≤ i < |ω|

PathA

in f =

ω ∈ Pathin f

∣∣∣∣∣∣∣∣∣
A(ε) = ω(0), and
step(ω, i) = A(ω(i))
for 0 ≤ i

Recall that step(ω, i) returns the label of the

ith transition in ω. From Definition 4, all ω
in PathA

f in and PathA
in f start from the same state

defined by A(ε), and intuitively they represent the
behaviors ofM according to the scheduler A,

A sequential Markov chain MCA =

(PathA
f in,P

A) is associated with a strategy A
in a natural way to express the executions of M
according to A, where PA is defined as

PA(ω,ω′) =

p(q) if A(ω) = (t, p) and

ω′ = ω
t,p
−→ q,

0 otherwise.
Let F A

Path be the smallest σ-algebra on PathA
in f

which for all ω′ ∈ PathA
f in contains the sets

{ω | ω ∈ PathA
in f and ω′ is a prefix of ω}.

Let ProbA
f in : PathA

f in → [0, 1] be the
mapping defined inductively on the length
of paths in PathA

f in as follows. If |ω| = 0 then
ProbA

f in(ω) = 1. Let ω′ ∈ PathA
f in be a finite path

of A. If ω′ = ω
t,p
−→ q for some ω ∈ PathA

f in, then
we let ProbA

f in(ω′) = ProbA
f in(ω)PA(ω,ω′).

The measure ProbA on F A
Path is the

unique measure such that ProbA({ω | ω ∈

PathA
in f and ω′ is a prefix of ω}) = ProbA

f in(ω′).
In this paper, we assume that the strategies under
consideration are divergent in the probabilistic
sense, i.e. we assume that for any strategy A,
ProbA({ω | ω ∈ PathA

in f and ω is divergent}) = 1.
We now define the behavior of probabilistic

timed automata by associating every probabilistic
timed automaton with a probabilistic timed
structure. A state of the structure consists of a
state of the automaton, and a valuation for the
clock variables.

Definition 5. For any probabilistic timed
automaton G as in Definition 1, define
the probabilistic timed structure MG =

(QG, StepsG, LG) as follows.

• QG = {〈s, ν〉 | s ∈ S, ν ∈ (R≥0)C}

• The function StepsG : QG → 2R
≥0×µ(QG)

assigns to each state in QG a set of
transitions, each of which takes the form
(t, p̄) where t ∈ R≥0 and p̄ is a discrete
probabilistic distribution on Q, and is
defined as:

– (t, p̄) ∈ StepsG(〈s, ν〉) if there exists
p ∈ prob(s) such that (a) the valuation
ν + t satisfies τs(p) and ν + t′ satisfies
inv(s) for all 0 ≤ t′ ≤ t, and (b)
for any 〈s′, ν′〉 ∈ QG: p̄(〈s′, ν′〉) =∑

X⊆C∧(ν+t)[X:=0]=ν′ p(s′, X). For
convenience, we refer to p̄ as having
type p, denoted by type(p̄) = p.

– Let (t, p̄) ∈ StepsG(〈s, ν〉) if (a) the
valuation ν + t′ satisfies inv(s) for all
0 ≤ t′ ≤ t, and (b) for any 〈s′, ν′〉 ∈

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 63

QG: p̄(〈s′, ν′〉) = 1 if 〈s′, ν′〉 =

〈s, ν + t〉, and p̄(〈s′, ν′〉 = 0 otherwise.
We refer to p̄ as having type >, i.e.
type(p̄) = >.

• The labeling function L : Q → 2AP is defined
as: LG(〈s, ν〉) = L(s) for all 〈s, ν〉 ∈ QG.

The second item of the definition of the
function Steps allows the automaton to stay in a
state forever from a time if the invariant for the
state is never violated from that time, and the
corresponding path is infinite.

Any strategy for the timed structure MG

is also called strategy for probabilistic timed
automaton G.

Example 2. The following path is a path of
(a strategy of) the timed structure of the timed
automaton in Fig. 1:

ω = 〈s1, 0〉
.9,.8
−→ 〈s3, 0〉

31,1
−→ 〈s1, 0〉

.7,.2
−→

〈s2, .7〉
1.2,1
−→ 〈s3, 0〉

30,1
−→ 〈s3, 30〉

100,1
−→

〈s3, 130〉
100,1
−→

For a given infinite divergent path
ω of MG, for an atomic proposition
P ∈ AP, let us define a {0, 1}-valued
function Pω : R≥0 → {0, 1} by Pω(t) =

max{qω(t) | q = 〈s, ν〉 ∈ QG and P ∈ L(s)} (note
that there can be several regions 〈s, ν〉 in the
path ω for which P ∈ L(s)). So, Pω(t) = 1
means that there is an semi-interval (t − δ, t] in
which P holds. Otherwise, Pω(t) = 0. Since we
have assumed that ω is divergent, Pω has the
finite variability, i.e. it has only finite number of
discontinuity points within any finite interval.

3. Probabilistic Duration Calculus

In this section we introduce a simple form
of Probabilistic Duration Calculus. A complete
probabilistic interval logic (which DC is based
on) with a proof system has been introduced in
[5]. However the definition of the semantics in
that paper for the calculus is rather complicated
and less intuitive. The calculus introduced
in this paper has an intuitive semantics based

on probabilistic timed automata, and has a
simple grammar that allows to write formulas to
reason about the probability of the satisfaction
of a duration formula by a probabilistic timed
automaton as well as to specify real-time
properties of the system itself.

Definition 6. Let R stand for relations (e.g. ≤
,=), and F stand for functions (e.g. +, −).
The syntax of Probabilistic Duration Calculus is
defined as follows.

Φ ::= Ψ | [Ψ]wλ | ¬Φ | Φ ∧ Φ,

Ψ ::= R(η, . . . , η) | ¬Ψ | Ψ ∧ Ψ | Ψ; Ψ,

η ::=
∫

S | F(η, . . . , η),
S ::= 1 | P |¬S | S ∧ S ,

where Φ stands for Probabilistic Duration
Calculus formulas, Ψ stands for Duration
Calculus formulas, η stands for duration terms,
S stands for state expressions, and P is a symbol
in the set of atomic proposition AP.

We will use a probabilistic timed automaton
G as underlying model to define the semantics
for Probabilistic Duration Calculus formulas as
well as for Duration Calculus formulas. Let Intv
denote the set of all intervals on R≥0.

Given a path ω of MG according to a
strategy A. The interpretation of state expression
S is a {0, 1}-valued function IωS : R≥0 →

{0, 1} defined inductively as: Iω1 (t) = 1
for all t ∈ R≥0, IωP = Pω where Pω is
defined as in Section 2, Iω

¬S = 1 − IωS , and
IωS 1∧S 2 = min{IωS 1, I

ω
S 2}. (Note that the operations

on functions is defined point-wise.) The
interpretation of a term η is a function Iωη : Intv→

R≥0 defined as Iω∫
S

([a, b]) =
∫ b

a IωS (t)dt, and

Iωf (η1,...,ηk)([a, b]) = f (Iω
η1([a, b]), . . . , Iω

ηk([a, b]))
for any interval [a, b] ∈ Intv.

A model for DC formulas is a pair (ω, [a, b])
of a divergent path ω and an interval [a, b].
The semantics of Duration Calculus formulas is
essentially the satisfaction relation |= between a
model (ω, [a, b]) and a DC formula Ψ which is
defined as follows.

• (ω, [a, b]) |= R(η1, . . . , ηk) iff
R(Iω

η1([a, b]), . . . , Iω
ηk([a, b])),

64 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

• (ω, [a, b]) |= ¬Ψ iff (ω, [a, b]) 6|= Ψ,

• (ω, [a, b]) |= Ψ1∧Ψ2 iff (ω, [a, b]) |= Ψ1 and
(ω, [a, b]) |= Ψ2,

• (ω, [a, b]) |= Ψ1; Ψ2 iff (ω, [a,m]) |= Ψ1 and
(ω, [m, b]) |= Ψ2 for some m ∈ [a, b].

The probability measure ProbA will come to
play role in the definition of semantics of PDC
formulas. A model for a PDC formula consists
of a strategy A of MG and a time point t (recall
that A defines an “initial” state, not necessary to
be 〈s̄, 0〉; to be meaningful, we may need the
restriction that the “initial” state of A is 〈s̄, 0〉,
we will assume this whenever necessary). The
satisfaction relation |=PDC between PDC models
(A, t) and PDC formulas Φ is defined as:

• For a DC formula Ψ, (A, t) |=PDC Ψ iff
ProbA({ω | ω ∈ PathA

in f and ω is divergent
and
(ω, [0, t]) |= Ψ}) = 1,

• For a DC formula Ψ, (A, t) |=PDC [Ψ]wλ iff
ProbA({ω | ω ∈ PathA

in f and ω is divergent
and
(ω, [0, t]) |= Ψ}) ≥ λ,

• (A, t) |=PDC ¬Φ iff (A, t) 6|=PDC Φ

• (A, t) |=PDC Φ1 ∧ Φ2 iff (A, t) |=PDC Φ1 and
(A, t) |=PDC Φ2.

The reason for a using a strategy to define
a model of PDC formulas is clear since the
probability is defined just for subsets of paths
induced by A, not for a single path. But the reason
for selecting an interval of the form [0, t] instead
of [a, b] is just for convenience. The computation
of ProbA(B) for a set B of paths satisfying a
DC formula Ψ in an interval [a, b] needs the
prefixes in the whole interval [0, b] of paths in
B. Intuitively, a strategy A of probabilistic timed
automaton G satisfies a DC formula Ψ in the
probabilistic setting at a time t iff the set of infinite
divergent paths ω produced by A that satisfy Ψ in
the interval [0, t] has the probability 1.

A DC formula Φ is said to be valid iff
(ω, [a, b]) |= Φ holds for any probabilistic timed

automaton G, any path ω of G, and any time
interval [a, b]. A PDC formula Φ is said to be
valid iff (A, t) |=PDC Φ holds for any probabilistic
timed automaton G, strategy A of G, and t ∈ R≥0.
In [17, 2] a proof system for DC for deriving
valid formulas has been presented. It follows
directly from the definition of semantics that PDC
is a conservative extension of DC. Besides, some
obvious properties of the probabilities can be
translated into valid formulas in PDC easily.

These observations are formulated in the
following theorem.

Theorem 1. For any DC formulas Φ, Φ1 and Φ2

• [Φ]w1 ⇔ Φ is a valid PDC formula,

• If Φ is a valid DC formula, then it is a valid
PDC formula,

• ((Φ1 ⇒ Φ2) ∧ [Φ1]wλ) ⇒ [Φ2]wλ is a valid
PDC formula

• ¬(Φ1 ∧ Φ2) ∧ [Φ1]wλ1 ∧ [Φ2]wλ2 ⇒ [Φ1 ∨
Φ2]wλ1+λ2 is a valid PDC formula.

Proof. Straightforward from the definition of
semantics of DC and PDC. 2

As usual in DC, we use the following
abbreviations: `=̂

∫
1, True=̂` ≥ 0,

3Ψ=̂True; Ψ; True (there exists a subinterval
for which Ψ is satisfied), 2Ψ=̂¬3¬Ψ (for all
subintervals Ψ is satisfied), dS e=̂

∫
S = `∧ ` > 0.

Note that PDC can express the safety and
bounded liveness properties, but not unbounded
liveness properties. For example, PDC formula
2(dPe; ` > b ⇒ ` ≤ b; dQe) says that it is almost
certain that whenever P becomes true for non-
zero time period, Q must become true for non-
zero time period within b time units.
Example 3. Let us consider the simple gas
burner in Example 1 (see Fig. 1). Let one of
the requirements for the gas burner is that for
any observation interval the length of which is
not shorter than 60 seconds, the accumulated
leakage time is not longer than 4% of the length
of the observation interval. This requirement is
formalized as a DC formula R =̂ 2(` ≥ 60 ⇒∫

leak ≤ 4% ∗ `). (=̂ stands for “being by

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 65

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s2,1)

(s2,2)

1

1

(s1,1)

(s3,0)

0.8 0.2

(s3,0)

(s3,30)

(s1,0)

1

1

30

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s3,60)

(s3,60)

(s3,30)

(s3,30)

30

1

30

1

(s2,1)

(s2,2)

1

1

(s1,1)

(s3,0)

0.8 0.2

(s2,1)

(s2,2)

1

(s3,0)

(s3,0)

(s3,30)

(s1,0)

1

1

30

1

1

(s1,1)

(s1,0)

0.20.8

(s3,0)

Fig. 2: A part of a strategy A for the simple gas burner.

definition”). Let ω be given as in Example 2.
Then, (ω, [0, 60]) 6|= (` ≥ 60⇒

∫
leak ≤ 4% ∗ `).

This is so because the accumulated time for the
leakage in the interval [0, 60] is .9 + .7 + 1.2 = 2.8
which is longer than 4% ∗ 60 (= 2.4).

Let strategy A that schedules the system
producing the paths be as shown by the tree
in Fig. 2 in which the dashed edges represent
discrete transitions labeled with probability, and
the non-dashed edges represent time advance
transitions labeled with their corresponding
amount of time units. Only those paths that have
a prefix represented by the leftmost branch of
the tree, satisfy the requirement R in the interval
[0, 60]. The set of these paths has the probability
0.8 ∗ 0.8 = 0.64. Hence, (A, 60) |= [R]w.6 (note
that this example is for the sake of illustrating the
concepts only).

4. Model checking probabilistic timed
automata against PDC properties

Duration Calculus formulas are highly
undecidable, only a very small class of chop free

formulas is decidable (see [18]). In this section,
we develop a technique to verify if a set of all
PDC models generated by a probabilistic timed
automaton G satisfies a PDC formula in discrete
time. Namely, we consider the problem to decide
A, t |=PDC [Ψ]wλ for all A ∈ A and all t ∈ R≥0,
where A is the set af all integral strategies of a
timed automaton G. In the sequel, for simplicity
by saying “strategy” we actually mean “integral
strategy” unless differently stated.

Depending on different forms of model sets we
can have different model checking problems as:

1. Single strategy single time: given a strategy
A, given a time t, to decide A, t |=PDC [Ψ]wλ.
This problem is decidable. It is so because
the fact that a path ω satisfies Ψ in [0, t] or
not depends only on the smallest prefix ω(i)

such that Dω(i) ≥ t. The set {ω′ | ω′ ∈
PathA

f in andDω′(|ω′|) ≥ t andDω′(|ω′| −
1) < t} is finite, and computable if A
is computable. From the assumption, the
set {ω′ | ω′ ∈ PathA

f in andDω′(|ω′|) ≥
t andDω′(|ω′|−1) < t and (ω′, [0, t]) |= Ψ} is
computable, and finite. Hence, ProbA({ω ∈
PathA

f in | (ω, [0, t]) |= Ψ}) is computable, and
therefore, A, t |=PDC [Ψ]wλ is decidable.

2. Multiple strategy single time: Given a
set of strategies A which have a finite
representation, given a time t, decide
A, t |=PDC [Ψ]wλ for all A ∈ A. If A is
finite, the problem is decidable. Hence the
decidability of the problem depends on the
form of the computable setA of strategies.

3. Single strategy with arbitrary time: Given a
strategy A which has a finite representation,
decide if A, t |=PDC [Ψ]wλ for all t ∈
R≥0. This problem in general is undecidable
even for λ = 1 because DC is undecidable
in general.

4. Multiple strategy with arbitrary time: Given
a set of strategies A which have a finite
representation, decide A, t |=PDC [Ψ]wλ for
all A ∈ A and all t ∈ R≥0. This problem is
most general, and undecidable because DC
is undecidable in general.

5. Strategy synthesis: To find a strategy A such
that A, t |=PDC [Ψ]wλ for a given t or for all t.

66 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

In this section, we will restrict ourselves to
some instances of the problems mentioned in the
items 3 and 4.

We are interested specially in the PDC
formulas of the form [Ψ]wλ, where Ψ has the form
2(a ≤ ` ≤ b ⇒

∑k
i=1 ci

∫
Pi ≤ M) called linear

duration invariants (LDI) [7], where M, a and
b are integers, b could be ∞. A dependability
requirement for the simple gas burner could be
expressed as [2(` ≥ 60 ⇒

∫
leak ≤ 4% ∗

`)]w.99 which says that with the probability .99,
the accumulated time for gas leaking is not more
than 4% of the observation time whenever the
observation time is longer than 60 seconds. So,
the (A, [0, 105]) |= [2(` ≥ 60 ⇒

∫
leak ≤

4% ∗ `)]w.99 for any strategy A says about the
reliability of the gas burner: its requirement is
satisfied with the probability .99 whenever it is
operated for less than 105 seconds.

For simplicity and as motivated by the
discretisability of LDI [9] (i.e. an LDI is satisfied
by all models if and only if it is satisfied by all
integral models), we restrict ourselves to those
strategies in which each transition is of the form
(t, p) where t ∈ N only.

Now, we recall a very important technique
from timed automata with some adaptations to
probabilistic timed automata. Let, in the sequel,
G be a PTA.

Integral Region Graph. The key idea for
reducing the state space of timed automata to
a finite space is the clock equivalence relation
introduced in [16]. In this subsection we recall
this standard notions restricted to the set NC of
integral clock valuations. Let c be the max of
integers occurring in clock constraints in G.

Definition 7. The valuations ν, ν′ ∈ NC are clock
equivalent, denoted by ν � ν′ iff

1. ∀x ∈ C, either ν(x) = ν′(x), or both ν(x) > c
and ν′(x) > c,

2. ∀x, x′ ∈ C, either ν(x)−ν(x′) = ν′(x)−ν′(x′),
or both ν(x)−ν(x′) > c and ν′(x)−ν′(x′) > c

One important property of the clock
equivalence relation � is that it has finite
index and the valuations from the same

equivalence class satisfy the same set of clock
constraints as formulated as the following lemma
(taken from [16, 9]):

Lemma 1. Let ν, ν′ ∈ NC, X ∈ 2C, and ν � ν′.
Then

1. ν[X := 0] � ν′[X := 0]
2. for any zone ζ ∈ ZC(G) appearing in the

description of G, ν satisfies ζ if and only if
ν′ satisfies ζ.

Let G be the set of all equivalence classes of
�. An equivalence class α ∈ G satisfies a clock
constraint ζ ∈ ZC(G) iff ν satisfies ζ for some
ν ∈ α. From the item 2 of Lemma 1, it follows
that α satisfies a clock constraint ζ if and only if ν
satisfies ζ for any ν ∈ α. An equivalence class β is
said to be the successor of an equivalence class α,
denoted by succ(α) iff for each ν ∈ α, there exists
t ∈ N such that ν + t ∈ β and ν + t′ ∈ α ∪ β

for all t′ ≤ t and t′ ∈ N. Let dα = sup{t ∈
N | ν ∈ α and ν + t ∈ succ(α) and ν + t′ ∈
α∪β for all t′ ≤ t and t′ ∈ N}. It follows from the
definition of succ(α) that either dα = 1 or dα = ∞.
The latter happens only when succ(α) satisfies
x > c for all x ∈ C. The nondeterministic discrete
time behaviors of PTA G can now be described
by the region graph R(G) defined as follows.

Definition 8. The region graph R(G) is the
Markov decision process (V∗, Steps∗, L∗), where

• the vertex set V∗ =̂ {〈s, α〉 | s ∈ S and α ∈ G
and α satisfies inv(s)}, and

• the transition function Steps∗ : V∗ →
2N×µ(V∗) is defined as follows. For each
vertex 〈s, α〉 ∈ V∗:

1. If the invariant condition inv(s)
is satisfied by succ(α) then for
any 〈s′, β〉 ∈ V∗, let ps,α

succ(〈s′, β〉)

=

{
1 if 〈s′, β〉 = 〈s, succ(α)〉,
0 otherwise.

Then (t, ps,α
succ) ∈ Steps∗(s, α) for any

t ∈ N, 0 < t ≤ dα. In this case, we say
type(ps,α

succ) = >.

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 67

2. If there exists p′ ∈ prob(s) such
that α satisfies the enabling condition
τs(p′), then for any 〈s′, β〉 ∈ V∗ let
ps,α

p′ (〈s′, β〉) =
∑

X⊆C,α[X:=0]=β p′(s′, X).
Then, (0, ps,α

p′) ∈ Steps∗(〈s, α〉). In this
case, we say type(ps,α

p′) = p′.

In the definition of Steps∗ the item (1)
represents the time transitions, and the item (2)
represents the discrete transitions.

Definition 9. A strategy A∗ on the region graph is
a function mapping every nonempty finite path ω∗

of R(G) to a pair of integral time t and distribution
p such that (t, p) ∈ Steps∗(last(ω∗)), and
mapping ε to 〈s̄, 0〉.

By the definition of transition function Steps∗,
the number of the (time) transitions of R(G)
between a node (s, α) and (s, succ(α)) is infinite
when dα = ∞. In the graph, those transitions
are combined into one transition which is labeled
by (∗, 1), where 1 is the probability distribution
assigning probability 1 to the transition from
(s, α) to (s, succ(α)). This transition expresses
that we can choose nondeterministically an
arbitrary integer for time step, and then with the
probability 1, move to the region (s, succ(α)).
Therefore, a strategy A of R(G) will replace ∗
by an integer each time it travels through this
transition. From the definition of the region graph
R(G) and the timed structure MG, the paths in
R(G) and the paths in MG are closely related.

Namely, if in MG there is a transition 〈s, ν〉
t,p̄
−→

〈s′, ν′〉, where type(p̄) = p′ and t ∈ N then

in R(G) there is a path 〈s, α0〉
t1,p1
−→ . . .

tk ,pk
−→

〈s, αk〉
0,ps,αk

p′

−→ 〈s′, β〉 such that type(pi) = >,
αi = succ(αi−1) for 1 ≤ i ≤ k, type(ps,αk

p′) = p′,
ν ∈ α0, ν′ ∈ β, inv(s) is satisfied by all αi, t =

t1 + . . . + tk, and αk satisfies τs(p′). Furthermore,

if in MG there is a transition 〈s, ν〉
t,p̄
−→ 〈s, ν′〉

where type(p̄) = > and t ∈ N then in R(G)

there is a path 〈s, α0〉
t1,p1
−→ . . .

tk ,pk
−→ 〈s, αk〉 such

that type(pi) = >, for 1 ≤ i ≤ k, αi = succ(αi−1)
and satisfies inv(s), ν ∈ α0, ν′ ∈ αk, t = t1+. . .+tk.

Conversely, for each transition in R(G) of the

form 〈s, α〉
t,ps,α

−→ 〈s′, β〉, for any ν ∈ α there

is a transition 〈s, ν〉
t, p̄
−→ 〈s′, ν′〉 in MG with

type(p̄) = type(ps,α) and ν′ ∈ β.
From this observation each strategy A∗ of R(G)

corresponds one-to-one with an integral strategy
A of MG in a sense that will be made precise
soon.

With each strategy A∗ of R(G) we can associate
a Markov chain MCA∗ = (PathA∗

f in,P
A∗) where

for ω∗, ω′∗ ∈ PathA∗
f in and 〈s, α〉, 〈s′, α′〉 such that

last(ω∗) = 〈s, α〉,
PA∗(ω∗, ω′∗) =

ps,α if A∗(ω∗) = (t, ps,α) and

ω′∗ = ω∗
(t,ps,α)
−→ 〈s′, α′〉,

0 otherwise.
Then, the probabilistic measure ProbA∗

on the smallest σ-algebra F A∗
Path on

PathA∗
in f containing the sets of the forms

{ω∗ | ω∗ ∈ PathA∗
in f and ω′∗ is a prefix of ω∗}

for any ω′∗ ∈ PathA∗
f in is defined as before for

a probabilistic timed structure. Recall that
from probabilistic timed automaton G, we have
defined a probabilistic timed structureMG which
generates the probabilistic measure ProbA on
the smallest σ-algebra F A

Path on PathA
in f . From

the relationship between strategies A∗ of R(G)
and strategies A of MG observed earlier we can
derive a relationship for ProbA∗ and ProbA which
plays key role in model checking PDC formulas.
The relation between R(G) andMG is expressed
formally as:

Lemma 2. Let A be an integral strategy of
probabilistic timed automaton G (i.e. an integral
strategy ofMG). Then, there exists an strategy A∗

of the integral region graph R(G) and an one-to-
one mappings γ : PathA

in f → PathA∗
in f such that:

1. ProbA(Ω) = ProbA∗(γ(Ω)) for all Ω ∈ F A
Path,

2. Pω(t) = Pγ(ω)(t) almost everywhere in R≥0

for all ω ∈ PathA
in f

Proof. Let γ be the homomorphism defined from
the relation between transitions inMG and R(G)
observed as above. Given strategy A, strategy A∗

is defined based on mapping γ which simulates

68 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

A by splitting one step (t, p) into several time
steps (1, 1), . . . , (1, 1), (0, p) as given by mapping
γ. Item 2 follows directly from the construction
of A∗, and Item 1 follows from the fact that for all
ω ∈ PathA

f in, ProbA
f in(ω) = ProbA∗

f in(γ(ω)). The
detailed proof is omitted here. 2

Item 2 of Lemma 2 implies that (ω, [a, b]) |= Ψ

if and only if (γ(ω), [a, b]) |= Ψ for any DC
formula Ψ, for any ω ∈ PathA

in f and interval
[a, b]. Combined with Item 1, this implies that
A, t |=PDC Φ if and only if A∗, t |=PDC Φ for any
PDC formula Φ and t ∈ R≥0.

Depending on how integral strategy A of G is
given, the corresponding strategy A∗ of R(G) can
be found easily based on A. For simplicity, firstly
we consider the problem to decide if A, t |=PDC Φ

for t ∈ R≥0. Now consider the following case for
PDC formula Φ:

Φ = [Ψ]wλ, Ψ = 2Ψ1 (1)

where Ψ1 is a DC formula (to be more general
Ψ is not necessary to be LDI). We have that{
ω

∣∣∣∣∣∣ ω ∈ PathA∗
in f and ω is divergent and

(ω, [0, n]) |= Ψ for all n ∈ N

}
=

⋂
n≥0

{
ω

∣∣∣∣∣∣ ω ∈ PathA∗
in f and ω is

divergent and (ω, [0, n]) |= Ψ

}
.

Because the set sequence
{ω | ω ∈ PathA∗

in f and ω is divergent and
(ω, [0, n]) |= Ψ} is decreasingly monotonic
(according to the set inclusion relation) when n
increases, we have that ProbA∗({ω | ω ∈ PathA∗

in f
and ω is divergent and (ω, [0, n]) |= Ψ for all
n ∈ N}) = infn∈N{ProbA∗({ω | ω ∈ PathA∗

in f and
ω is divergent and (ω, [0, n]) |= Ψ}).

Hence, if we can compute ProbA∗({ω | ω ∈
PathA∗

in f and ω is divergent and (ω, [0, n]) |= Ψ for
all n ∈ N}), we can solve the problem to decide if
A∗, t |= Φ for all t ≥ 0.

Let P be a path in the region graph R(G) that
generates a DC model not satisfying Ψ1. Assume
that a path in PathA∗

in f that does not satisfy DC
formula Ψ in an interval if and only if it has
a prefix that includes P. Then all the paths in
PathA∗

in f that satisfy Ψ for any interval are those
that do not include P. From integral graph R(G),
we can find all such paths P that can generate a
DC model not satisfying Ψ1, and can construct a

graph that generate all the paths in PathA∗
in f that

do not include any such path P (i.e. those paths
that satisfy Ψ for any interval). We assume that
any two paths in P are not nested (if for two
paths in P, one is nested in the other, we can
remove the later without changing the meaning of
P). From the labels of the constructed graph, the
probability of the set of paths can be calculated.
To apply this procedure we need: (a) a technique
to construct the finite set of paths P in R(G) that
correspond to all DC models that do not satisfy
Ψ1, (b) the set of paths in PathA∗

in f that do not
include any such path P are finitely representable
by a graph, and (c) a technique to compute the
probability of the set of infinite paths resulting
from item (b).

Regarding Item (a), the following lemma is
from [9, 10], which says that given a linear
duration invariant Ψ, the set of paths that do not
satisfy Ψ is computable by searching in R(G).

Lemma 3.

1. Given a path ω ∈ PathA∗
in f . A linear duration

invariant Ψ is satisfied by model (ω, [a, b])
for any interval [a, b] if and only if it is
satisfied by model (ω, [m, n]) for any integral
interval [m, n].

2. The set of paths of integral region graph
R(G) that correspond to a DC integral model
that does not satisfy Ψ is constructable.

Regarding Item (b), we have to restrict
ourselves to the class of so-called finitely
representable strategies A∗ of the region graph
R(G). A strategy A∗ of R(G) is finitely
representable iff for any path ω∗ of R(G) the value
of A∗(ω∗) depends only on the suffix of the length
k of ω∗ for a fixed k. An finitely representable
strategy A∗ of R(G) for the case k = 1 is called
simple strategy. Such a finitely representable
strategy will be represented by a graph with no
nondeterminism, complete probabilistic choices,
and fully embedded in R(G).

Definition 10. Given a finitely representable
strategy A∗. A graph representation of A∗ is a
deterministic Markov decision process G(A∗) =

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 69

(VA∗ , StepsA∗ , LA∗) which is embedded in the
region graph R(G) = (V∗, Steps∗, L∗) by a
mapping ρ, where ρ : VA∗ → V∗, and the
following conditions are satisfied:

• There is an initial node called v0, and
ρ(v0) = 〈s̄, 0〉,.

• G(A∗) is deterministic, i.e. StepsA∗(v) has
only one element, denoted by StepsA∗(v)
itself,

• LA∗(v) = L∗(ρ(v)) for all v ∈ VA∗

• Let StepsA∗(v) = (t, p), where p is a
distribution in µ(VA∗). The restriction of ρ
on {v′ ∈ VA∗ | p(v′) > 0} is an one-to-one
mapping, and the distribution ρp defined by
∀s ∈ V∗ • ρp(s) = max{p(v′) | ρ(v′) = s} (by
our convention, max ∅ = 0) is a distribution
in µ(V∗), and (t, ρp) ∈ Steps∗(ρ(v)).

Figure 3 shows the integral region graph
of Simple Gas Burner in Fig 1 and graph
representations for finitely representable
strategies A∗1 and A∗2. The embedding mapping ρ
maps a node in A∗1 and A∗2 to the node with the
same label in the integral region graph.

Regarding Item (c) of the condition for
applying the checking procedure, we have

Lemma 4. Given a graph representation of a
finitely representable strategy A∗, G(A∗) =

(VA∗ , StepsA∗ , LA∗). Given a finite set P of finite
paths of G(A∗). Let Ω be the set of all infinite
paths of G(A∗) starting from v0 which do not
include any path in P. The probability ProbA∗(Ω)
is computable.

Proof. Let ∆(v) be the set of all infinite paths
of G(A∗) starting from v which do not include
any path in P, A∗v be the strategy represented
by G(A∗) with v as initial node, and P(v) =

ProbA∗v (∆(v)). Let for each v, P(v) = {ω′′|ω′′ ∈

P and ω′′ starts from v}. Let v+ be the set of one-
step paths formed by outgoing edges of v. Then,
∆(v) satisfies: ∆(v) =

(∪e∈v+(e∆(last(e)))) \ (∪eω∈P(v)eω∆(last(ω))).

Although all paths in P are not nested in one
another, but some of them may overlap some
suffixes of ω for a given finite path ω. Let Pω
be the set of those such paths of P, Pω = {ω′ ∈

P|ω′ = xz and ω = yx for some paths x , ε, y, z}.
Then
ω∆(last(ω)) \ ∆(last(e)) =

∪ω′∈Pω(ω 	 ω′)ω′∆(last(ω′)),
where for ω = yx (x , ε) and ω′ = xz ∈ Pω
we define ω 	 ω′ = y. From the definition
of the functions ProbA∗v , v ∈ VA∗ it follows
ProbA∗last(e)(∆(last(e)) \ ω∆(last(ω))) =

ProbA∗last(e)(∆(last(e)))−
ProbA∗last(e)(ω∆(last(ω)))+
ProbA∗last(e)(∪ω′∈Pω(ω 	 ω′)ω′∆(last(ω′)))
Because all paths in P are not nested in one

another, for eω, eω′′ ∈ P(v) with ω , ω′′, we
have ω∆(last(ω)) ∩ ω′′∆(last(ω′′)) = ∅. For
simplicity, we assume that for ω′1, ω

′
2 ∈ Pω

with ω′1 , ω′2, (e(ω 	 ω′1)ω′1∆(last(ω′1))) ∩
(e(ω 	 ω′2)ω′2∆(last(ω′2))) = ∅. (without this
assumption, we have to modify the technique
a little). Therefore, the definition of ProbA∗n ,
n ∈ VA∗ implies
ProbA∗v (∆(v)) =∑

e∈v+ ProbA∗
f in(e)ProbA∗last(e)(∆(last(e)))−∑

eω∈P(v) ProbA∗
f in(eω)ProbA∗last(ω)(∆(last(ω)))) +∑

eω∈P(v)
∑
ω′∈Pω(ProbA∗

f in(e(ω 	 ω′)ω′)×

ProbA∗last(ω′)(∆(last(ω′)))) Let us denote
ProbA∗v (∆(v)) by P(v). This means that P(v),
v ∈ VA∗ satisfy:
P(v) =∑

e∈v+ ProbA∗
f in(e) ∗ P(last(e))−∑

ω∈P(v) ProbA∗
f in(ω) ∗ P(last(ω))+∑

eω∈P(v)
∑
ω′∈Pω ProbA∗

f in(e(ω 	

ω′)ω′)P(last(ω′)) and P(v) = 1 if no path
in P is reachable from v. These conditions form a
linear equation system for P(v), v ∈ VA∗ . Solving
it, we can find the value of P(v0) which is the
value of ProbA∗(Ω). 2

The following theorem follows immediately
from these lemmas.

Theorem 2. For a PDC formula Φ of the
form (1) where Ψ is a linear duration invariant,
it is decidable whether a finitely representable

70 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

integral strategy A of probabilistic timed
automaton G satisfies Φ at any time point t.

Decision Procedure 1. Given a PTA G, given
a finitely representable strategy A of MG, our
procedure to decide if A, t |=PDC Φ for all t ∈ R≥0,
where Φ = [Ψ]wλ, Ψ = 2Ψ1 and Ψ1 is an LDI,
consists of the following steps:

1. Construct the integral region graph R(G) for
G.

2. Construct the finitely representable strategy
A∗ of R(G) corresponding to A according to
Lemma 2.

3. Construct the set P of all paths R(G) that
corresponds to a a DC model that does not
satisfy Ψ1 (using the technique mentioned in
Lemma 3.

4. Find a graph representation of A∗ as
mentioned in Definition 10.

5. Let Ω be the set of all infinite paths
of G(A∗) starting from v0 which do not
include any path in P. Compute the
probability ProbA∗(Ω) using the technique in
Lemma 4.If this probability is greater than λ,
then the answer is positive. Otherwise, give
the negative answer.

Note that using the same techniques, the model
checking problem mentioned in Item 3 at the
beginning of this section is solvable for a PDC
formula Φ of the form (1) where Ψ is a formula
expressing the bounded liveness 2(dPe; ` > b ⇒
` ≤ b; dQe). In general, the problem is solvable
for the case that the set of paths of integral region
graph R(G) that correspond to a DC integral
model that does not satisfy Ψ is constructable. In
[10] we proposed some form for such formulas.
Example 4. Fig. 3 shows the integral region
graph R(G) of the simple gas burner in Fig. 1,
and Fig. 4 shows two strategies A∗1 and A∗2 of the
region graph. We will decide which one among
A∗1 and A∗2 satisfies the requirement R in Example
2 with a probability not lower than 0.6 using the
technique mentioned above.

Any infinite path ω of strategy A∗1 that goes
through the path
P1 = (s1, 0)(s1, 1)(s2, 1)(s2, 2) contains a model

1,1 1,1

0,1 0,1

1,1

0,0.8

0,1

s3,1 s3,2 s3,30 s3,>30

s1,0

s1,1

0,0.2

s2,1s2,2

0,1

1,1

*,1

Fig. 3: Integral Region Graph for Gas Burner.

that does not satisfy R. Indeed, ω containing
P1 should contain an interval with length 60 for
which the accumulated leakage time is at least
3 (3 > 2.4 = 4% ∗ 60). Any infinite path
ω of strategy A∗1 that does not contain P1 as a
sub path satisfies R in any interval. Using the
technique in the proof of Lemma 4, we have the
following system of linear equations P(〈s1, 0〉) =

P(〈s1, 1〉 − 1 ∗ 0.2 ∗ 1 ∗ P(〈s2, 2〉
P(〈s1, 1〉) = 0.8P(〈s3, 1〉) + 0.2P(〈s2, 1〉)
P(〈s2, 1〉) = P(〈s2, 2〉) = P(〈s3, 1〉) = . . .

= P(〈s1, 0〉) Solving this system, we get
P(〈s1, 0〉) = 0. Hence, we can conclude that A∗1
does not satisfies requirement [R]w0.6.

Now consider strategy A∗2. The linear equation
system for this case is: P(〈s1, 0〉) = P(〈s1, 1〉 −
1 ∗ 0.2 ∗ 1 ∗ P(〈s2, 2〉
P(〈s1, 1〉) = 0.8P(〈s3, 1〉) + 0.2P(〈s2, 1〉)
P(〈s2, 1〉) = P(〈s2, 2〉) = P(〈s3, 1〉) = . . .

= P(〈(s1, 0)(1)〉) = 1
Solving this equation system, we have

P(〈s1, 0〉) = 0.8. Hence, (A∗2, t) |=PDC [R]w0.8 for
all t ∈ R≥0.

Now we return to our general problem
mentioned at the beginning of this section. We
will solve this problem by analyzing the graph
R(G). Let A be the set of all strategies of R(G).
For A ∈ A let ∆A be the set of all infinite paths
of A starting from the initial vertex of R(G) that
do not include any path in P. Recall that in
general a strategy A∗ is represented as a tree, and
is embedded in the graph R(G) in the same way as

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 71

1,1

0,1

1,1

0,0.8

s3,1 s3,2 s3,30

s1,0

s1,1

0,0.2

s2,1s2,2

0,1
1,1

s2,1

(1)

(1)

(1) (1) (1)

adversary A*1

1,1

0,0.2

1,1

0,0.8

s3,1 s3,2 s3,30

s1,0

s1,1

s2,2

0,1
1,1

1,1

0,1

1,1

0,1

s3,1 s3,2 s3,30

s1,0

s1,1

0,1

1,1

0,0.2

1,1

0,0.8

s3,1 s3,2 s3,30

s1,0

s1,1

s2,2

0,1
1,1

1,1

0,1

1,1

0,1

s3,1 s3,2 s3,30

s1,0

s1,1

0,1

adversary A*2

Fig. 4: Strategies A∗1 and A∗2.

in Definition 10. Hence, we can identify a node
and a path in A∗ with a node and a path in R(G)
respectively.

For any strategy A∗ a node v of A∗ is said to be
k-similar to a node v′ of A∗ iff any outgoing path
with the length k of v is the same (when embedded
to R(G)) as an outgoing path with the length k of
v′ and vice-versa. Since R(G) is a finite graph,
the number of subtrees representing probabilistic
choices with the height k is finite. Hence
the k-similarity relation between nodes of A∗

has finite index.

Let PA∗(v) be the probability of the set of all
infinite paths of A∗ starting from the node v of the
tree representation of A∗ which do not include any
path in P (with condition that the current node is
v). Let for each node v in A∗, P(v) and Pω be
defined as in the proof of Lemma 4. Let v+

A∗ be
the set of one-step paths of A∗ formed by outgoing
edges of v in the graph R(G). Similar to the proof
of Lemma 4, PA∗(v) satisfies:
PA∗(v) =

∑
e∈v+

A∗
ProbA∗

f in(e) ∗ PA∗(last(e))−∑
ω∈P(v) ProbA∗

f in(ω) ∗ PA∗(last(ω))+
ProbA∗v (∪eω∈P(v)∪ω′∈Pω (e(ω	ω′)ω′)∆(last(ω′)))

Let k = 1 + max{1, 2|ω| |ω ∈ P}. From
these conditions, we have that if nodes v and
v′ are k-similar then PA∗(v) = PA∗(v′). Hence,
we can replace v by its equivalence class of the
k-similarity relation, and get a finite equation
system which is the same as the one for some
k-finitely representable strategy B∗. Therefore,
PA∗(v0) = PB∗(v′0) where v0 and v′0 are the root
of A∗ and B∗ respectively. Consequently, for any
strategy A∗, there is a k-finitely representable B∗

such that PA∗(v0) = PB∗(v′0). This ensures that
inf{ProbA(∆A) | A ∈ A} = min{ProbA(∆A) | A ∈
Ak} where Ak denotes the set of all k-finitely
representable strategies inA.

Because Ak is a finite set, we can use the
technique in Lemma 4 to find ProbA(∆A) for all
A ∈ Ak, and then compute min{ProbA(∆A) | A ∈
Ak}. We formulate this result as the
following theorem.

Theorem 3. For a PDC formula Φ of the
form (1) where Ψ is a linear duration invariant, it
is decidable whether Φ is satisfied by all integral
strategies of a probabilistic timed automaton G at
any time point.

72 V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73

The decision procedure of this theorem is
formulated as follows.
Decision Procedure 2. Given a PTA G, our
procedure to decide if A, t |=PDC Φ for all finitely
representable strategies A ofMG, for all t ∈ R≥0,
where Φ = [Ψ]wλ, Ψ = 2Ψ1 and Ψ1 is an LDI,
consists of the following steps:

1. Construct the integral region graph R(G)
for G.

2. Construct the set P of all paths R(G) that
corresponds to a a DC model that does not
satisfy Ψ1 (using the technique mentioned in
Lemma 3. Let k = 1 + max{1, 2|ω| |ω ∈ P}.

3. Construct the finite set Ak of all k-finitely
representable strategies inA.

4. For each A ∈ Ak, find ProbA(∆A) using
Lemma 4, where ∆A be the set of all infinite
paths of A starting from the initial vertex of
R(G) that do not include any path in P.

5. Compute min{ProbA(∆A) | A ∈ Ak}. If
this probability is greater than λ, then the
answer is positive. Otherwise, give the
negative answer.

This procedure also helps to solve the strategy
synthesis problem. Namely, if we can find a
strategy A ∈ Ak such that ProbA(∆A) is greater
than λ, then such a strategy is a solution for the
strategy synthesis problem. Therefore, we have:

Theorem 4. Given a PTA G and a PDC formula
Φ = [Ψ]wλ, where Ψ is an LDI, we can decide
if there exists a finitely representable strategy A
such that A, t |=PDC [Ψ]wλ for all t, and in the
case such a strategy exists, we can find it.

5. Conclusion

We have presented the problem of checking
probabilistic timed automata against probabilistic
duration calculus formulas. The problem is
decidable for a class of PDC formulas of the
form [Ψ]wλ where Ψ is a linear duration invariant,
or a DC formula for bounded liveness. The
technique for model checking is an extension of
our techniques for checking if a timed automaton
satisfies a linear duration invariant using a

searching method in the integral region graph
of the timed automaton. The complexity of the
decision procedure is high in general. Since the
problem possesses a potential high complexity,
we have not implemented the technique yet.
Hope that with the increasing computing power
in the future, we can develop an effective tool
for model-checking based on the technique. At
the mean time, we are looking for some special
cases of the problem which are simpler and still
useful for which our technique can work well, and
then implement it as a tool to assist checking the
dependability for embedded systems.

References

[1] Z. Chaochen, C. Hoare, A. P. Ravn, A calculus
of durations, Information Processing Letters 40 (5)
(1992) 269–276.

[2] C. Zhou, M. R. Hansen, Duration Calculus: A Formal
Approach to Real-Time Systems, Springer-Verlag,
2004.

[3] L. Zhiming, A. Ravn, E. Sorensen, Z. Chaochen,
Towards a Calculus of Systems Dependability, Journal
of High Integrity Systems 1 (1) (1994) 49–65.

[4] D. V. Hung, Z. Chaochen, Probabilistic duration
calculus for continuous time, Formal Asp. Comput.
11 (1) (1999) 21–44.

[5] D. P. Guelev, Probabilistic interval temporal logic and
duration calculus with infinite intervals: Complete
proof systems, Logical Methods in Computer Science
3 (3).

[6] D. P. Guelev, D. V. Hung, Reasoning about qos
contracts in the probabilistic duration calculus, Electr.
Notes Theor. Comput. Sci. 238 (6) (2010) 41–62.

[7] C. Zhou, Linear duration invariants, in: Formal
Techniques in Real-Time and Fault-Tolerant Systems,
Third International Symposium Organized Jointly
with the Working Group Provably Correct Systems
- ProCoS, Lübeck, Germany, September 19-23,
Proceedings, 1994, pp. 86–109.

[8] M. Zhang, D. V. Hung, Z. Liu, Verification of linear
duration invariants by model checking CTL properties,
in: J. S. Fitzgerald, A. E. Haxthausen, H. Yenigün
(Eds.), Theoretical Aspects of Computing - ICTAC
2008, 5th International Colloquium, Istanbul, Turkey,
September 1-3, 2008. Proceedings, Vol. 5160 of
Lecture Notes in Computer Science, Springer, 2008,
pp. 395–409.

[9] P. H. Thai, D. V. Hung, Verifying linear duration
constraints of timed automata, in: Z. Liu, K. Araki
(Eds.), Theoretical Aspects of Computing - ICTAC
2004, First International Colloquium, Guiyang, China,
September 20-24, 2004, Revised Selected Papers, Vol.

V. H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 1 (2016) 58–73 73

3407 of Lecture Notes in Computer Science, Springer,
2004, pp. 295–309.

[10] J. Zhao, D. V. Hung, Checking timed automata for
linear duration properties, J. Comput. Sci. Technol.
15 (5) (2000) 423–429.

[11] C. Changil, D. V. Hung, On verification of linear
occurrence properties of real-time systems, Electr.
Notes Theor. Comput. Sci. 207 (2008) 107–120.

[12] M. Kwiatkowska, G. Norman, R. Segala, J. Sproston,
Automatic verification of real-time systems with
discrete probability distributions, Theoretical
Computer Science 282 (1) (2002) 101–150.

[13] M. Kwiatkowska, D. Parker, Automated verification
and strategy synthesis for probabilistic systems, in:
D. V. Hung, M. Ogawa (Eds.), Automated Technology
for Verification and Analysis, 11th International
Symposium, ATVA 2013, Vol. 8172 of LNCS,
Springer, 2013, pp. 5–22.

[14] D. V. Hung, M. Zhang, On verification of probabilistic

timed automata against probabilistic duration
properties, in: 13th IEEE International Conference
on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2007), 21-24 August 2007,
Daegu, Korea, 2007, pp. 165–172.

[15] C. Baier, M. Kwiatkowska, Model Checking for a
Probabilistic Branching Time Logic with Fairness,
Distributed Computing 11 (3) (1998) 125–155.

[16] R. Alur, D. Dill, A Theory of Timed Automata,
Theoretical Computer Science (1994) 183–235.

[17] M. R. Hansen, C. Zhou, Duration calculus: Logical
foundations, Formal Aspects of Computing 9 (1997)
283–330.

[18] Z. Chaochen, H. M. R., S. P, Decidability and
Undecidability Results in Duration Calculus, in: Proc.
of the 10th Annual Symposium on Theoretical Aspects
of Computer Science (STACS 93), no. 665 in LNCS,
Springer Verlag, 1993.

