
VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

Original Article

Silent Vulnerability-fixing Commit Identification Based on
Graph Neural Networks

Hieu Dinh Vo∗, Trong Thanh Vu, Son Nguyen
VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 13 September 2023
Revised 28 November 2023; Accepted 28 March 2024

Abstract: In this paper, we present VFFinder, a novel graph-based approach for automated silent
vulnerability fix identification. To precisely capture the meaning of code changes, the changed code is
represented in connection with the related unchanged code. In VFFinder, the structure of the changed
code and related unchanged code are captured and the structural changes are represented in annotated
Abstract Syntax Trees (αAST). VFFinder distinguishes vulnerability-fixing commits from non-fixing
ones using attention-based graph neural network models to extract structural features expressed in
αASTs. We conducted experiments to evaluate VFFinder on a dataset of 11K+ vulnerability fixing
commits in 507 real-world C/C++ projects. Our results show that VFFinder significantly improves
the state-of-the-art methods by 272–420% in Precision, 22–70% in Recall, and 3.2X–8.2X in F1.
Especially, VFFinder speeds up the silent fix identification process by up to 121% with the same
effort reviewing 50K LOC compared to the existing approaches.

Keywords: Silent vulnerability fixes, vulnerability fix identification, code change representation,
graph-based model.

1. Introduction

With the escalating dependence of software
projects on external libraries, ensuring their secu-
rity has emerged as an imperative priority. Vul-
nerabilities hidden within these libraries can have
far-reaching consequences, as exemplified by the
infamous Log4Shell exploit. One critical chal-
lenge in addressing these vulnerabilities is the

∗Corresponding author.
E-mail address: hieuvd@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.1432

time gap between their fixes and public disclo-
sures [1]. For instance, the Log4Shell vulnera-
bility’s resolution was introduced four days prior
to its public revelation. Another illustration in-
volves the Apache Struts Remote Code Execution
vulnerability1, which led to the Equifax breach
in 2017, was disclosed in August 2018, but was
patched in June 20182. This two-month window
provides ample opportunity for the potential ex-
ploitation of vulnerable software. If the library’s

1https://nvd.nist.gov/vuln/detail/CVE-2018-11776
2https://github.com/apache/struts/commit/6e87474

47

48 H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

users are aware of the potential exploitation, they
can prevented it by updating to the latest version
of the component.

Despite the importance of the vulnerability
fix identification task in open-source libraries,
only a very small portion of maintainers file for
a Common Vulnerability Enumeration (CVE) ID
after releasing a fix, while 25% of open-source
projects silently fix vulnerabilities without dis-
closing them to any official repository [2, 3].
This situation raises concerns about the visibil-
ity and proactive management of vulnerabilities
within the software ecosystem. The open-source
libraries’ users rely on several tools and public
vulnerability datasets like the Open Web Appli-
cation Security Project or National Vulnerability
Database (NVD). However, CVE/NVD and pub-
lic databases miss many vulnerabilities [3].

To address this problem, several vulnerabil-
ity fix identification techniques have been pro-
posed. Following the good practice of coordi-
nated vulnerability disclosure [1], the related re-
sources of commits, such as commit messages or
issue reports, should not mention any security-
related information before the public disclosure
of the vulnerability. Thus, silent fix identifica-
tion methods must not leverage these resources to
classify commits [4–6]. The state-of-the-art tech-
niques, such as VulFixMiner [4], CoLeFunDa [6],
and Midas [5], represent changes in the lexical
form of code and apply CodeBERT [7] to capture
code changes semantics and determine if they are
vulnerability-fixing commit or not. Meanwhile,
the existing studies have shown that the seman-
tics of code changes could be captured better in
the tree form of code [8].

This paper, which is the extended version
of our previous conference paper [9], proposes
VFFinder, a novel graph-based approach for
automated vulnerability fix identification. Our
idea is to capture the semantic meaning of code
changes better, we represent changed code in con-
nection with the related unchanged code and ex-
plicitly represent the changes in code structure.

Particularly, for a commit c, the code version be-
fore (after) c is analyzed to identify the code nec-
essary for representing the code change, which
is the deleted (added) lines of code and their re-
lated unchanged lines of code. After that, the
structure of the necessary code of the changes
in c is represented by the Abstract Syntax Trees
(ASTs). These ASTs are mapped to build an an-
notated AST (αAST), a fine-grained graph repre-
senting the changes in the code structure caused
by c. In αASTs, all AST nodes and edges are
annotated added, deleted, and unchanged to ex-
plicitly express the changes in the code struc-
ture. To learn the meanings of code changes
expressed in αASTs, we develop a graph at-
tention network model [10] to extract semantic
features. Then, these features are used to dis-
tinguish vulnerability-fixing commits from non-
fixing ones. Compared with the previous paper
[9], this paper provides a more comprehensive
example for αASTs and more experiment results
which are conducted on a much larger dataset.

We conducted several experiments to eval-
uate VFFinder’s performance on a dataset con-
taining 100K+ commits (with 11K+ vulnerabil-
ity fixing commits) extracted from 507 real-world
C/C++ projects. Our experiment results show
that VFFinder significantly improves the state-of-
the-art techniques [4, 5, 11, 12] by 272–420% in
Precision, 22–70% in Recall, and 3.2X–8.2X in
F1. Especially, VFFinder speeds up the silent fix
identification process up to 121% with the same
review effort reviewing 50K lines of code (LOCs)
(0.02% of the total changed LOCs) compared to
the existing approaches [4, 5, 11, 12].

In brief, our contributions are:

1. VFFinder: A novel graph-based approach
for identifying silent vulnerability fixes.

2. Extensive experiments which show that the
performance of VFFinder is much better
than those of the state-of-the-art methods for
vulnerability-fix identification.

H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59 49

Figure 1. A commit deleting a line of code and
adding another to fix a buffer overflow vulnerability.

The rest of this paper is organized as follows.
Section 2 describes our novel code change repre-
sentation. The graph-based vulnerability fix iden-
tification model is introduced in Section 3. Af-
ter that, Section 4 states our evaluation methodol-
ogy. Section 5 presents the experimental results
following the introduced methodology and some
threats to validity. Section 6 provides the related
work. Finally, Section 7 concludes this paper.

2. Code Change Representation

Essentially, vulnerability fixing commits tend
to correct the vulnerable code which already
exists in repositories. Thus, to precisely cap-
ture the semantics of code changes, besides the
changed parts, the unchanged code is also neces-
sary [13, 14]. Indeed, the unchanged code could
connect the related changed parts and help to un-
derstand the code changes as a whole. Addition-
ally, once changed statements are introduced to
a program, they change the program’s behaviors
by interacting with the unchanged statements via
certain code relations such as control/data depen-
dencies. Hence, precisely distinguishing similar
changed parts could require their relations with
the unchanged parts. In Figure 1, the unchanged
parts, including lines 3 and 5 in both the versions
before and after the commit, are necessary for un-
derstanding the meaning of the changed code.

Thus, for a commit, we additionally consider
the code statements that are semantically related
to the changed statements in the versions (vb and
va) before and after the commit. Particularly, the

considering statements in vb are the deleted state-
ments and the related ones via control and data
dependencies in vb, while the added statements
and their related ones via control and data depen-
dencies in va are considered. These statements
in vb and va are analyzed to construct correspond-
ing Abstract Syntax Trees (ASTs) and capture the
structural changes in an Annotated AST - αAST .

Definition 1 (Annotated AST - αAST). For a
commit changing code from one version (vb)
to another (va), the annotated abstract syntax
tree (annotated AST) is an annotated graph con-
structed from the ASTs of vb and va. Formally,
for AS To = ⟨Nb, Eb⟩ and AS Tn = ⟨Na, Ea⟩ which
are the ASTs of vb and va, respectively, the αAST
T = ⟨N ,E, α⟩ is defined as followings:

• N consists of the AST nodes in the old ver-
sion and the new version, N = Nb ∪ Na.

• E is the set of the edges representing the
structural relations between AST nodes in
AS To and AS Tn, E = Eb ∪ Ea.

• Annotations for nodes and edges in T are
either unchanged, added, or deleted by the
change. Formally, α(g) ∈ {unchanged,
added, deleted}, where g is a node in N or
an edge in E:

– α(g) = added if g is a node and g ∈
Na \Nb, or g is an edge and g ∈ Ea \Eb

– α(g) = deleted if g is a node and g ∈
Nb \Na, or g is an edge and g ∈ Eb \Ea

– Otherwise, α(g) = unchanged

Figure 2 shows ASTs of the versions before
and after the commit shown in Figure 1. The
annotated AST constructed from these ASTs is
shown in Figure 3. The αAST expresses the
change in the structure of the code. Particu-
larly, the right-hand-side of the less-than ex-
pression (2*BUF_SIZE) is replaced by expression
BUF_SIZE. The αAST also expresses the structure
of the related unchanged statements, which clar-
ify the meaning of the changed code.

50 H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

Figure 2. The ASTs of the versions before and after the commit shown in Figure 1.

Figure 3. The αAST corresponding to the commit
shown in Figure 1.

3. Vulnerability-Fix Identification Model

Figure. 4 illustrates the overview of
VFFinder for vulnerability fix identification.
First, the given commits and their repositories
are used to construct their corresponding αASTs
(Change representation). To construct αASTs,
the code versions before and after commits must
be syntactically valid. This could be checked
by directly applying code parsers for the code.
Each AST node in αASTs is embedded in the
corresponding vectors (Embedding). After that, a
Graph Neural Network (GNN) is applied to ex-
tract structural features from constructed αASTs
(Feature extraction). Finally, the extracted struc-

tural features are used for learning and predicting
vulnerability-fixing commits (Prediction).

Particularly, in the Embedding step, for each
αAST , T = ⟨N ,E, α⟩, every node in N is
embedded into d-dimensional hidden features
ni produced by embedding the content of the
nodes. Constructing the vectors for nodes’ con-
tent could be done by applying code embedding
techniques [7, 15–18]. In this work, we use
Word2vec [17], one of the most popular code em-
bedding techniques for code [18]. The reason is
that the number of AST nodes in αASTs could be
huge. Thus, for a practical embedding step for
αASTs, we apply Word2vec, which is known as
an efficient embedding technique [18]. Then, to
form the node feature vectors, the node embed-
ding vectors are annotated with the change opera-
tors (added, deleted, and unchanged) by concate-
nating corresponding one-hot vector of the oper-
ators to the embedded vectors, h0

i = [ni||α(ni)],
where || is the concatenation operation and α re-
turns the one-hot vector corresponding the anno-
tation of node i.

In the Feature Extraction step, from each
αAST , T = ⟨N ,E, α⟩, we develop a Graph At-
tention Network (GAT) [10] model to extract the
structural features H. Particularly, the embedded
vectors of the nodes from the Embedding step are
fed to a GAT model. Each GAT layer computes

H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59 51

Figure 4. Graph-based Vulnerability-fix Identification Model.

the representations for the graph’s nodes through
message passing [10, 19], where each node gath-
ers features from its neighbors to represent the
local graph structure. Stacking L layers allows
the network to build node representations from
each node’s L-hop neighborhood. From the fea-
ture vector hi of node i at the current layer, the
feature vector h′i at the next layer is:

h′i = σ

∑
j∈Ni

αi jWh j

where W is a learnable weight matrix for fea-
ture transformation, Ni is the set of neighbor in-
dices of node i including node i itself via self-
connection, which is a single special relation
from node i to itself. σ is a non-linear activation
function such as ReLU. Meanwhile, αi j specifies
the weighting factor (importance) of node j’s fea-
tures to node i. αi j could be explicitly defined
based on the structural properties of the graph or
learnable weight [19, 20]. In this work, we im-
plicitly define αi j based on node features [10] by
employing the self-attention mechanism, where
unnormalized coefficients Ei j for pairs of nodes
i, j are computed based on their features:

Ei j = LeakyReLu(aT · [Whi||Wh j]),

where || is the concatenation operation and a is
a parametrizing weight vector implemented by
a single-layer feed-forward neural network. Ei j

indicates the importance of node j’s features to
node i. The coefficients are normalized across all

choices of j using the softmax function:

αi j = softmax j(Ei j) =
exp(Ei j)∑

k∈Ni exp(Eik)

After L GAT layers, a d-dimensional graph-level
vector representation H for the whole CTG T =
⟨N ,E, α⟩ is built by averaging over all node fea-
tures in the final GAT layer, H = 1

|N|

∑
i∈[1,|N|] hL

i .
Finally, in the Prediction step, the graph features
are then passed to a Multilayer perceptron (MLP)
to classify if αAST T is a fixing commit or not.

4. Evaluation Methodology

To evaluate our vulnerability-fixing commit
identification approach, we seek to answer the
following research questions:
RQ1: Accuracy and Comparison. How ac-
curate is VFFinder in identifying vulnerability-
fixing commits? And how is it compared to the
state-of-the-art approaches [4, 5]?
RQ2: Intrinsic Analysis. How do the consid-
eration of related unchanged code and the GNN
model in VFFinder impact VFFinder’s perfor-
mance?
RQ3: Sensitivity Analysis. How do various fac-
tors of the input, including training data size and
changed code complexity, affect VFFinder’s per-
formance?
RQ4: Time Complexity. What is VFFinder’s
running time?

4.1. Dataset
In this work, we collect the vulnerability-

fixing commits from various public vulnerability

52 H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

datasets [21–23]. In total, we collected the com-
mits in real-world 507 C/C++ projects, including
about 11K fixing commits for the vulnerabilities
reported from 1990 to 2022. Table 1 shows the
overview of our dataset3.

4.2. Procedure
For RQ1. Accuracy and Comparison, we

compared VFFinder against the state-of-the-art
vulnerability-fix identification approaches:

1) MiDas [5] establishes distinct neural net-
works for varying levels of code change granular-
ity, encompassing commit-level, file-level, hunk-
level, and line-level alterations, aligning with
their inherent categorization. It employs an en-
semble model that amalgamates all foundational
models to produce the ultimate prediction.

2) VulFixMiner [4] and CoLeFunDa [6]
use CodeBERT to automatically represent code
changes and extract features for identifying vul-
nerability fixes. However, as the implementation
of CoLeFunDa has not been available, we cannot
compare VFFinderwith CoLeFunDa. This is also
the reason that Zhou et al. was not able to com-
pare MiDas with CoLeFunDa in their study [5].

Additionally, we applied the same procedure,
adapting the state-of-the-art just-in-time defect
detection techniques for vulnerability-fix identi-
fication as in Midas et al. [5]. In this work, the
additional baselines include:

3) JITLine [12]: A simple but effective
method utilizing changed code and expert fea-
tures to detect buggy commits.

4) JITFine [11]: A DL-based approach ex-
tracting features of commits from changed code
and commit message using CodeBERT as well as
expert features.

Note that we did not utilize commit messages
when adapting JITLine and JITFine for silent vul-
nerability fix identification in our experiments.
For VFFinder, we set the number of GNN layers
L = 2 for a practical evaluation.

3https://github.com/UETISE/VFFinder

In this comparative study, we consider the
impact of time on the approaches’ performance.
Particularly, we divided the commits into those
before and after the time point t. The commits
before t were used for training, while the com-
mits after t were used for evaluation. We selected
a time point t to achieve a random training/test
split ratio of 80/20 based on time. Specifically,
the commits from Aug 1998 to Mar 2017 are used
for training, and the commits from Apr 2017 to
Aug 2022 are for evaluation.

However, the vulnerability-fixing commits
account for a very small proportion of the whole
dataset, about 0.3%. Consequently, the ap-
proaches work on a severely imbalanced classi-
fication dataset. This causes poor performance of
classification approaches for the vulnerability de-
tection task [24]. To mitigate this issue, Yang et
al. have recommended under-sampling for train-
ing classification models [24]. Thus, we applied
under-sampling for all the considered approaches
for a fair comparison.

For the testing dataset, the number of
commits from Apr 2017 to Aug 2022 is
huge, 2,462,900 commits, including only 2,828
vulnerability-fixing commits. We applied the
approaches to the set containing all the fixing
commits and the set of non-vulnerability-fixing
commits manageable for all the considering ap-
proaches given our hardware resources. Specif-
ically, we considered the testing dataset contain-
ing 2,828 vulnerability-fixing commits and about
80K+ non-fixing commits (Table 1). In our
dataset, there are about 2,600 changed LOC in
a commit on average, while the largest number
of changed LOC is about 101K. Additionally, we
applied the same procedure in the existing work
by Zhou et al. [23] to project the relative compar-
ison trend for the approaches with the real-world
non-fix/fix ratio.

For RQ2. Intrinsic Analysis, we inves-
tigated the impact of the consideration of re-
lated unchanged parts and the GNN model on
VFFinder’s performance. We used different vari-

H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59 53

Table 1. Dataset statistics

Phase #Time #Fixes #Non-fixes #Changed LOCs

Training Aug 1998 – Mar 2017 8,471 8,471 3,869,454
Testing Apr 2017 – Aug 2022 2,828 86,395 271,182,635

Total Aug 1998 – Aug 2022 11,299 94,866 275,052,089

ants of αAST and graph neural networks such
as GAT [10], GCN [19], GIN [25], and Graph-
SAGE [26] to study the impact of those factors
on VFFinder’s performance.

For RQ3. Sensitivity Analysis, we studied
the impacts of the training size and change size in
the number of changed LOC on the performance
of VFFinder. To systematically vary these fac-
tors, we gradually added more training data and
varied the range of the change size.

4.3. Metrics
Essentially, the task of vulnerability fix iden-

tification could be considered as a binary classifi-
cation task. Thus, to evaluate the vulnerability fix
identification approaches, we measure the classi-
fication accuracy, AUC (Area Under Curve), pre-
cision, and recall, as well as F1, which is a har-
monic mean of precision and recall. Particularly,
the classification accuracy (accuracy for short) is
the fraction of the (fixing and non-fixing) com-
mits that are correctly classified among all the
tested commits. AUC represents the area under
the curve that plots the True Positive Rate (Sensi-
tivity) against the False Positive Rate (1 - Speci-
ficity) for various threshold settings. For detect-
ing fixing commits, precision is the fraction of
correctly detected fixing commits among the de-
tected fixing commits, while recall is the fraction
of correctly detected fixing commits among the
fixing commits. Formally precision = T P

T P+FP
and recall = T P

T P+FN , where T P is the number
of true positives, FP and FN are the numbers of
false positives and false negatives, respectively.
F1 is calculated as F1 = 2×precision×recall

precision+recall . Ad-
ditionally, we also applied a cost-aware perfor-

mance metric, CostEffort@L (CE@L), which is
used in [4, 5]. CE@L counts the number of de-
tected vulnerability-fixing commits, starting from
commit with high to low predicted probabilities
until the number of lines of code changes reaches
L lines of code (LOCs). In this work, we consid-
ered, C@50K, L = 50, 000, about 0.02% of the
total changed LOCs in our dataset, for simplicity.

5. Experimental Results

5.1. Performance Comparison (RQ1)

Table 2 shows the performance of VFFinder
and the state-of-the-art vulnerability-fix identifi-
cation approaches. As can be seen, VFFinder
significantly outperforms the state-of-the-art
vulnerability-fix identification approaches. Par-
ticularly, the VFFinder achieves a recall of 0.99.
In other words, 99/100 vulnerability fixing com-
mits are correctly identified by VFFinder, which
is more than 22–70% better than the recall
rates of the existing approaches. Additionally,
VFFinder is still much more precise than the
existing approaches with about 272–420% im-
provement in the precision rate. These show that
VFFinder can not only find more vulnerability-
fixing commits but also provide much more pre-
cise predictions.

Furthermore, the CE@50K of VFFinder is
71%, which is 83-121% better than the cor-
responding figures of MiDas and VulFixMiner.
This means that given the effort reviewing 50K
LOC, the number of the fixing commits found by
using VFFinder is much larger compared to those
found by using MiDas and VulFixMiner.

54 H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

Table 2. Comparison Results

Approach Pre. Rec. F1 Acc. AUC CE@50K

JITLine 0.06 0.66 0.11 0.72 0.66 0.35
JITFine 0.07 0.81 0.13 0.65 0.80 0.39

VulFixMiner 0.05 0.05 0.05 0.62 0.65 0.32
MiDas 0.06 0.63 0.11 0.67 0.70 0.34

VFFinder 0.26 0.99 0.41 0.91 0.98 0.71

Figure 5. The performance of VFFinder and the
existing approaches in different imbalance degrees

(non-fix/fix rates)

As seen in Table 2, the AUCs of the ap-
proaches are quite high, while the corresponding
F1 scores are low. The reason is that the high
AUCs result from our imbalanced dataset, where
negative samples (non-fixing commits) signifi-
cantly outnumber positive ones (fixing commits).
In such cases, the AUCs are inflated by a surplus
of true negatives, leading to a high false posi-
tive rate. Consequently, the F1 score remains low
due to the challenge of capturing true positives
in the context of imbalanced data. It is crucial
to recognize that the effectiveness of the classifier
might vary across different thresholds, and opti-
mizing solely for AUC may not guarantee a well-
performing model (with high F1) [27]. This phe-
nomenon also happens in cases of fraud detection
prediction, where the positive samples - the ones
we are interested in - do not occur as many times
as the negatives (the negatives are too high).

To project the approaches’ performance on
the real-world non-fix/fix rate, we investigated
their performance on various datasets with differ-
ent rates of fixing and non-fixing commits (Fig-
ure 5). As seen, all the approaches perform worse
when the proportion of non-fixing commits in-
creases. VFFinder’s F1 declines about 56% when
testing on the dataset with the non-fix/fix rates
from 1:1 to 30:1. This phenomenon occurs for
all the vulnerability-fix identification approaches.
However, the performance of the existing ap-
proaches declines much faster than VFFinder’s
performance. Indeed, the other approaches’ per-
formance declines from 83–85%. Furthermore,
VFFinder performs much better than the existing
approaches for all the considered rates.

Overall, VFFinder is more effective than the
state-of-the-art approaches in identifying vulner-
ability fixes. This confirms our strategy explicitly
representing the code structure changes and using
graph-based models to extract features for vulner-
ability fix identification.

5.2. Intrinsic Analysis (RQ2)
To investigate the contribution of the related

unchanged code in αAST , we used two variants
of αAST: one considering both changed lines and
unchanged lines (αAST), the other considering
only changed lines (α̂AST). Table 3 shows the
performance of VFFinder using the two αAST
variants: VFFinderαAST and VFFinder

α̂AST . For
simplicity, in this experiment, we used the same
GAT model for both representation variants and
the dataset with the non-fix/fix rate of 1:1.

H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59 55

As seen, additionally considering the related
unchanged lines along with changed lines in
αAST significantly improves the performance of
VFFinder using αAST with only changed lines.
Particularly, VFFinderαAST achieves an equiva-
lent recall rate but a much better precision rate,
which is 21% higher than that of VFFinder

α̂AST .
The related unchanged code provides valuable in-
formation and helps the model not only under-
stand code changes more precisely but also dis-
cover more vulnerability-fix patterns. This con-
firms our observation 2 on the important role of
related unchanged code.

In order to investigate the impact of differ-
ent GNN models on the vulnerability-fix iden-
tification performance, we compare three vari-
ants of graph neural networks: VFFinder with
GCN [19], GAT [10], GIN [25], and Graph-
SAGE [26]. In this experiment, we use the
dataset with the non-fix/fix rate of 1:1 for sim-
plicity. The results of those four variants are
shown in Table 4. As expected, VFFinder ob-
tains quite stable performance with the F1 of
0.88–0.91 and the accuracy of 0.87–0.90. More-
over, while VFFinder obtains quite similar re-
call with GCN, GAT, GIN, and GraphSAGE, it
archives the highest precision, yet lowest recall
with GAT. Thus, lightweight relational graph neu-
ral networks such as GCN [19] should be applied
to achieve cost-effective vulnerability-fix identifi-
cation performance.

5.3. Sensitivity Analysis (RQ3)

To measure the impact of training data size on
VFFinder’s performance. In this experiment, the
training set is randomly separated into five folds.
We gradually increased the training data size by
adding one fold at a time until all five folds were
added for training. In this experiment, we used
GAT and the dataset with the non-fix/fix rate of
1:1. Figure 6 shows VFFinder’s performance is
improved when expanding the training dataset.
The precision, recall, and F1 increase by more
than 30% when the training data expands from

Figure 6. Impact of training data size on VFFinder’s
performance.

one fold to five folds. The reason is that with
larger training datasets, VFFinder has observed
more and performs better. However, the training
time of VFFinder with five folds is about 4.53
more than that with a fold.

Additionally, we investigate the sensitivity of
VFFinder’s performance on the input size in the
number of changed (i.e., added and deleted) lines
of code (LOCs) (Fig. 7). As seen, there are
much fewer commits with a larger number of
changed LOCs. The precision of VFFinder is
quite stable when handling commits in different
change sizes. Particularly, VFFinder’s F1 slightly
varies between 0.88 and 0.89 when increasing the
change size from 1 to 500 changed LOC. For
the fixing commits changing a large part of code,
VFFinder can still effectively identify with the
recall of 0.73 and the precision of 0.84. Addi-
tionally, VFFinder’s F1 for the vulnerability fix-
ing commits having more than 500 changed LOC
is only about 10% lower than VFFinder’s perfor-
mance for other vulnerability fixing commits.

5.4. Time Complexity (RQ3)

In this work, all our experiments were run on
a server running Ubuntu 18.04 with an NVIDIA
Tesla P100 GPU. In VFFinder, training the model
took about 4–6 hours for 50 epochs. Additionally,
VFFinder spent 1–2 seconds to classify whether
a commit is a fixing commit or not.

56 H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

Table 3. Impact of related unchanged code

Pre. Rec. F1 Acc. AUC

VFFinderαAST 0.8 0.97 0.88 0.87 0.85
VFFinder

α̂AST 0.66 0.97 0.78 0.73 0.74

Table 4. Impact of GNN Models

Pre. Rec. F1 Acc. AUC

GCN [19] 0.84 0.98 0.90 0.90 0.90
GAT [10] 0.80 0.97 0.88 0.87 0.85
GIN [25] 0.81 0.99 0.89 0.88 0.91

GraphSAGE [26] 0.85 0.97 0.91 0.90 0.91

Figure 7. Impact of change size (left axis: Precision
and Recall; right axis: No. of commits)

5.5. Threats to Validity
The main threats to the validity of our work

consist of internal, construct, and external threats.
Threats to internal validity encompass the

potential impact of the adopted method for build-
ing Abstract Syntax Trees (ASTs). To mitigate
this challenge, we employ the extensively recog-
nized code analyzer Joern [28]. Another threat
lies in the correctness of the implementation of
our approach. To reduce such a threat, we care-
fully reviewed our code and made it public 4 so
that other researchers can double-check and re-
produce our experiments.

4https://github.com/UETISE/VFFinder

Threats to construct validity relate to the
suitability of our evaluation procedure. We
used precision, recall, F1, AUC, accuracy, and
CostEffort@L. They are the widely-used evalu-
ation measures for vulnerability fix identification
and just-in-time defect detection [4, 5, 11, 12]. In
addition, a threat may come from the adaptation
of the baselines. To mitigate this threat, we di-
rectly obtain the original source code from their
GitHub repositories or replicate exactly their de-
scription in the paper [4, 5]. Also, we use the
same hyper-parameters specified in the original
papers [5, 11, 12, 29].

Threats to external validity mainly lie in
the selection of graph neural network models
employed in our experiments. To mitigate this
threat, we have chosen widely recognized mod-
els with established track records in natural lan-
guage processing and software engineering do-
mains [10, 19, 25, 26]. Moreover, our experi-
ments are conducted on only the code changes of
C/C++ projects. Thus, the outcomes may not be
universally applicable to different programming
languages. To overcome this limitation, our fu-
ture research agenda involves performing addi-
tional experiments to validate the findings across
various programming languages that belong to
different paradigms.

H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59 57

6. Related Work

VFFinder directly relates to the vulnerabil-
ity fix identification works. Representative works
in this directions are VulFixMiner [4] and CoLe-
FunDa [6]. These tools utilize CodeBERT to au-
tomatically represent code changes and extract
features for identifying vulnerability-fixing com-
mits. On the other hand, Midas [5] constructs
different neural networks for each level of code
change granularity, corresponding to commit-
level, file-level, hunk-level, and line-level, fol-
lowing their natural organization. It then utilizes
an ensemble model that combines all base models
for the final prediction.

VFFinder also relates to the work on just-in-
time vulnerability detection. DeepJIT [29] au-
tomatically extracts features from commit mes-
sages and changed code and uses them to iden-
tify defects. Pornprasit et al. propose JITLine,
a simple but effective just-in-time defect predic-
tion approach. JITLine utilizes the expert fea-
tures and token features using bag-of-words from
commit messages and changed code to build a de-
fect prediction model with a random forest classi-
fier. LAPredict [30] is a defect prediction model
by leveraging the information of “lines of code
added” expert feature with the traditional logis-
tic regression classifier. Recently, Ni et al. in-
troduced JITFine [11], combining the expert fea-
tures and the semantic features which are ex-
tracted by CodeBERT [7] from changed code and
commit messages.

Different from all prior studies in vulnera-
bility fix identification and just-in-time bug de-
tection, our work presents VFFinder which ex-
plicitly represents code changes in code structure
and applies a graph-based model to extract the
features distinguishing fixing commits from non-
fixing ones.

Several studies have been proposed for spe-
cific software engineering tasks, including code
suggestion/completion [31–33], code summariza-
tion [34–36], program synthesis [37], pull request

description generation [38, 39], code clones [40],
fuzz testing[41], code-text translation [42], and
bug/vulnerability detection [14, 43, 44].

7. Conclusion

In conclusion, this paper has addressed the
critical challenge of identifying silent vulner-
ability fixes in software projects heavily re-
liant on third-party libraries. The existing gap
between fixes and public disclosures, coupled
with the prevalence of undisclosed vulnerabil-
ity fixes in open-source projects, has hindered
effective vulnerability management. We have
introduced VFFinder, a novel graph-based ap-
proach designed for the automated identifica-
tion of vulnerability-fixing commits. To pre-
cisely capture the meaning of code changes, the
changed code is represented in connection with
the related unchanged code. In VFFinder, the
structure of the changed code and related un-
changed code are captured and the structural
changes are represented in annotated Abstract
Syntax Trees. By leveraging annotated ASTs to
capture structural changes, VFFinder enables the
extraction of essential structural features. These
features are then utilized by graph-based neu-
ral network models to differentiate vulnerability-
fixing commits from non-fixing ones. Our exper-
imental results show that VFFinder improves the
state-of-the-art methods by 272–420% in Preci-
sion, 22–70% in Recall, and 3.2X–8.2X in F1.
Especially, VFFinder speeds up the silent fix
identification process by up to 121% with the
same effort reviewing 50K LOC compared to the
existing approaches. These findings highlight the
superiority of VFFinder in accurately identifying
vulnerability fixes and its ability to expedite the
review process. The performance of VFFinder
contributes to enhancing software security by em-
powering developers and security auditors with a
reliable and efficient tool for identifying and ad-
dressing vulnerabilities in a timely manner.

58 H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59

References
[1] A. D. Householder, G. Wassermann, A. Manion,

C. King, The Cert Guide to Coordinated Vulnerability
Disclosure, Software Engineering Institute, Pittsburgh,
PA (2017).

[2] A. D. Sawadogo, T. F. Bissyandé, N. Moha, K. Allix,
J. Klein, L. Li, Y. Le Traon, SSPCatcher: Learning to
Catch Security Patches, Empirical Software Engineer-
ing, Vol. 27, No. 6, 2022, pp. 151.

[3] L. Tal, The State of Open Source Security Report,
Tech. rep., Snyk (2019).

[4] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang,
A. E. Hassan, Finding a Needle in a Haystack: Auto-
mated Mining of Silent Vulnerability Fixes, in: 36th
IEEE/ACM International Conference on Automated
Software Engineering, IEEE, 2021, pp. 705–716.

[5] T. G. Nguyen, T. Le-Cong, H. J. Kang, R. Widyasari,
C. Yang, Z. Zhao, B. Xu, J. Zhou, X. Xia, A. E. Has-
san, et al., Multi-Granularity Detector for Vulnerabil-
ity Fixes, IEEE Transactions on Software Engineering,
Vol. 49, No. 8, (2023).

[6] J. Zhou, M. Pacheco, J. Chen, X. Hu, X. Xia, D. Lo,
A. E. Hassan, CoLeFunDa: Explainable Silent Vulner-
ability Fix Identification (2023).

[7] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, M. Zhou, Code-
BERT: A Pre-Trained Model for Programming and
Natural Languages, in: Findings of the Association
for Computational Linguistics: EMNLP 2020, Asso-
ciation for Computational Linguistics, Online, 2020,
pp. 1536–1547.

[8] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang,
D. Hao, FIRA: Fine-grained Graph-based Code
Change Representation for Automated Commit Mes-
sage Generation, in: The 44th International Confer-
ence on Software Engineering, 2022, pp. 970–981.

[9] S. Nguyen, T.-T. Y. Vu, D.-H. Vo, VFFINDER:
A Graph-based Approach for Automated Silent
Vulnerability-Fix Identification, in: Proceedings of the
15th IEEE International Conference on Knowledge
and Systems Engineering, 2023.

[10] P. V. G. C. A. Casanova, A. R. P. Lio, Y. Bengio, Graph
Attention Networks, ICLR. Petar Velickovic Guillem
Cucurull Arantxa Casanova Adriana Romero Pietro
Liò and Yoshua Bengio (2018).

[11] C. Ni, W. Wang, K. Yang, X. Xia, K. Liu, D. Lo,
The Best of Both Worlds: Integrating Semantic Fea-
tures with Expert Features for Defect Prediction and
Localization, in: Proceedings of the 30th ACM Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
2022, pp. 672–683.

[12] C. Pornprasit, C. K. Tantithamthavorn, Jitline: A Sim-
pler, Better, Faster, Finer-grained Just-in-time Defect

Prediction, in: 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR),
IEEE, 2021, pp. 369–379.

[13] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen,
H. Tran, M. Hilton, Graph-based Mining of In-the-
wild, Fine-grained, Semantic Code Change Patterns,
in: 2019 IEEE/ACM 41st International Conference on
Software Engineering, IEEE, 2019, pp. 819–830.

[14] S. Nguyen, T.-T. Nguyen, T. T. Vu, T.-D. Do,
K.-T. Ngo, H. D. Vo, Code-centric Learning-based
Just-In-Time Vulnerability Detection, arXiv preprint
arXiv:2304.08396 (2023).

[15] U. Alon, M. Zilberstein, O. Levy, E. Yahav, Code2vec:
Learning Distributed Representations of Code, Pro-
ceedings of the ACM on Programming Languages,
Vol. 3, No. POPL, 2019, pp. 1–29.

[16] Y. Wang, W. Wang, S. Joty, S. C. Hoi, CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder
Models for Code Understanding and Generation, in:
The 2021 Conference on Empirical Methods in Natu-
ral Language Processing, 2021, pp. 8696–8708.

[17] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient
Estimation of Word Representations in Vector Space,
in: Y. Bengio, Y. LeCun (Eds.), 1st International
Conference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, 2013.

[18] Z. Ding, H. Li, W. Shang, T.-H. P. Chen, Can Pre-
trained Code Embeddings Improve Model Perfor-
mance? Revisiting the Use of Code Embeddings in
Software Engineering Tasks, Empirical Software En-
gineering, Vol. 27, No. 3, 2022, pp. 1–38.

[19] T. N. Kipf, M. Welling, Semi-Supervised Classifica-
tion with Graph Convolutional Networks, in: Interna-
tional Conference on Learning Representations, 2016.

[20] J. Chen, T. Ma, C. Xiao, Fastgcn: Fast Learning with
Graph Convolutional Networks via Importance Sam-
pling, arXiv preprint arXiv:1801.10247 (2018).

[21] G. Bhandari, A. Naseer, L. Moonen, CVEfixes: Au-
tomated Collection of Vulnerabilities and Their Fixes
From Open-Source Software, in: The 17th Interna-
tional Conference on Predictive Models and Data An-
alytics in Software Engineering, 2021, pp. 30–39.

[22] J. Fan, Y. Li, S. Wang, T. N. Nguyen, A C/C++ Code
Vulnerability Dataset with Code Changes and CVE
Summaries, in: Proceedings of the 17th International
Conference on Mining Software Repositories, 2020,
pp. 508–512.

[23] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Ef-
fective Vulnerability Identification by Learning Com-
prehensive Program Semantics via Graph Neural Net-
works, Advances in neural information processing sys-
tems, Vol. 32, (2019).

[24] X. Yang, S. Wang, Y. Li, S. Wang, Does Data Sam-
pling Improve Deep Learning-based Vulnerability De-

H. D. Vo et al. / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 40, No. 1 (2024) 47–59 59

tection? Yeas! and Nays!, in: 2023 IEEE/ACM
45th International Conference on Software Engineer-
ing (ICSE), IEEE, 2023, pp. 2287–2298.

[25] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How Powerful
are Graph Neural Networks?, in: International Confer-
ence on Learning Representations, 2018.

[26] W. Hamilton, Z. Ying, J. Leskovec, Inductive Repre-
sentation Learning on Large Graphs, Advances in neu-
ral information processing systems, Vol. 30, (2017).

[27] L. A. Jeni, J. F. Cohn, F. De La Torre, Facing Imbal-
anced Data–Recommendations for the Use of Perfor-
mance Metrics, in: 2013 Humaine Association Con-
ference on Affective Computing and Intelligent Inter-
action, Vol. 40, 2013, pp. 47–60.

[28] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Model-
ing and Discovering Vulnerabilities with Code Prop-
erty Graphs, in: 2014 IEEE Symposium on Security
and Privacy, IEEE, 2014, pp. 590–604.

[29] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, N. Ubayashi,
DeepJIT: an End-to-end Deep Learning Frame-
work for Just-in-time Defect Prediction, in: 2019
IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), IEEE, 2019, pp. 34–45.

[30] Z. Zeng, Y. Zhang, H. Zhang, L. Zhang, Deep Just-in-
time Defect Prediction: How Far Are We?, in: Pro-
ceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021,
pp. 427–438.

[31] S. Nguyen, H. Phan, T. Le, T. N. Nguyen, Suggesting
Natural Method Names to Check Name Consistencies,
in: 2020 42nd International Conference on Software
Engineering, IEEE, 2020, pp. 1372–1384.

[32] S. Nguyen, T. Nguyen, Y. Li, S. Wang, Combining
Program Analysis and Statistical Language Model for
Code Statement Completion, in: 34th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, IEEE, 2019, pp. 710–721.

[33] S. Nguyen, C. T. Manh, K. T. Tran, T. M. Nguyen, T.-
T. Nguyen, K.-T. Ngo, H. D. Vo, ARist: An Effective
API Argument Recommendation Approach, Journal of
Systems and Software 2023, pp. 111786.

[34] S. Iyer, I. Konstas, A. Cheung, L. Zettlemoyer,
Summarizing Source Code Using a Neural Attention
Model, in: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), 2016, pp. 2073–2083.

[35] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Pala-

cio, D. Poshyvanyk, R. Oliveto, G. Bavota, Study-
ing the Usage of Text-to-text Transfer Transformer
to Support Code-Related Tasks, in: 2021 IEEE/ACM
43rd International Conference on Software Engineer-
ing (ICSE), IEEE, 2021, pp. 336–347.

[36] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu,
P. S. Yu, Improving Automatic Source Code Summa-
rization via Deep Reinforcement Learning, in: The
33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, 2018, pp. 397–407.

[37] T. Gvero, V. Kuncak, Synthesizing Java Expressions
from Free-form Queries, in: Proceedings of the 2015
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications, 2015, pp. 416–432.

[38] X. Hu, G. Li, X. Xia, D. Lo, Z. Jin, Deep Code
Comment Generation, in: 2018 IEEE/ACM 26th In-
ternational Conference on Program Comprehension
(ICPC), IEEE, 2018, pp. 200–20010.

[39] Z. Liu, X. Xia, C. Treude, D. Lo, S. Li, Automatic
Generation of Pull Request Descriptions, in: 34th
IEEE/ACM International Conference on Automated
Software Engineering, IEEE, 2019, pp. 176–188.

[40] L. Li, H. Feng, W. Zhuang, N. Meng, B. Ryder,
Cclearner: A Deep Learning-based Clone Detection
Approach, in: International Conference on Software
Maintenance and Evolution, IEEE, 2017, pp. 249–260.

[41] P. Godefroid, H. Peleg, R. Singh, Learn&fuzz: Ma-
chine Learning for Input Fuzzing, in: 2017 32nd
IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2017, pp. 50–59.

[42] H. A. Nguyen, H. D. Phan, S. S. Khairunnesa,
S. Nguyen, A. Yadavally, S. Wang, H. Rajan,
T. Nguyen, A Hybrid Approach for Inference between
Behavioral Exception API Documentation and Imple-
mentations, and Its Applications, in: 37th IEEE/ACM
International Conference on Automated Software En-
gineering, 2022, pp. 1–13.

[43] Y. Li, S. Wang, T. N. Nguyen, S. Van Nguyen, Improv-
ing Bug Detection via Context-based Code Represen-
tation Learning and Attention-based Neural Networks,
Proceedings of the ACM on Programming Languages,
Vol. 3, No. OOPSLA, 2019, pp. 1–30.

[44] H. D. Vo, S. Nguyen, Can an Old Fashioned Feature
Extraction and a Light-weight Model Improve Vulner-
ability Type Identification Performance?, Information
and Software Technology, Vol. 164, 2023, pp. 107304.

	Introduction
	Code Change Representation
	Vulnerability-Fix Identification Model
	Evaluation Methodology
	Dataset
	Procedure
	Metrics

	Experimental Results
	Performance Comparison (RQ1)
	Intrinsic Analysis (RQ2)
	Sensitivity Analysis (RQ3)
	Time Complexity (RQ3)
	Threats to Validity

	Related Work
	Conclusion

