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Abstract 

Interaction Protocol specification is an important part for component interface specification. To use a 

component, the environment must conform to the interaction protocol specified in the interface of the 

component. We give a powerful technique to specify protocols which can capture the constraints on temporal 

order, concurrency, and timing. We also show that the problem of checking if a timed automaton conforms to a 

given real-time protocol is decidable and develop a decision procedure for solving the problem. 
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1. Introduction* 

Component-based system architectures 

have been an efficient divide-and-conquer 

design technique for the development of 

complex real-time embedded systems. A key 

role in this technique is component interface 

modeling and specification. There have been 

many significant progresses towards a 

comprehensive theory for interfaces, see for 

example [2, , 3, 5, 6, 7]. In those works 

different aspects of interfaces have been 

modeled and specified such as interaction 

protocols, contracts, concurrency, relations, 

synchnony and asynchrony. An approach that 

integrates all those aspects has been introduced 

in [4]. However, there has not been an intuitive 

and powerful model for real-time interaction 

protocols. This kind of model plays an crucial 

role in systems where a service from a 

component may take long time to finish. 

_______ 
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An interaction protocol specified in the 

interface of a component is a precondition on 

the temporal order on the use of services from 

the component. Fail to satisfy this precondition 

may lead to a system deadlock [2]. In real-time 

systems, when a service from a component 

takes a considerable time to carry out, too 

frequently calling to this service may lead to the 

error state too. So, we need to specify the 

minimum duration between two consecutive 

calls to the services that takes time, and this 

also plays a role of precondition on the 

consecutive calls to those services in the 

interaction protocols. Another possibility that 

we need to consider when specifying this kind 

of time constraints is that a component may be 

able to provide services in parallel. In this case, 

time constraints do not apply to  

concurrent services. 

Let us consider an example. Imagine that 

we have a software component that provide 

accesses to two files: one stores the information 

about products and the other stores the 

information about customers. To access to a 
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file, one needs to open it, and after use one 

needs to close it. Accesses to different files can 

be done in parallels, and access can be reads 

and writes such that all the reads should be 

before writes. Let us denote by 𝑂𝑝, 𝑅𝑝, 𝑊𝑝 and 

𝐶𝑝 the accesses open, read, write and close for 

the file 1 (for products), and by 𝑂𝑐, 𝑅𝑐, 𝑊𝑐 and 

𝐶𝑐 the accesses open, read, write and close for 

the file 2 (for customers). To use the component 

we need to activate it by action 𝐴, and we need 

to deactivate it by action 𝐹 after use. The 

interaction protocol could be specified by two 

regular expressions to express the condition on 

the temporal order between actions on each file. 

These regular expressions could be 

(𝐴(𝑂𝑝𝑅𝑝𝑊𝑝𝐶𝑝)∗𝐹)∗ and (𝐴(𝑂𝑐𝑅𝑐𝑊𝑐𝐶𝑐)∗𝐹)∗. 

Does the execution 𝐴𝑂𝑝𝑂𝑐𝑅𝑝𝑅𝑐𝑊𝑐𝑊𝑝𝐶𝑝𝐶𝑐𝐹 

conform to this protocol? It does because it 

satisfies the restriction on the temporal order for 

each file. Now, assume that it takes 1 second 

for the read accesses, then the execution will 

satisfy the protocol if the delays between 𝑅𝑝 

and 𝑊𝑝 (not 𝑅𝑝 and 𝑅𝑐; these can be done in 

parallel), and 𝑅𝑐 and 𝑊𝑐 are more than 1 

second. 

In this work, we propose a technique to 

specify real-time concurrent interaction 

protocols for component interfaces that is an 

efficient formalization of the specification from 

the example mentioned above, and define 

formally what we mean by saying a real-time 

execution conforms to an interaction protocol in 

our model. Then we develop a technique to 

check if a real-time system modeled by a timed 

automaton satisfies a real-time concurrent 

interaction protocol specified in the interface of 

a component. 

The paper is organized as follows. The next 

section presents our general model for real-time 

concurrent interaction protocols. Section 3 

presents an algorithm to check if a timed 

automaton satisfies a protocol specification. 

The last section is the conclusion of our paper. 

2. General protocol model 

Let Σ𝑖, 𝑖 = 1, … , 𝑘 be alphabets of service 

names for a component 𝒞, and let Ω = ⋃𝑘
𝑖=1 Σ𝑖 

be the alphabet of all service names that the 

component provides. Our intention is that 

services in each Σ𝑖 need to be executed 

sequentially, and services in different Σ𝑖 and Σ𝑗 

can be executed in parallel. Each Σ𝑖, 𝑖 = 1, … , 𝑘 

can overlap another, but they must not be 

included in each other, i.e. Σ𝑖 is a maximal set 

of services that need to be executed in 

sequence. When 𝑘 = 1 there is no concurrency 

for the component. Each service in Ω may take 

time to finish. We specify this fact by a 

function 𝛿: Ω → ℝ≥. So, a service 𝑎 ∈ Ω takes 

𝛿(𝑎) time units to finish. An interaction 

protocol specifies a constraint on the temporal 

order on the services in each separate Σ𝑖, and 

this is modeled efficiently by a regular 

expression on Σ𝑖. Therefore, we define: 

 
Definition 1 (Real-time interaction 

protocol) A real-time interaction protocol 𝜋 is a 

tuple 〈(𝛴1, 𝑅1), … , (𝛴𝑘 , 𝑅𝑘), 𝛿〉, where 

𝛿: ⋃𝑘
𝑖=1 𝛴𝑖 → ℝ≥, and 𝑅𝑖 is a regular expression 

on 𝛴𝑖 for 𝑖 = 1, … , 𝑘.  

 
Example.  In the example introduced in the 

Introduction of this paper,  

(Σ1, 𝑅1) = ({𝐴, 𝑂𝑝, 𝑅𝑝, 𝑊𝑝, 𝐶𝑝, 𝐹},

    (𝐴(𝑂𝑝𝑅𝑝𝑊𝑝𝐶𝑝)∗𝐹)∗)   𝑎𝑛𝑑,

(Σ2, 𝑅2) = ({𝐴, 𝑂𝑐 , 𝑅𝑐 , 𝑊𝑐 , 𝐶𝑐 , 𝐹},

(𝐴(𝑂𝑐𝑅𝑐𝑊𝑐𝐶𝑐)∗𝐹)∗).

 

𝛿(𝑅𝑝) = 𝛿(𝑅𝑐) = 1, and 𝛿(𝑋) = 0 for all 

other services 𝑋. 

Let, in the sequel, for the simplicity of the 

presentation, for a regular expression 𝑅 we 

overload 𝑅 to denote also the language 

generated by 𝑅, and when 𝑅 is the language 

generated by 𝑅 can be understood from the 

context. Note that a regular expression can 

always be represented by an automaton. 

This definition gives a simple syntax 

representation for real-time protocols. To 

understand the meaning of this representation 
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we need to define what to mean by saying a 

real-time execution conforms to a protocol in 

our model. We will use a timed automaton as 

our system model, and therefore, use a timed 

language to represent the behavior of  

our system. 

A timed word over an alphabet Ω is a 

sequence 𝑤 = (𝑎1, 𝑡1)(𝑎2, 𝑡2) … (𝑎𝑛, 𝑡𝑛), where 

𝑡𝑖−1 ≤ 𝑡𝑖 for 0 < 𝑖 ≤ 𝑛, 𝑡0 = 0. The intuition 

of this representation for a behavior is that the 

action 𝑎𝑖 takes place at time 𝑡𝑖. Given a 

protocol 𝜋 as in Definition 1, how to mean that 

𝑤 conforms to 𝜋? Let us denote 

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(𝑤) = 𝑎1𝑎2 … 𝑎𝑛. For a word 𝑥 ∈ Ω∗ 

we denote 𝑥|Σ𝑖
 the projection of 𝑥 on Σ𝑖, i.e. the 

word obtained from 𝑥 by removing all the 

characters that do not belong to Σ𝑖. 

Definition 2 (Conformation)  A timed 

word 𝑤 = (𝑎1, 𝑡1)(𝑎2, 𝑡2) … (𝑎𝑛, 𝑡𝑛) conforms 

protocol 𝜋, denoted by 𝑤 ⊧ 𝜋, iff for all 𝑖 ≤ 𝑘 

1.  𝑢𝑛𝑡𝑖𝑚𝑒𝑑(𝑤)|Σ𝑖
∈ 𝑅𝑖, and  

2.  let 𝑢𝑛𝑡𝑖𝑚𝑒𝑑(𝑤)|Σ𝑖
= 𝑎𝑗1

… 𝑎𝑗𝑚𝑖
, then 

𝑡𝑗𝑙+1
− 𝑡𝑗𝑙

≥ 𝛿(𝑎𝑗𝑙
) for all 𝑙 < 𝑚𝑖.  

The first condition in the definition says 

that the temporal order between sequential 

services is allowed by the component and reach 

an acceptance state of the component, and the 

second condition says that the component has 

been given enough time for providing the 

services. According to this definition, the 

behavior  

(𝐴, 0)(𝑂𝑝, 0)(𝑂𝑐 , 0)(𝑅𝑝, .5)(𝑅𝑐 , 1)(𝑊𝑐 , 2)

      (𝑊𝑝, 2)(𝐶𝑝, 2)(𝐶𝑐 , 2)(𝐹, 3)
 

conforms to the protocol in Example 2. 

However,  

(𝐴, 0)(𝑂𝑝, 0)(𝑂𝑐 , 0)(𝑅𝑝, .5)(𝑅𝑐 , 1)(𝑊𝑐 , 1.5)

      (𝑊𝑝, 2)(𝐶𝑝, 2)(𝐶𝑐 , 2)(𝐹, 3)
 

does not as 1.5 − 1 < 𝛿(𝑅𝑐). 

From the semantics of a protocol 𝜋, when 

no services can be executed in parallel 𝑘 = 0, 

and when there is no constraint for temporal 

order on Σ𝑖 and acceptance state the regular 

expression 𝑅𝑖 = Σ𝑖
∗. 

Given a component 𝒞 with the protocol 

specification 𝜋 in its interface, a design of a 

system, in order to use the services from 𝒞, all 

the accepted behaviors of the system design 

need to conform to 𝜋. The best model of real-

time systems is timed automata model [1] to the 

best of our knowledge. Now the question of the 

pluggability of a real-time environment to 

component 𝒞 is to decide whether all the 

members of the timed language of a given 

timed automaton 𝒜 conform to the protocol 𝜋. 

If it is the case, we write 𝒜 ⊧ 𝜋 for short. 

3. Checking the pluggability 

In this section we present a technique to 

solve the problem mentioned in the last section. 

Namely, we will prove that it is decidable if all 

the accepted behaviors of a timed automaton 𝒜 

conform to a real-time concurrent interaction 

protocol 𝜋. Then we develop an algorithm to 

check if 𝒜 ⊧ 𝜋. The algorithm serves for 

answering the question if the component 𝒞 can 

fit to our design. For simplicity, we now restrict 

ourselves to the case that the value of function 

𝛿 in 𝜋 is integers. 

Since the concept of timed automata may 

not be familiar to some readers, we recall this 

concept from [1]. A timed automaton is a finite 

state machine with an additional set of clock 

variables 𝑋 and an additional set of clock 

constraints. A clock constraint 𝜙 over 𝑋 is 

defined by the following grammar:  

𝜙 =̂ 𝑥 ≤ 𝑛  |  𝑥 ≥ 𝑛  |  ¬𝜙  |  𝜙1 ∧ 𝜙2, 
where𝑥 ∈ 𝑋 and 𝑛 stands for a natural 

number. Let Φ(𝑋) denote the set of all 

clock constraints over 𝑋. 
Definition 3 (Timed automata)  A timed 

automaton 𝑀 is a tuple 

〈𝐿, 𝑠𝐼 , Σ, 𝑋, 𝐸, ℱ〉, where   
• 𝐿is a finite set of locations,  

• 𝑠𝐼 ∈ 𝐿is an initial location,  

• Σ is a finite set of labels,  

• 𝑋is a finite set of clocks,  

• 𝐸 ⊆ 𝐿 × Σ × Φ(𝑋) × 2𝑋 × 𝐿is a finite set 

of transitions. An 𝑒 = 〈𝑠, 𝑎, 𝜙, 𝜆, 𝑠′〉 ∈ 𝐸 

represents a transition from location 𝑠 to 
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location𝑠′, labeled with 𝑎; 𝑠 and 𝑠′ are 

called source and target locations of 𝑒, and 

denoted by �⃖�and𝑒respectively; 𝜙 is a clock 

constraintover 𝑋 that must be satisfied 

when the transition 𝑒 is enabled, and 𝜆 ⊆ 𝑋 

is the set of clocks to be reset by 𝑒 when it 

takes place. In the sequel, we will use the 

subscript 𝑒 with 𝜙 and 𝜆 to indicate that 𝜙 

and 𝜆 are associated  

to 𝑒.  

• ℱ ⊆ 𝐿is the set of acceptance locations.  

 

In this paper, for simplicity, we only 

consider the deterministic timed automata, i.e. 

those timed automata which do not have more 

than one 𝑎-labeled edge starting from a location 

𝑠 for any label 𝑎 ∈ Σ. 

A clock interpretation 𝜈 for a set of clock 𝑋 

is a mapping 𝜈: 𝑋 → 𝑅𝑒𝑎𝑙𝑠, i.e. 𝜈 assigns to 

each clock 𝑥 ∈ 𝑋 the value 𝜈(𝑥). A clock 

interpretation represents the values of all clocks 

in 𝑋 at a time point. We adopt the following 

denotations. 𝜈0always denotes the clock 

interpretation which maps from 𝑋 to {0}. For a 

clock interpretation 𝜈 and for 𝑡 ∈ 𝑅, 𝜈 + 𝑡 

denotes the clock interpretation which maps 

each clock 𝑥 ∈ 𝑋 to the value 𝜈(𝑥) + 𝑡. For 𝜆 ⊆
𝑋, [𝜆 ↦ 0]𝜈 is the clock interpretation which 

assigns 0 to each 𝑥 ∈ 𝜆 and agrees with 𝜈 over 

the rest of the clocks. 

A state of a timed automaton 𝑀 is a pair 

〈𝑠, 𝜈〉, where 𝑠 ∈ 𝐿 and 𝜈 is a clock 

interpretation for 𝑋. The fact that 𝑀 is in a state 

〈𝑠, 𝜈〉 at a time instant means that 𝑀 stays in 

location 𝑠 with all clock values agreeing with 𝜈 

at that instant. 

The behavior of timed automata can be 

represented by timed words (or timed-stamped 

transition sequences). A behavior 𝜎 is a timed 

word  

𝜎 = (𝑒1, 𝜏1)(𝑒2, 𝜏2) … (𝑒𝑚, 𝜏𝑚), where 𝑚 ≥
1 and 𝑒𝑖 ∈ 𝐸, 𝑒𝑖−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑒𝑖⃖⃗⃗⃗  for 1 ≤ 𝑖 ≤ 𝑚 (with the 

convention 𝑒0⃗⃗ ⃗⃗ = 𝑠𝐼), and where 0 = 𝜏0 ≤ 𝜏1 ≤
𝜏2 ≤ ⋯ ≤ 𝜏𝑚, such that (𝜈𝑖−1 + 𝜏𝑖 − 𝜏𝑖−1) 

satisfies 𝜙𝑒𝑖
 for all 1 ≤ 𝑖 ≤ 𝑚, where 𝜈𝑖 =

[𝜆𝑒𝑖
↦ 0](𝜈𝑖−1 + 𝜏𝑖 − 𝜏𝑖−1) for 1 ≤ 𝑖 ≤ 𝑚. 

So, a behavior 𝜎 expresses that 𝑀 starts 

from the initial location 𝑠𝐼, transits to 𝑒1⃗⃗ ⃗⃗ by 

taking 𝑒1 at time 𝜏1, then transits to 𝑒2⃗⃗ ⃗⃗  by 

taking 𝑒1 at time 𝜏2, and so on, and at last 

transits to 𝑒𝑚⃗⃗⃗⃗⃗⃗  at time 𝜏𝑚. Note that (𝜈𝑖−1 +
𝜏𝑖 − 𝜏𝑖−1) is the value of the clock variables 

just before 𝑒𝑖’s taking place, and 𝜈𝑖 is the value 

of the clock variables just after 𝑒𝑖’s taking 

place. The behavior 𝜎 expresses also that the 

system 𝑀 stays in the location𝑒𝑖⃖⃗⃗⃗for 𝜏𝑖 − 𝜏𝑖−1 

time units, and then transits to by 𝑒𝑖+1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ for (1 ≤
𝑖 ≤ 𝑚). If 𝜎 = (𝑒1, 𝜏1)(𝑒2, 𝜏2) … (𝑒𝑚, 𝜏𝑚) is a 

behavior of timed automaton 𝑀, we call 𝑒𝑚⃗⃗⃗⃗⃗⃗  a 

reachable location of 𝑀 and 〈𝑒𝑚⃗⃗⃗⃗⃗⃗ , 𝜈𝑚〉 a 

(discrete) reachable state of 𝑀. A behavior of 

timed automaton 𝑀 is accepted iff 𝑒𝑚⃗⃗⃗⃗⃗⃗ ∈ ℱ. Let 

𝑠𝑖 = 𝑒𝑖⃗⃗⃗ ⃗, for 1 ≤ 𝑖 ≤ 𝑚, and 𝑠0 = 𝑠𝐼. Then the 

run corresponding to 𝜎 is the sequence:  

〈𝑠0, 𝜈0〉 →𝜏1

𝑒1 〈𝑠1, 𝜈1〉 →𝜏2

𝑒2 …

→𝜏𝑚

𝑒𝑚 〈𝑠𝑚, 𝜈𝑚〉.
 

The finite language of 𝑀 is the set of all 

accepted behaviors of 𝑀. 

In order to solve the emptiness problem for 

a timed automaton, Alur and Dill [1] have 

introduced a finite index equivalence relation 

over the state space of the automaton. The idea 

is to partition the set of the clock interpretations 

into a number of regions so that two clock 

interpretations in the same region will satisfy 

the same set of clock constraints. 

For each 𝑥 ∈ 𝑋, let 𝐾𝑥 be the largest integer 

constant occurring in a clock constraint for the 

clock variable 𝑥 of the timed automaton 𝑀, i.e.  

𝐾𝑥 = max{𝑎|𝑒𝑖𝑡ℎ𝑒𝑟𝑥  ≤   𝑎 or

𝑥  ≥   𝑎occursinaclockconstraint
of𝜙ofatransition𝑒 }.

. 

Let 𝐾𝑋 = max𝑥∈𝑋𝐾𝑥. 

For a real number 𝑟, let 𝑓𝑟𝑎𝑐(𝑟) = 𝑟 − ⌊𝑟⌋ 
(⌊𝑟⌋ is the maximal integer number which is not 

greater than 𝑟) be the fractional part of 𝑥. The 

equivalence relation ≅ over the set of clock 

interpretations is defined as follows: for two 

clock interpretations 𝜈 and 𝜈′, 𝜈 ≅ 𝜈′ iff the 

following three conditions are satisfied:   
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1.  For all x ∈ X either ν(x) > Kx ∧ ν′(x) >
Kxor ⌊ν(x)⌋ = ⌊ν′(x)⌋.  
2.  For all x, y ∈ X such that ν(x) ≤ Kx and 

ν(y) ≤ Ky, frac(ν(x)) ≤ frac(ν(y)) iff 

frac(ν′(x)) ≤ frac(ν′(y)).  

3.  For all x ∈ X such that ν(x) ≤ Kx, 

frac(ν(x)) = 0 iff frac(ν′(x)) = 0.  

 

When 𝜈 ≅ 𝜈′, it is not difficult to see that 

for any clock constraint 𝜙 occurring in a 

transition 𝑒 = 〈𝑠, 𝑎, 𝜙, 𝜆, 𝑠′〉 ∈ 𝐸, 𝜈 satisfies 𝜙 

iff 𝜈′ satisfies 𝜙. 

A clock region for 𝑀 is an equivalence 

class of the clock interpretations induced by ≅. 

We denote by [𝜈] the clock region to which a 

clock interpretation 𝜈 belongs. From the 

definition of ≅, a region is characterized by the 

integer part of the value of each clock 𝑥 when it 

is not greater than 𝐾𝑥, by the order between the 

fraction part of the clocks when they are 

different from 0. Therefore, the number of 

clock regions is bounded by |𝑋|! ⋅ 2|𝑋| ⋅
∏𝑥∈𝑋 (2𝐾𝑥 + 2). A configuration is defined as 

a pair 〈𝑠, 𝛼〉 where 𝑠 ∈ 𝐿 and 𝛼 is a clock 

region. Based on the clock regions, the region 

automaton of 𝑀, whose states are 

configurations of 𝑀, and whose transitions are 

the combination of a time transition and a 

action transition from 𝑀. There is a time 

transition from 〈𝑠, 𝛼〉 to 〈𝑠, 𝛽〉 iff 𝛽 = 𝛼 + 𝑡 for 

some 𝑡 (here for 𝛼 = [𝜈] we define 𝛼 + 𝑡 =
[𝜈 + 𝑡]). 

Definition 4 (Region automata) Given a 

timed automaton 𝑀 as in Definition 3, the 

region automaton of 𝑀 is the automaton 

ℛ(𝑀) = 〈𝐿′, 𝑠′𝐼 , 𝛴, 𝐸′, ℱ′〉, where  

• The set of states 𝐿′ consists of all 

configurations of 𝑀,  

• 𝑠′𝐼 = 〈𝑠𝐼 , [𝜈𝜃]〉where𝜈𝜃 is the clock 

valuation that assigns 0 to all clock 

variables in 𝑋,  

• 𝐸′ is the set of transitions of ℛ(𝑀) such 

that a transition ((𝑠, 𝛼), 𝑎, (𝑠′, 𝛽)) ∈ 𝐸′ 
iff there is a timed transition from 〈𝑠, 𝛼〉 
to 〈𝑠, 𝛼′〉 and a transition in 

𝑀〈𝑠, 𝑎, 𝜙, 𝜆, 𝑠′〉 such that 𝛼′ satisfies 

𝜙and 𝛽 = [𝜆 ↦ 0]𝛼′,  
• ℱ′ ⊆ 𝐿′such that 𝑠′ ∈ ℱ′ iff 𝑠′ = 〈𝑠, 𝛼〉 
where 𝑠 ∈ ℱ and 𝛼 is a clock region.  

 

Note that ℛ(𝑀) is a ‘untimed’automaton, 

and we also denote its (untimed) language 

by ℒ(ℛ(𝑀)). 
We can simplify the automata 𝑀 and ℛ(𝑀) 

such that all states (locations) are reachable and 

all states can lead to an acceptance state. 

We recall some results from the timed 

automata theory [1] that will be used in our 

checking procedure later. Let ℒ(𝑀) denote the 

𝜔-timed language (language of infinite timed 

words) generated by 𝑀 (by adding 𝜀-transitions 

from a final state to itself we can extend the 

finite language of 𝑀 to the 𝜔 language). 

Theorem 1     

1.For the timed automaton 𝑀, 

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝑀)) = ℒ(ℛ(𝑀)). Therefore, 

the emptiness problem for 𝑀 is decidable. 
2.  If 〈𝑠0, 𝜈0〉 →𝜏1

𝑒1 〈𝑠1, 𝜈1〉 →𝜏2

𝑒2 … →𝜏𝑚

𝑒𝑚 〈𝑠𝑚 , 𝜈𝑚〉is 

a run from the initial state of 𝑀 then 

〈𝑠0, [𝜈0]〉 →𝑒1 〈𝑠1, [𝜈1]〉 →𝑒2 … →𝑒𝑚 〈𝑠𝑚, [𝜈𝑚]〉 
is a run of ℛ(𝑀), and reversely, if 

〈𝑠0, [𝜈0]〉 →𝑒1 〈𝑠1, [𝜈1]〉 →𝑒2 … →𝑒𝑚 〈𝑠𝑚, [𝜈𝑚]〉 
is a run in ℛ(𝑀) then there are 𝜏1, … , 𝜏𝑚 

such that 

〈𝑠0, 𝜈0〉 →𝜏1

𝑒1 〈𝑠1, 𝜈1〉 →𝜏2

𝑒2 … →𝜏𝑚

𝑒𝑚 〈𝑠𝑚, 𝜈𝑚〉 is 

a run from the initial state of 𝑀.  

Let in the sequel, for an automaton 𝑀 the 

size of 𝑀 (the number of transitions and 

locations) be denoted by |𝑀|. 
Now, we return to the problem to decide if 

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜))|Σ𝑖
⊆ 𝑅𝑖 for a given timed 

automaton 𝒜. It turns out that this problem is 

solvable, and just a corollary of Theorem 1.  

Theorem 2   Given a regular expression 𝑅𝑖 

and a timed automaton 𝒜 the problem 

𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜))|𝛴𝑖
⊆ 𝑅𝑖 is decidable in 

𝒪(|ℛ(𝒜)|. |𝑅𝑖|) time. 

 Proof. Let ℬ be an automaton that 

recognizes all the strings on Σ𝑖 that do not 

belong to 𝑅𝑖, i.e. an automaton that recognizes 
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the complement �̅�𝑖 of 𝑅𝑖. The synchronized 

product ℬ ×Σ𝑖
ℛ(𝒜) recognizes the language 

�̅�𝑖||ℒ(ℛ(𝒜)) ({𝑤  |  𝑤|Σ𝑖
∈ �̅�𝑖 ∧ 𝑤|Σ′ ∈

ℒ(ℛ(𝒜))}). It follows Theorem 1 that 

�̅�𝑖||ℒ(ℛ(𝒜)) = �̅�𝑖||𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜)). The 

emptiness of the language generated by 

ℬ × ℛ(𝒜) is decidable in 𝒪(|ℛ × ℛ(𝒜)|) 

time. But �̅�𝑖||𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜)) is empty if and 

only if 𝑢𝑛𝑡𝑖𝑚𝑒𝑑(ℒ(𝒜))|Σ𝑖
⊆ 𝑅𝑖. Hence, the 

theorem is proved. 

Now we consider the problem to decide if 

all the strings generated by 𝒜 satisfy the second 

item of Definition 2. Let 𝒜 = 〈𝐿, 𝑠𝐼 , Σ, 𝑋, 𝐸, ℱ〉. 

Let Σ𝑖 ⊆ Σ. Let 𝑐𝑖 be a new clock variable, 

𝑐𝑖 ∈ 𝑋. Define 𝒜′ to be the automaton that is 

the same as 𝒜 except that transitions with label 

in Σ𝑖 will have to reset the clock 𝑐𝑖 as well, i.e. 

𝒜′ = 〈𝐿, 𝑠𝐼 , Σ, 𝑋 ∪ {𝑐𝑖}, 𝐸′, ℱ〉, and 𝐸′ = {𝑒′ =
(𝑠, 𝑎, 𝜙, 𝐶 ∪ {𝑐𝑖}, 𝑠′)  |  𝑒 = (𝑠, 𝑎, 𝜙, 𝐶, 𝑠′) ∈ 𝐸 ∧
𝑎 ∈ Σ𝑖} ∪ {𝑒′ = (𝑠, 𝑎, 𝜙, 𝐶, 𝑠′)  |  𝑒 =
(𝑠, 𝑎, 𝜙, 𝐶, 𝑠′) ∈ 𝐸 ∧ 𝑎 ∈ Σ𝑖}We illustrate the 

difference of transitions in 𝒜 and 𝒜′ in Fig. 1. 

Since clock variable 𝑐𝑖 does not appear in 

any guard 𝜙 of 𝒜, the automaton 𝒜′ generates 

the same timed language as 𝒜 does. Adding the 

clock variable 𝑐𝑖 is just for the purpose of 

counting time between two (consecutive) 

transitions in Σ𝑖. A clock valuation for 𝒜′ now 

is of the form 𝜈 ∪ {𝑐𝑖 ↦ 𝑣} for some 𝑣 ∈
𝑅𝑒𝑎𝑙𝑠. Now we construct the region graph 

ℛ(𝒜′) for 𝒜′, and analyze this graph to see if 

the second condition of Definition 2 is violated 

by a timed word from ℒ(𝒜). If 𝛿(𝑎) = 0 for all 

𝑎 ∈ Σ𝑖, then the second condition for 𝑖 is satisfied 

trivially. Otherwise, Theorem 1 gives that this 

condition is violated if and only if there is a 

run

〈𝑠0, [𝜈0]〉 →𝑒1 〈𝑠1, [𝜈1]〉 →𝑒2 … →𝑒𝑚 〈𝑠𝑚, [𝜈𝑚]〉 
in ℛ(𝒜′) in which there are two transitions 𝑒𝑙 

and 𝑒𝑙+ℎ corresponding to resetting clocks 𝑐𝑖 in 

𝒜′: 𝑒𝑙 = (〈𝑠𝑙, [𝜈𝑙]〉, 𝑎, 〈𝑠𝑙+1, [𝜈𝑙+1]〉 where 𝑎 ∈
Σ𝑖, 𝜈𝑙+1(𝑐𝑖) = 0, and 𝑒𝑙+ℎ =
(〈𝑠𝑙+ℎ, [𝜈𝑙+ℎ]〉, 𝑏, 〈𝑠𝑙+ℎ+1, [𝜈𝑙+ℎ+1]〉 where 𝑏 ∈
Σ𝑖, 𝜈𝑙+ℎ+1(𝑐𝑖) = 0, and transitions 

𝑒𝑙+1, … , 𝑒𝑙+ℎ−1 do not have label in Σ𝑖 (not 

corresponding to transitions in 𝒜′ resetting 

clock 𝑐𝑖) that makes the following condition 

satisfied: Let the run in 𝒜′ according to 

Theorem 1 corresponding to that path be  

〈𝑠𝑙 , 𝜈𝑙〉 →𝜏𝑙

𝑒𝑙 … →𝜏𝑙+ℎ−1

𝑒𝑙+ℎ−1

〈𝑠𝑙+ℎ, 𝜈𝑙+ℎ〉 →𝜏𝑙+ℎ

𝑒𝑙+ℎ 〈𝑠𝑙+ℎ+1, 𝜈𝑙+ℎ+1〉

Then, 𝜈𝑙+ℎ(𝑐𝑖) + 𝜏𝑙+ℎ < 𝛿(𝑎). This implies the 

following: After having removed all non-

reachable states from ℛ(𝒜′), and adding time 

transitions (labeled with “time”) to ℛ(𝒜′), we 

have that there is also a path in ℛ(𝒜′) 

〈𝑠𝑙 , [𝜈𝑙]〉 →𝑒𝑙 … →𝑒𝑙+ℎ−1

〈𝑠𝑙+ℎ, [𝜈𝑙+ℎ]〉 →𝑡𝑖𝑚𝑒

〈𝑠𝑙+ℎ, [𝜈𝑙+ℎ + 𝜏𝑙+ℎ]〉 →𝑒𝑙+ℎ 〈𝑠𝑙+ℎ+1, [𝜈𝑙+ℎ+1]〉

 

in which 𝜈𝑙+ℎ(𝑐𝑖) + 𝜏𝑙+ℎ < 𝛿(𝑎) where 𝑎 

is the label of 𝑒𝑙, and 𝑒𝑙+ℎ has label in Σ𝑖. A 

path in ℛ(𝒜′) satisfying this condition is called 

“violation” path. Now, checking for the 

Fig. 1. Transitions in 𝒜 and 𝒜′: 𝑎, 𝑏 ∈ Σ𝑖 , 𝑐 ∈ Σ𝑖 . 
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violation of the second condition of Definition 

2 from 𝒜 is done by searching in the graph of 

ℛ(𝒜′) for a single path (not containing a loop) 

from 𝑒𝑙 to 𝑒𝑙+ℎ with the violation property as 

mentioned above (we call it violation path). If 

no such a path found, then the timed language 

ℒ(𝒜) satisfies the condition. This can be done 

in 𝒪(|ℛ(𝒜′)|2) time. Therefore, we have: 

Theorem 3  The problem “if a given timed 

automaton 𝒜 conforms to a real-time 

concurrent interaction protocol 𝜋” is decidable 

in time 𝒪(|ℛ(𝒜′)|2).  

We sumarizes our results in the following 

deciding procedure: 

Algorithm (Deciding if a timed automaton 

satisfies a real-time interaction protocol) 

Input:A real-time protocol 𝜋 =
〈(Σ1, 𝑅1), … , (Σ𝑘 , 𝑅𝑘), 𝛿〉, 
where 𝛿: ⋃𝑘

𝑖=1 Σ𝑖 → ℕ≥, and 𝑅𝑖 is a regular 

expression on Σ𝑖 for 𝑖 = 1, … , 𝑘. 

A timed automaton 𝒜 = 〈𝐿, 𝑠𝐼 , Σ, 𝑋, 𝐸, ℱ〉 that 

satisfies Σ𝑖 ⊆ Σ for all 𝑖 ≤ 𝑘. 

Output: “Yes” if ℒ(𝒜) ⊧ 𝜋, “no” otherwise.  

Methods: 

1. Construct the region automaton of 𝒜, 

namely the automaton ℛ(𝒜). 

2. For each 𝑖 = 1, … , 𝑘 construct automata 

ℬ𝑖 that recognizes regular language �̅�𝑖. 

Then, construct the synchronized product 

ℛ(𝒜) ×Σ𝑖
ℬ𝑖 and check if ℒ(ℛ(𝒜) ×Σ𝑖

ℬ𝑖) 

is empty. If ℒ(ℛ(𝒜) ×Σ𝑖
𝐵𝑖) is not empty 

for some 𝑖, stop with output “no”.  

3. If there is no time constraint in 𝜋, i.e. 𝛿 is 

0 mapping on Σ, stop with output “yes”. 

4. For each 𝑖 = 1, … , 𝑘, where 𝛿 is not a 0-

mapping on Σ𝑖, construct the timed 

automaton 

𝒜′ = 〈L, sI, Σ, X ∪ {ci}, E′, ℱ〉, where E′ =
{e′ = (s, a, ϕ, C ∪ {ci}, s′)  |  e =
(s, a, ϕ, C, s′) ∈ E ∧ a ∈ Σi} ∪ {e′ =
(s, a, ϕ, C, s′)  |  e = (s, a, ϕ, C, s′) ∈ E ∧
a ∈ Σi}, and then construct the region graph 

ℛ(𝒜′). Add all “time” transitions to ℛ(𝒜′) 

and simplify it by removing all 

nonreachable states. Search in ℛ(𝒜′) for a 

single violation path. If such a path is found 

for some i, stop with the output “no”. 

5. Stop with the output “yes”.  

Note that a concurrent real-time system can 

be modeled as a timed automata network which 

is a synchronized product of a number of timed 

automata, where the concurrency can be 

expressed explicitly. A synchronized product of 

a number of timed automata is also a timed 

automaton, and hence, our algorithm works also 

on timed automata networks. 

4. Conclusion 

We have proposed a simple but powerful 

technique to specify interaction protocols for 

the interface of components. Our model can 

specify many aspects for interaction: the 

temporal order between services, concurrency 

for services, and timing constraints. We also 

have shown that the problem of checking if a 

timed automaton conforms to a given real-time 

protocol is decidable, and developed a decision 

procedure for solving the problem. The 

complexity of the procedure is proportional to 

the size of the region graph of the input timed 

automaton which is acceptable for many cases 

(like the way that the tool UPAAL handles 

systems). We will incorporate this technique to 

our model for real-time component-based 

systems in our future work. We believe that our 

results can be extended to the cases in which 

systems are modeled by timed automata with 

parameters, i.e. timed automata where a 

parameter can appear in guards and can be reset 

by a transition. 
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