
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15

 8

A Model for Real-time Concurrent Interaction Protocols

in Component Interfaces

Van Hung Dang∗, Trinh Dong Nguyen, Hoang Truong Anh

VNU University of Engineering and Technology, Hanoi, Vietnam

Abstract

Interaction Protocol specification is an important part for component interface specification. To use a

component, the environment must conform to the interaction protocol specified in the interface of the

component. We give a powerful technique to specify protocols which can capture the constraints on temporal

order, concurrency, and timing. We also show that the problem of checking if a timed automaton conforms to a

given real-time protocol is decidable and develop a decision procedure for solving the problem.

Received 16 January 2017; Accepted 27 February 2017

Keywords: Interaction Protocol, Timed Automata, Region Graph, Component Interface.

1. Introduction*

Component-based system architectures

have been an efficient divide-and-conquer

design technique for the development of

complex real-time embedded systems. A key

role in this technique is component interface

modeling and specification. There have been

many significant progresses towards a

comprehensive theory for interfaces, see for

example [2, , 3, 5, 6, 7]. In those works

different aspects of interfaces have been

modeled and specified such as interaction

protocols, contracts, concurrency, relations,

synchnony and asynchrony. An approach that

integrates all those aspects has been introduced

in [4]. However, there has not been an intuitive

and powerful model for real-time interaction

protocols. This kind of model plays an crucial

role in systems where a service from a

component may take long time to finish.

*Corresponding author. E-mail.: dvh@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.154

An interaction protocol specified in the

interface of a component is a precondition on

the temporal order on the use of services from

the component. Fail to satisfy this precondition

may lead to a system deadlock [2]. In real-time

systems, when a service from a component

takes a considerable time to carry out, too

frequently calling to this service may lead to the

error state too. So, we need to specify the

minimum duration between two consecutive

calls to the services that takes time, and this

also plays a role of precondition on the

consecutive calls to those services in the

interaction protocols. Another possibility that

we need to consider when specifying this kind

of time constraints is that a component may be

able to provide services in parallel. In this case,

time constraints do not apply to

concurrent services.

Let us consider an example. Imagine that

we have a software component that provide

accesses to two files: one stores the information

about products and the other stores the

information about customers. To access to a

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15 9

file, one needs to open it, and after use one

needs to close it. Accesses to different files can

be done in parallels, and access can be reads

and writes such that all the reads should be

before writes. Let us denote by 𝑂𝑝, 𝑅𝑝, 𝑊𝑝 and

𝐶𝑝 the accesses open, read, write and close for

the file 1 (for products), and by 𝑂𝑐, 𝑅𝑐, 𝑊𝑐 and

𝐶𝑐 the accesses open, read, write and close for

the file 2 (for customers). To use the component

we need to activate it by action 𝐴, and we need

to deactivate it by action 𝐹 after use. The

interaction protocol could be specified by two

regular expressions to express the condition on

the temporal order between actions on each file.

These regular expressions could be

(𝐴(𝑂𝑝𝑅𝑝𝑊𝑝𝐶𝑝)∗𝐹)∗ and (𝐴(𝑂𝑐𝑅𝑐𝑊𝑐𝐶𝑐)∗𝐹)∗.

Does the execution 𝐴𝑂𝑝𝑂𝑐𝑅𝑝𝑅𝑐𝑊𝑐𝑊𝑝𝐶𝑝𝐶𝑐𝐹

conform to this protocol? It does because it

satisfies the restriction on the temporal order for

each file. Now, assume that it takes 1 second

for the read accesses, then the execution will

satisfy the protocol if the delays between 𝑅𝑝

and 𝑊𝑝 (not 𝑅𝑝 and 𝑅𝑐; these can be done in

parallel), and 𝑅𝑐 and 𝑊𝑐 are more than 1

second.

In this work, we propose a technique to

specify real-time concurrent interaction

protocols for component interfaces that is an

efficient formalization of the specification from

the example mentioned above, and define

formally what we mean by saying a real-time

execution conforms to an interaction protocol in

our model. Then we develop a technique to

check if a real-time system modeled by a timed

automaton satisfies a real-time concurrent

interaction protocol specified in the interface of

a component.

The paper is organized as follows. The next

section presents our general model for real-time

concurrent interaction protocols. Section 3

presents an algorithm to check if a timed

automaton satisfies a protocol specification.

The last section is the conclusion of our paper.

2. General protocol model

Let Σ𝑖, 𝑖 = 1, … , 𝑘 be alphabets of service

names for a component 𝒞, and let Ω = ⋃𝑘
𝑖=1 Σ𝑖

be the alphabet of all service names that the

component provides. Our intention is that

services in each Σ𝑖 need to be executed

sequentially, and services in different Σ𝑖 and Σ𝑗

can be executed in parallel. Each Σ𝑖, 𝑖 = 1, … , 𝑘

can overlap another, but they must not be

included in each other, i.e. Σ𝑖 is a maximal set

of services that need to be executed in

sequence. When 𝑘 = 1 there is no concurrency

for the component. Each service in Ω may take

time to finish. We specify this fact by a

function 𝛿: Ω → ℝ≥. So, a service 𝑎 ∈ Ω takes

𝛿(𝑎) time units to finish. An interaction

protocol specifies a constraint on the temporal

order on the services in each separate Σ𝑖, and

this is modeled efficiently by a regular

expression on Σ𝑖. Therefore, we define:

Definition 1 (Real-time interaction

protocol) A real-time interaction protocol 𝜋 is a

tuple 〈(𝛴1, 𝑅1), … , (𝛴𝑘 , 𝑅𝑘), 𝛿〉, where

𝛿: ⋃𝑘
𝑖=1 𝛴𝑖 → ℝ≥, and 𝑅𝑖 is a regular expression

on 𝛴𝑖 for 𝑖 = 1, … , 𝑘.

Example. In the example introduced in the

Introduction of this paper,

(Σ1, 𝑅1) = ({𝐴, 𝑂𝑝, 𝑅𝑝, 𝑊𝑝, 𝐶𝑝, 𝐹},

 (𝐴(𝑂𝑝𝑅𝑝𝑊𝑝𝐶𝑝)∗𝐹)∗) 𝑎𝑛𝑑,

(Σ2, 𝑅2) = ({𝐴, 𝑂𝑐 , 𝑅𝑐 , 𝑊𝑐 , 𝐶𝑐 , 𝐹},

(𝐴(𝑂𝑐𝑅𝑐𝑊𝑐𝐶𝑐)∗𝐹)∗).

𝛿(𝑅𝑝) = 𝛿(𝑅𝑐) = 1, and 𝛿(𝑋) = 0 for all

other services 𝑋.

Let, in the sequel, for the simplicity of the

presentation, for a regular expression 𝑅 we

overload 𝑅 to denote also the language

generated by 𝑅, and when 𝑅 is the language

generated by 𝑅 can be understood from the

context. Note that a regular expression can

always be represented by an automaton.

This definition gives a simple syntax

representation for real-time protocols. To

understand the meaning of this representation

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15

10

we need to define what to mean by saying a

real-time execution conforms to a protocol in

our model. We will use a timed automaton as

our system model, and therefore, use a timed

language to represent the behavior of

our system.

A timed word over an alphabet Ω is a

sequence 𝑤 = (𝑎1, 𝑡1)(𝑎2, 𝑡2) … (𝑎𝑛, 𝑡𝑛), where

𝑡𝑖−1 ≤ 𝑡𝑖 for 0 < 𝑖 ≤ 𝑛, 𝑡0 = 0. The intuition

of this representation for a behavior is that the

action 𝑎𝑖 takes place at time 𝑡𝑖. Given a

protocol 𝜋 as in Definition 1, how to mean that

𝑤 conforms to 𝜋? Let us denote

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(𝑤) = 𝑎1𝑎2 … 𝑎𝑛. For a word 𝑥 ∈ Ω∗

we denote 𝑥|Σ𝑖
 the projection of 𝑥 on Σ𝑖, i.e. the

word obtained from 𝑥 by removing all the

characters that do not belong to Σ𝑖.

Definition 2 (Conformation) A timed

word 𝑤 = (𝑎1, 𝑡1)(𝑎2, 𝑡2) … (𝑎𝑛, 𝑡𝑛) conforms

protocol 𝜋, denoted by 𝑤 ⊧ 𝜋, iff for all 𝑖 ≤ 𝑘

1. 𝑢𝑛𝑡𝑖𝑚𝑒𝑑(𝑤)|Σ𝑖
∈ 𝑅𝑖, and

2. let 𝑢𝑛𝑡𝑖𝑚𝑒𝑑(𝑤)|Σ𝑖
= 𝑎𝑗1

… 𝑎𝑗𝑚𝑖
, then

𝑡𝑗𝑙+1
− 𝑡𝑗𝑙

≥ 𝛿(𝑎𝑗𝑙
) for all 𝑙 < 𝑚𝑖.

The first condition in the definition says

that the temporal order between sequential

services is allowed by the component and reach

an acceptance state of the component, and the

second condition says that the component has

been given enough time for providing the

services. According to this definition, the

behavior

(𝐴, 0)(𝑂𝑝, 0)(𝑂𝑐 , 0)(𝑅𝑝, .5)(𝑅𝑐 , 1)(𝑊𝑐 , 2)

 (𝑊𝑝, 2)(𝐶𝑝, 2)(𝐶𝑐 , 2)(𝐹, 3)

conforms to the protocol in Example 2.

However,

(𝐴, 0)(𝑂𝑝, 0)(𝑂𝑐 , 0)(𝑅𝑝, .5)(𝑅𝑐 , 1)(𝑊𝑐 , 1.5)

 (𝑊𝑝, 2)(𝐶𝑝, 2)(𝐶𝑐 , 2)(𝐹, 3)

does not as 1.5 − 1 < 𝛿(𝑅𝑐).

From the semantics of a protocol 𝜋, when

no services can be executed in parallel 𝑘 = 0,

and when there is no constraint for temporal

order on Σ𝑖 and acceptance state the regular

expression 𝑅𝑖 = Σ𝑖
∗.

Given a component 𝒞 with the protocol

specification 𝜋 in its interface, a design of a

system, in order to use the services from 𝒞, all

the accepted behaviors of the system design

need to conform to 𝜋. The best model of real-

time systems is timed automata model [1] to the

best of our knowledge. Now the question of the

pluggability of a real-time environment to

component 𝒞 is to decide whether all the

members of the timed language of a given

timed automaton 𝒜 conform to the protocol 𝜋.

If it is the case, we write 𝒜 ⊧ 𝜋 for short.

3. Checking the pluggability

In this section we present a technique to

solve the problem mentioned in the last section.

Namely, we will prove that it is decidable if all

the accepted behaviors of a timed automaton 𝒜

conform to a real-time concurrent interaction

protocol 𝜋. Then we develop an algorithm to

check if 𝒜 ⊧ 𝜋. The algorithm serves for

answering the question if the component 𝒞 can

fit to our design. For simplicity, we now restrict

ourselves to the case that the value of function

𝛿 in 𝜋 is integers.

Since the concept of timed automata may

not be familiar to some readers, we recall this

concept from [1]. A timed automaton is a finite

state machine with an additional set of clock

variables 𝑋 and an additional set of clock

constraints. A clock constraint 𝜙 over 𝑋 is

defined by the following grammar:

𝜙 =̂ 𝑥 ≤ 𝑛 | 𝑥 ≥ 𝑛 | ¬𝜙 | 𝜙1 ∧ 𝜙2,
where𝑥 ∈ 𝑋 and 𝑛 stands for a natural

number. Let Φ(𝑋) denote the set of all

clock constraints over 𝑋.
Definition 3 (Timed automata) A timed

automaton 𝑀 is a tuple

〈𝐿, 𝑠𝐼 , Σ, 𝑋, 𝐸, ℱ〉, where
• 𝐿is a finite set of locations,

• 𝑠𝐼 ∈ 𝐿is an initial location,

• Σ is a finite set of labels,

• 𝑋is a finite set of clocks,

• 𝐸 ⊆ 𝐿 × Σ × Φ(𝑋) × 2𝑋 × 𝐿is a finite set

of transitions. An 𝑒 = 〈𝑠, 𝑎, 𝜙, 𝜆, 𝑠′〉 ∈ 𝐸

represents a transition from location 𝑠 to

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15 11

location𝑠′, labeled with 𝑎; 𝑠 and 𝑠′ are

called source and target locations of 𝑒, and

denoted by �⃖�and𝑒respectively; 𝜙 is a clock

constraintover 𝑋 that must be satisfied

when the transition 𝑒 is enabled, and 𝜆 ⊆ 𝑋

is the set of clocks to be reset by 𝑒 when it

takes place. In the sequel, we will use the

subscript 𝑒 with 𝜙 and 𝜆 to indicate that 𝜙

and 𝜆 are associated

to 𝑒.

• ℱ ⊆ 𝐿is the set of acceptance locations.

In this paper, for simplicity, we only

consider the deterministic timed automata, i.e.

those timed automata which do not have more

than one 𝑎-labeled edge starting from a location

𝑠 for any label 𝑎 ∈ Σ.

A clock interpretation 𝜈 for a set of clock 𝑋

is a mapping 𝜈: 𝑋 → 𝑅𝑒𝑎𝑙𝑠, i.e. 𝜈 assigns to

each clock 𝑥 ∈ 𝑋 the value 𝜈(𝑥). A clock

interpretation represents the values of all clocks

in 𝑋 at a time point. We adopt the following

denotations. 𝜈0always denotes the clock

interpretation which maps from 𝑋 to {0}. For a

clock interpretation 𝜈 and for 𝑡 ∈ 𝑅, 𝜈 + 𝑡

denotes the clock interpretation which maps

each clock 𝑥 ∈ 𝑋 to the value 𝜈(𝑥) + 𝑡. For 𝜆 ⊆
𝑋, [𝜆 ↦ 0]𝜈 is the clock interpretation which

assigns 0 to each 𝑥 ∈ 𝜆 and agrees with 𝜈 over

the rest of the clocks.

A state of a timed automaton 𝑀 is a pair

〈𝑠, 𝜈〉, where 𝑠 ∈ 𝐿 and 𝜈 is a clock

interpretation for 𝑋. The fact that 𝑀 is in a state

〈𝑠, 𝜈〉 at a time instant means that 𝑀 stays in

location 𝑠 with all clock values agreeing with 𝜈

at that instant.

The behavior of timed automata can be

represented by timed words (or timed-stamped

transition sequences). A behavior 𝜎 is a timed

word

𝜎 = (𝑒1, 𝜏1)(𝑒2, 𝜏2) … (𝑒𝑚, 𝜏𝑚), where 𝑚 ≥
1 and 𝑒𝑖 ∈ 𝐸, 𝑒𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑒𝑖⃖⃗⃗⃗ for 1 ≤ 𝑖 ≤ 𝑚 (with the

convention 𝑒0⃗⃗ ⃗⃗ = 𝑠𝐼), and where 0 = 𝜏0 ≤ 𝜏1 ≤
𝜏2 ≤ ⋯ ≤ 𝜏𝑚, such that (𝜈𝑖−1 + 𝜏𝑖 − 𝜏𝑖−1)

satisfies 𝜙𝑒𝑖
 for all 1 ≤ 𝑖 ≤ 𝑚, where 𝜈𝑖 =

[𝜆𝑒𝑖
↦ 0](𝜈𝑖−1 + 𝜏𝑖 − 𝜏𝑖−1) for 1 ≤ 𝑖 ≤ 𝑚.

So, a behavior 𝜎 expresses that 𝑀 starts

from the initial location 𝑠𝐼, transits to 𝑒1⃗⃗ ⃗⃗ by

taking 𝑒1 at time 𝜏1, then transits to 𝑒2⃗⃗ ⃗⃗ by

taking 𝑒1 at time 𝜏2, and so on, and at last

transits to 𝑒𝑚⃗⃗⃗⃗⃗⃗ at time 𝜏𝑚. Note that (𝜈𝑖−1 +
𝜏𝑖 − 𝜏𝑖−1) is the value of the clock variables

just before 𝑒𝑖’s taking place, and 𝜈𝑖 is the value

of the clock variables just after 𝑒𝑖’s taking

place. The behavior 𝜎 expresses also that the

system 𝑀 stays in the location𝑒𝑖⃖⃗⃗⃗for 𝜏𝑖 − 𝜏𝑖−1

time units, and then transits to by 𝑒𝑖+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ for (1 ≤
𝑖 ≤ 𝑚). If 𝜎 = (𝑒1, 𝜏1)(𝑒2, 𝜏2) … (𝑒𝑚, 𝜏𝑚) is a

behavior of timed automaton 𝑀, we call 𝑒𝑚⃗⃗⃗⃗⃗⃗ a

reachable location of 𝑀 and 〈𝑒𝑚⃗⃗⃗⃗⃗⃗ , 𝜈𝑚〉 a

(discrete) reachable state of 𝑀. A behavior of

timed automaton 𝑀 is accepted iff 𝑒𝑚⃗⃗⃗⃗⃗⃗ ∈ ℱ. Let

𝑠𝑖 = 𝑒𝑖⃗⃗⃗ ⃗, for 1 ≤ 𝑖 ≤ 𝑚, and 𝑠0 = 𝑠𝐼. Then the

run corresponding to 𝜎 is the sequence:

〈𝑠0, 𝜈0〉 →𝜏1

𝑒1 〈𝑠1, 𝜈1〉 →𝜏2

𝑒2 …

→𝜏𝑚

𝑒𝑚 〈𝑠𝑚, 𝜈𝑚〉.

The finite language of 𝑀 is the set of all

accepted behaviors of 𝑀.

In order to solve the emptiness problem for

a timed automaton, Alur and Dill [1] have

introduced a finite index equivalence relation

over the state space of the automaton. The idea

is to partition the set of the clock interpretations

into a number of regions so that two clock

interpretations in the same region will satisfy

the same set of clock constraints.

For each 𝑥 ∈ 𝑋, let 𝐾𝑥 be the largest integer

constant occurring in a clock constraint for the

clock variable 𝑥 of the timed automaton 𝑀, i.e.

𝐾𝑥 = max{𝑎|𝑒𝑖𝑡ℎ𝑒𝑟𝑥 ≤ 𝑎 or

𝑥 ≥ 𝑎occursinaclockconstraint
of𝜙ofatransition𝑒 }.

.

Let 𝐾𝑋 = max𝑥∈𝑋𝐾𝑥.

For a real number 𝑟, let 𝑓𝑟𝑎𝑐(𝑟) = 𝑟 − ⌊𝑟⌋
(⌊𝑟⌋ is the maximal integer number which is not

greater than 𝑟) be the fractional part of 𝑥. The

equivalence relation ≅ over the set of clock

interpretations is defined as follows: for two

clock interpretations 𝜈 and 𝜈′, 𝜈 ≅ 𝜈′ iff the

following three conditions are satisfied:

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15

12

1. For all x ∈ X either ν(x) > Kx ∧ ν′(x) >
Kxor ⌊ν(x)⌋ = ⌊ν′(x)⌋.
2. For all x, y ∈ X such that ν(x) ≤ Kx and

ν(y) ≤ Ky, frac(ν(x)) ≤ frac(ν(y)) iff

frac(ν′(x)) ≤ frac(ν′(y)).

3. For all x ∈ X such that ν(x) ≤ Kx,

frac(ν(x)) = 0 iff frac(ν′(x)) = 0.

When 𝜈 ≅ 𝜈′, it is not difficult to see that

for any clock constraint 𝜙 occurring in a

transition 𝑒 = 〈𝑠, 𝑎, 𝜙, 𝜆, 𝑠′〉 ∈ 𝐸, 𝜈 satisfies 𝜙

iff 𝜈′ satisfies 𝜙.

A clock region for 𝑀 is an equivalence

class of the clock interpretations induced by ≅.

We denote by [𝜈] the clock region to which a

clock interpretation 𝜈 belongs. From the

definition of ≅, a region is characterized by the

integer part of the value of each clock 𝑥 when it

is not greater than 𝐾𝑥, by the order between the

fraction part of the clocks when they are

different from 0. Therefore, the number of

clock regions is bounded by |𝑋|! ⋅ 2|𝑋| ⋅
∏𝑥∈𝑋 (2𝐾𝑥 + 2). A configuration is defined as

a pair 〈𝑠, 𝛼〉 where 𝑠 ∈ 𝐿 and 𝛼 is a clock

region. Based on the clock regions, the region

automaton of 𝑀, whose states are

configurations of 𝑀, and whose transitions are

the combination of a time transition and a

action transition from 𝑀. There is a time

transition from 〈𝑠, 𝛼〉 to 〈𝑠, 𝛽〉 iff 𝛽 = 𝛼 + 𝑡 for

some 𝑡 (here for 𝛼 = [𝜈] we define 𝛼 + 𝑡 =
[𝜈 + 𝑡]).

Definition 4 (Region automata) Given a

timed automaton 𝑀 as in Definition 3, the

region automaton of 𝑀 is the automaton

ℛ(𝑀) = 〈𝐿′, 𝑠′𝐼 , 𝛴, 𝐸′, ℱ′〉, where

• The set of states 𝐿′ consists of all

configurations of 𝑀,

• 𝑠′𝐼 = 〈𝑠𝐼 , [𝜈𝜃]〉where𝜈𝜃 is the clock

valuation that assigns 0 to all clock

variables in 𝑋,

• 𝐸′ is the set of transitions of ℛ(𝑀) such

that a transition ((𝑠, 𝛼), 𝑎, (𝑠′, 𝛽)) ∈ 𝐸′
iff there is a timed transition from 〈𝑠, 𝛼〉
to 〈𝑠, 𝛼′〉 and a transition in

𝑀〈𝑠, 𝑎, 𝜙, 𝜆, 𝑠′〉 such that 𝛼′ satisfies

𝜙and 𝛽 = [𝜆 ↦ 0]𝛼′,
• ℱ′ ⊆ 𝐿′such that 𝑠′ ∈ ℱ′ iff 𝑠′ = 〈𝑠, 𝛼〉
where 𝑠 ∈ ℱ and 𝛼 is a clock region.

Note that ℛ(𝑀) is a ‘untimed’automaton,

and we also denote its (untimed) language

by ℒ(ℛ(𝑀)).
We can simplify the automata 𝑀 and ℛ(𝑀)

such that all states (locations) are reachable and

all states can lead to an acceptance state.

We recall some results from the timed

automata theory [1] that will be used in our

checking procedure later. Let ℒ(𝑀) denote the

𝜔-timed language (language of infinite timed

words) generated by 𝑀 (by adding 𝜀-transitions

from a final state to itself we can extend the

finite language of 𝑀 to the 𝜔 language).

Theorem 1

1.For the timed automaton 𝑀,

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝑀)) = ℒ(ℛ(𝑀)). Therefore,

the emptiness problem for 𝑀 is decidable.
2. If 〈𝑠0, 𝜈0〉 →𝜏1

𝑒1 〈𝑠1, 𝜈1〉 →𝜏2

𝑒2 … →𝜏𝑚

𝑒𝑚 〈𝑠𝑚 , 𝜈𝑚〉is

a run from the initial state of 𝑀 then

〈𝑠0, [𝜈0]〉 →𝑒1 〈𝑠1, [𝜈1]〉 →𝑒2 … →𝑒𝑚 〈𝑠𝑚, [𝜈𝑚]〉
is a run of ℛ(𝑀), and reversely, if

〈𝑠0, [𝜈0]〉 →𝑒1 〈𝑠1, [𝜈1]〉 →𝑒2 … →𝑒𝑚 〈𝑠𝑚, [𝜈𝑚]〉
is a run in ℛ(𝑀) then there are 𝜏1, … , 𝜏𝑚

such that

〈𝑠0, 𝜈0〉 →𝜏1

𝑒1 〈𝑠1, 𝜈1〉 →𝜏2

𝑒2 … →𝜏𝑚

𝑒𝑚 〈𝑠𝑚, 𝜈𝑚〉 is

a run from the initial state of 𝑀.

Let in the sequel, for an automaton 𝑀 the

size of 𝑀 (the number of transitions and

locations) be denoted by |𝑀|.
Now, we return to the problem to decide if

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜))|Σ𝑖
⊆ 𝑅𝑖 for a given timed

automaton 𝒜. It turns out that this problem is

solvable, and just a corollary of Theorem 1.

Theorem 2 Given a regular expression 𝑅𝑖

and a timed automaton 𝒜 the problem

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜))|𝛴𝑖
⊆ 𝑅𝑖 is decidable in

𝒪(|ℛ(𝒜)|. |𝑅𝑖|) time.

 Proof. Let ℬ be an automaton that

recognizes all the strings on Σ𝑖 that do not

belong to 𝑅𝑖, i.e. an automaton that recognizes

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15 13

the complement �̅�𝑖 of 𝑅𝑖. The synchronized

product ℬ ×Σ𝑖
ℛ(𝒜) recognizes the language

�̅�𝑖||ℒ(ℛ(𝒜)) ({𝑤 | 𝑤|Σ𝑖
∈ �̅�𝑖 ∧ 𝑤|Σ′ ∈

ℒ(ℛ(𝒜))}). It follows Theorem 1 that

�̅�𝑖||ℒ(ℛ(𝒜)) = �̅�𝑖||𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜)). The

emptiness of the language generated by

ℬ × ℛ(𝒜) is decidable in 𝒪(|ℛ × ℛ(𝒜)|)

time. But �̅�𝑖||𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜)) is empty if and

only if 𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜))|Σ𝑖
⊆ 𝑅𝑖. Hence, the

theorem is proved.

Now we consider the problem to decide if

all the strings generated by 𝒜 satisfy the second

item of Definition 2. Let 𝒜 = 〈𝐿, 𝑠𝐼 , Σ, 𝑋, 𝐸, ℱ〉.

Let Σ𝑖 ⊆ Σ. Let 𝑐𝑖 be a new clock variable,

𝑐𝑖 ∈ 𝑋. Define 𝒜′ to be the automaton that is

the same as 𝒜 except that transitions with label

in Σ𝑖 will have to reset the clock 𝑐𝑖 as well, i.e.

𝒜′ = 〈𝐿, 𝑠𝐼 , Σ, 𝑋 ∪ {𝑐𝑖}, 𝐸′, ℱ〉, and 𝐸′ = {𝑒′ =
(𝑠, 𝑎, 𝜙, 𝐶 ∪ {𝑐𝑖}, 𝑠′) | 𝑒 = (𝑠, 𝑎, 𝜙, 𝐶, 𝑠′) ∈ 𝐸 ∧
𝑎 ∈ Σ𝑖} ∪ {𝑒′ = (𝑠, 𝑎, 𝜙, 𝐶, 𝑠′) | 𝑒 =
(𝑠, 𝑎, 𝜙, 𝐶, 𝑠′) ∈ 𝐸 ∧ 𝑎 ∈ Σ𝑖}We illustrate the

difference of transitions in 𝒜 and 𝒜′ in Fig. 1.

Since clock variable 𝑐𝑖 does not appear in

any guard 𝜙 of 𝒜, the automaton 𝒜′ generates

the same timed language as 𝒜 does. Adding the

clock variable 𝑐𝑖 is just for the purpose of

counting time between two (consecutive)

transitions in Σ𝑖. A clock valuation for 𝒜′ now

is of the form 𝜈 ∪ {𝑐𝑖 ↦ 𝑣} for some 𝑣 ∈
𝑅𝑒𝑎𝑙𝑠. Now we construct the region graph

ℛ(𝒜′) for 𝒜′, and analyze this graph to see if

the second condition of Definition 2 is violated

by a timed word from ℒ(𝒜). If 𝛿(𝑎) = 0 for all

𝑎 ∈ Σ𝑖, then the second condition for 𝑖 is satisfied

trivially. Otherwise, Theorem 1 gives that this

condition is violated if and only if there is a

run

〈𝑠0, [𝜈0]〉 →𝑒1 〈𝑠1, [𝜈1]〉 →𝑒2 … →𝑒𝑚 〈𝑠𝑚, [𝜈𝑚]〉
in ℛ(𝒜′) in which there are two transitions 𝑒𝑙

and 𝑒𝑙+ℎ corresponding to resetting clocks 𝑐𝑖 in

𝒜′: 𝑒𝑙 = (〈𝑠𝑙, [𝜈𝑙]〉, 𝑎, 〈𝑠𝑙+1, [𝜈𝑙+1]〉 where 𝑎 ∈
Σ𝑖, 𝜈𝑙+1(𝑐𝑖) = 0, and 𝑒𝑙+ℎ =
(〈𝑠𝑙+ℎ, [𝜈𝑙+ℎ]〉, 𝑏, 〈𝑠𝑙+ℎ+1, [𝜈𝑙+ℎ+1]〉 where 𝑏 ∈
Σ𝑖, 𝜈𝑙+ℎ+1(𝑐𝑖) = 0, and transitions

𝑒𝑙+1, … , 𝑒𝑙+ℎ−1 do not have label in Σ𝑖 (not

corresponding to transitions in 𝒜′ resetting

clock 𝑐𝑖) that makes the following condition

satisfied: Let the run in 𝒜′ according to

Theorem 1 corresponding to that path be

〈𝑠𝑙 , 𝜈𝑙〉 →𝜏𝑙

𝑒𝑙 … →𝜏𝑙+ℎ−1

𝑒𝑙+ℎ−1

〈𝑠𝑙+ℎ, 𝜈𝑙+ℎ〉 →𝜏𝑙+ℎ

𝑒𝑙+ℎ 〈𝑠𝑙+ℎ+1, 𝜈𝑙+ℎ+1〉

Then, 𝜈𝑙+ℎ(𝑐𝑖) + 𝜏𝑙+ℎ < 𝛿(𝑎). This implies the

following: After having removed all non-

reachable states from ℛ(𝒜′), and adding time

transitions (labeled with “time”) to ℛ(𝒜′), we

have that there is also a path in ℛ(𝒜′)

〈𝑠𝑙 , [𝜈𝑙]〉 →𝑒𝑙 … →𝑒𝑙+ℎ−1

〈𝑠𝑙+ℎ, [𝜈𝑙+ℎ]〉 →𝑡𝑖𝑚𝑒

〈𝑠𝑙+ℎ, [𝜈𝑙+ℎ + 𝜏𝑙+ℎ]〉 →𝑒𝑙+ℎ 〈𝑠𝑙+ℎ+1, [𝜈𝑙+ℎ+1]〉

in which 𝜈𝑙+ℎ(𝑐𝑖) + 𝜏𝑙+ℎ < 𝛿(𝑎) where 𝑎

is the label of 𝑒𝑙, and 𝑒𝑙+ℎ has label in Σ𝑖. A

path in ℛ(𝒜′) satisfying this condition is called

“violation” path. Now, checking for the

Fig. 1. Transitions in 𝒜 and 𝒜′: 𝑎, 𝑏 ∈ Σ𝑖 , 𝑐 ∈ Σ𝑖 .

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15

14

violation of the second condition of Definition

2 from 𝒜 is done by searching in the graph of

ℛ(𝒜′) for a single path (not containing a loop)

from 𝑒𝑙 to 𝑒𝑙+ℎ with the violation property as

mentioned above (we call it violation path). If

no such a path found, then the timed language

ℒ(𝒜) satisfies the condition. This can be done

in 𝒪(|ℛ(𝒜′)|2) time. Therefore, we have:

Theorem 3 The problem “if a given timed

automaton 𝒜 conforms to a real-time

concurrent interaction protocol 𝜋” is decidable

in time 𝒪(|ℛ(𝒜′)|2).

We sumarizes our results in the following

deciding procedure:

Algorithm (Deciding if a timed automaton

satisfies a real-time interaction protocol)

Input:A real-time protocol 𝜋 =
〈(Σ1, 𝑅1), … , (Σ𝑘 , 𝑅𝑘), 𝛿〉,
where 𝛿: ⋃𝑘

𝑖=1 Σ𝑖 → ℕ≥, and 𝑅𝑖 is a regular

expression on Σ𝑖 for 𝑖 = 1, … , 𝑘.

A timed automaton 𝒜 = 〈𝐿, 𝑠𝐼 , Σ, 𝑋, 𝐸, ℱ〉 that

satisfies Σ𝑖 ⊆ Σ for all 𝑖 ≤ 𝑘.

Output: “Yes” if ℒ(𝒜) ⊧ 𝜋, “no” otherwise.

Methods:

1. Construct the region automaton of 𝒜,

namely the automaton ℛ(𝒜).

2. For each 𝑖 = 1, … , 𝑘 construct automata

ℬ𝑖 that recognizes regular language �̅�𝑖.

Then, construct the synchronized product

ℛ(𝒜) ×Σ𝑖
ℬ𝑖 and check if ℒ(ℛ(𝒜) ×Σ𝑖

ℬ𝑖)

is empty. If ℒ(ℛ(𝒜) ×Σ𝑖
𝐵𝑖) is not empty

for some 𝑖, stop with output “no”.

3. If there is no time constraint in 𝜋, i.e. 𝛿 is

0 mapping on Σ, stop with output “yes”.

4. For each 𝑖 = 1, … , 𝑘, where 𝛿 is not a 0-

mapping on Σ𝑖, construct the timed

automaton

𝒜′ = 〈L, sI, Σ, X ∪ {ci}, E′, ℱ〉, where E′ =
{e′ = (s, a, ϕ, C ∪ {ci}, s′) | e =
(s, a, ϕ, C, s′) ∈ E ∧ a ∈ Σi} ∪ {e′ =
(s, a, ϕ, C, s′) | e = (s, a, ϕ, C, s′) ∈ E ∧
a ∈ Σi}, and then construct the region graph

ℛ(𝒜′). Add all “time” transitions to ℛ(𝒜′)

and simplify it by removing all

nonreachable states. Search in ℛ(𝒜′) for a

single violation path. If such a path is found

for some i, stop with the output “no”.

5. Stop with the output “yes”.

Note that a concurrent real-time system can

be modeled as a timed automata network which

is a synchronized product of a number of timed

automata, where the concurrency can be

expressed explicitly. A synchronized product of

a number of timed automata is also a timed

automaton, and hence, our algorithm works also

on timed automata networks.

4. Conclusion

We have proposed a simple but powerful

technique to specify interaction protocols for

the interface of components. Our model can

specify many aspects for interaction: the

temporal order between services, concurrency

for services, and timing constraints. We also

have shown that the problem of checking if a

timed automaton conforms to a given real-time

protocol is decidable, and developed a decision

procedure for solving the problem. The

complexity of the procedure is proportional to

the size of the region graph of the input timed

automaton which is acceptable for many cases

(like the way that the tool UPAAL handles

systems). We will incorporate this technique to

our model for real-time component-based

systems in our future work. We believe that our

results can be extended to the cases in which

systems are modeled by timed automata with

parameters, i.e. timed automata where a

parameter can appear in guards and can be reset

by a transition.

Acknowledgments

This research was funded by Vietnam

National Foundation for Science and

Technology Development (NAFOSTED) under

grant number 102.03-2014.23.

V.H. Dang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 1 (2017) 8-15 15

 References

[1] R. Alur and D.L. Dill. A Theory of Timed

Automata. Theoretical Computer Science,

pages 183-235, 1994.

[2] Luca de Alfaro and Thomas A. Henzinger.

Interface Automata. In ACM Symposium on

Foundation of Software Engineering (FSE), 2001.

[3] Jifeng He, Zhiming Liu, and Xiaoshan Li.

rCOS: A refinement calculus of object systems.

Theor. Comput. Sci., 365(1-2):109-142, 2006.

UNU-IIST TR 322.

[4] Dang Van Hung and Hoang Truong. Modeling

and specification of real-time interfaces with

UTP. In Theories of Programming and

Formal Methods - Essays Dedicated to Jifeng

He on the Occasion of His 70th Birthday,

pages 136-150, 2013.

[5] Hung Ledang and Dang Van Hung. Timing

and concurrency specification in component-

based real-time embedded systems

development. In TASE, pages 293-304.

IEEE Computer Society, 2007.

[6] Stavros Tripakis, Ben Lickly, Thomas A.

Henzinger, and Edward A. Lee. On relational

interfaces. In EMSOFT’09, pages 67-76.

ACM, 2009.

[7] Dang Van Hung. Toward a formal model for

component interfaces for real-time systems. In

Proceedings of the 10th international workshop

on Formal methods for industrial critical

systems, FMICS ’05, pages 106-114, New York,

NY, USA, 2005. ACM.

