VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

Ant Colony Optimization based
Founder Sequence Reconstruction

Anh Vu Thi Ngoc!, Dinh Phuc Thai?,
Hoang Duc Nguyen?, Thanh Hai Dang**, Dong Do Duc?

'The Hanoi college of Industrial Economics
2Faculty of Information Technology, VNU University of Engineering and Technology

Abstract

Reconstruction of a set of genetic sequences (founders) that can combine together to form given genetic
sequences (e.g. DNA) of individuals of a population is an important problem in evolutionary biology. Such
reconstruction can be modeled as a combinatorial optimization problem, in which we have to find a set of
founders upon that genetic sequences of the population can be generated using a smallest number of
recombinations. In this paper we propose an ant colony optimization algorithm (ACO) based method, equipped
with some important improvements, for the founder DNA sequence reconstruction problem. The proposed
method yields excellent performance when validating on 108 test sets from three benchmark datasets. Comparing
with the best by far corresponding method, our proposed method performs better in 45 test sets, equally well in
44 and worse only in 19 sets. These experimental results demonstrate the efficacy and perspective of our
proposed method.

Received 11 Sep 2017; Revised 31 Dec 2017; Accepted 31 Dec 2017

Keywords: Founder sequence reconstruction (FSR), Ancestor genes, Ant colony optimization (ACO).

1. Introduction To this end, the main challenge is at the
problem of determining the plausible number of
Today we have been observing a huge founder (ancestor) sequences and of finding
amount of biological sequences themselves for a given finite offspring
(e.g. DNA/genes, proteins) steadily being sequences. It is well known as the founder
generated thanks to the unprecedentedly fast sequence reconstruction problem.
development of bio-technologies. Having Various methods have been recently
genetic sequences of a population, researchers proposed for reconstructing founder sequences,
are often interested in the evolution history of such as those based on dynamic programming
the population, which can be traced back by [2], tree search [3], neighboring search [4] and
re-constructing such given sequences from a metaheuristics [5]. In this paper we propose a
small number of not-yet identified ancestors ant colony optimization (ACO) based method
(namely founder sequences) using some genetic for the founder sequence reconstruction
operators. Many biological studies have problem. The manuscript is structured
demonstrated the efficacy of this approach [1]. as follows:

* Section 2 first formulates the problem of
ming author. E-mail.: hai.dang@vnu.edu.vn founder sequence reconstruction and Section 3
https://doi.org/10.25073/2588-1086/vnucsce. 170 then presents related works that have been

59



60 A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

successfully applied to the problem with good
results reported.

e Qur proposed algorithm, experimental
results and comparisons with previously
proposed state-of-the-art related methods are
described in Section 4.

» Section 5 gives some conclusions for the
proposed method. It also suggests some potential
follow-ups to improve the method further.

2. Problem statement

Founder Sequences Reconstruction Problem
(FSRP) is defined as follows:
Given a set of n  recombinants

C=(C,C,,...,C)), each C, is a sequence of

length m defined over a finite set S, i.e.,
¢, =C,,C,, with C; €S (which can be A,
C, G, T if recombinants of interest are DNA
sequences), we need to find a set of k£ founder
sequences [ = (F|,F,,
defined over the set S'. A set F' is considered
valid if the set of recombinants C can be
reconstructed from F' . This means that, each
recombinant C; can be decomposed into p,

, each of length m

components (1< p, <m) E.laE.za---aE. SO
i i ip

that each piece £, (j=1,2,..., p,) appears at
ij

least once at the same position as in C; .

Set of recombinants C  Set of founders F  Decomposition

01001000
00111000
10011100
10111010
01101110
10110011

01101110 (a) aalblaalccc
10010011 (b) ale & ¢ vigigig
10111000 (c) bbbblaalcc

cccccclaa

aaaaaaaa
cccclbbbb

Figure 1. Haloptye sequences as recombinants, which are supposed to be originated from a set of 3
predefined founder sequences using a decomposition with 8 breakpoints.

A valid decomposition is considered
reducible if two consecutive pieces do not
appear in the same founder sequence. Among
such reducible ones the FSRP aims to find out
the optimal decompositions with a minimum
number of required breakpoints. The number of
breakpoints for a solution /' can be calculated

using the formula: z;pi -m.

In this paper we consider a common
biological application in that each recombinant
is a haplotype sequence, i.e. S ={0,1}, where
0 and 1 are the two possible common alleles.

On the left side of Figure 1 is an example of
a set C of 6 haplotype sequences, which is
presented in form of a matrix. In the middle part
is a valid founder sequences (a, b and c¢)
assuming that the number of founder sequences
is set to 3. The optimal decomposition with 8
breakpoints on the recombinants into sections,

which are part of the founder sequences, is
shown on the right-hand side. Breakpoints are
marked with vertical bars.

The FSRP was first introduced by Ukkonen
[2] and has been proven NP-Hard [6] with
k>2.

3. Related work

This section introduces two state-of-the-art
algorithms proposed for the FSR problem,
namely Recblock [3] and LNS [4], which have
achieved excellent results on benchmark
datasets.

3.1. RecBlock algorithm

RecBlock [3] is a FSR algorithm based on
tree search. Given k founder sequences each of
length m, the algorithm encodes them as a
matrix with k& rows and m columns. RecBlock



A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65 61

reviews the columns of the matrix from left to
right. Vertex V, at the depth / of the search tree

is part of a solution for the prefix part of the
founders till the column /. Each vertex V, is

labeled with a number of breakpoints BP(V) in

the process of reconstructing recombinants by far.

Recblock uses some strategies to speed up
the reconstruction:

* Only consider the founder sequences in
the alphabet order to avoid revisiting
permutations.

* A vertex is not extended further if its
breakpoint number greater than that of the best
solution so far.

Given two vertices V,1 and sz at the depth
of [ and [,
BP(V,)~BP(/,) 2 n

respectively, if

(where n is the

number of recombinants), we may ignore Vl1
for downstream analysis.
3.2. Large neighborhood search algorithm

LNS-Ic is empirically considered the best
algorithm proposed by far for solving the FSR
problem [4]. This algorithm uses the nearest-
neighbor search strategy over a large
neighborhood of constructed solutions.

During searching the neighborhood, the

€ F' beforehand,

then uses the algorithm Recblock to search for
alternative founder sequences in FF

free

algorithm picks out a set

ree

Whenever a better solution is found out, LNS-
Ic performs local search over neighborhood
from scratch.

4 Proposed method
4.1. Ant colony optimization based FSR

Ant colony optimization [7] (ACO) is a
metaheuristic method simulating how ants in
nature find paths from their nest to food
sources, which turn out to be a reinforcement
learning method. ACO solves optimization
problems throughout many episodes, in each of
which every ant travels to find solutions based
on heuristic information and pheromone matrix
7 containing information learned. The best

solution found in the current episode is used to
learn (tune 7 ) and go for the next turn.

Our proposed method for FSR has input and
output as follows:

Input: binary matrix C of size n*m
representing a recombinant set and k is the
number of the founder sequences to be found.

Output: binary matrix F of size k*m
string representing the founder sequences so
that BP(C, F') is minimal. Here, BP(C, F') is
the number of breakpoints required to obtain C
from F .

In general, our ACO based method for FSR
works as depicted in Algorithm 1:

Algorithm 1 ACO based method for FSR

1: while stop criteria not yet satisfied do

2 forac Ado

3: solve(a) > an ant a find a solution;

4 Apesr < best(Ants) > The best
solution found so far by ants;

5t update(result, ap.;) > Update the best
result;
6: update(T, apes;) » Update the pheromone

for the next use;

4.2. Structure graph for the FSR problem

For the sake of visualization, we simulate
the FSR problem as the problem of finding
paths on a corresponding structure graph (see
Figure 2).

This structure graph includes a start, an end
node and m columns. Each column has 2*
vertices, of which each corresponds to a state of
the corresponding column in the matrix F' of
founder sequences. In particularly, each state is
a binary string of length £ .

Each vertex has edges connecting to all
ones in the next column. We can see all paths
starting from the start to the end node has to go
through every column once, at which one state
is chosen. Each journey of ants travelling from
the start to the end node therefore corresponds
to a complete matrix of founder sequences.

4.3. How ants travel on the structure graph

When travelling on the structure graph, ants
chose a next vertex to visit at random. The



62 A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

algorithm is described in pseudo code in
Algorithm ??. The probability at which a vertex
is chosen is proportional to its level of
compatibility to the matrix constructed by ants
so far. This level is calculated through heuristic
and pheromone information 7 . Particularly,
the j vertex in the column i will be visited by

an ant with a probability.
p = [Ti,_/ a[ﬂa,_/ ]ﬂ
" Z[T,’,z]a[na,z]ﬂ

!

Where:
* 17, 1s the heuristic value (see 4.3.1).

* 7, is the pheromone information (see
4.3.2).
* a,f are two parameters of an ACO

determining the correlation between the
heuristic value and the pheromone information.

Algorithm 2 How ants travel

1: fori=1tomdo

2 P « ProbabilityTable(q, i);
3: J « PickRandom(P);

4 a « SetColumn(a, i, j);

4.3.1. Heuristic information

While constructing the optimal solution,
heuristic information is calculated according to
the level of compatibility to the matrix that is
yielded with the next moves of ants. In more
details, when an ant is going to the j vertex in

the column i the heuristic information 1is
calculated as follows.

stari end

Figure 2. Structure graph for the ACO-based
founder sequence reconstruction.

1
BP(C.,F, +j)

where:

77a,j

* C, is the matrix of the first i columns of

matrix C.
« F, is the solution that ant a has built

(with i —1 columns).
« I/ +j is the matrix resulted when ant a
intends to visit vertex j .

To give an example, when i =3 we have
the structure graph as in Figure 3.

Figure 3. Structure graph when i = 3.

4.3.2. Pheromone information
In the FSR problem, we denote 7, as the

pheromone information of the j ™ vertex in the
column i in the graph. Vertices being visited in
the optimal solutions found in every searching
phase by ants so far will be learnt such that they
are of high priority to be visited in next phases.

There are various pheromone updating
methods that have been proposed for ACO. We
select the Smoothed Max-Min Ant system [8]
because it yields the best results in our
experiments. In this regard, the pheromone
information is updated after each loop as follows:

7, =(l-p)r,; +A,

where:

A _ prmmif‘(i’ ]) & T

T pTLif G ) eT

and T is the optimal solution that ants found
after the loop and (i, j) is the vertex j in the

column i of the structure graph.
4.4. Improved ACO for FSRP

4.4.1 Ants find solutions synchronously
Note that the problem solution space is
extremely large, if working independently with



A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65 63

each other ants could hardly to concentrate on
potential regions of the searching space. We
therefore propose a search strategy for ants as
follows:

We let ants (in the set Ants) find solutions
in parallel. When moving to the next column,
instead of letting each ant choose the next
vertex to go, we create a new ant set (called
NewdAnts) to prolong paths created by ants in
the set Ants. In particular, if an ant @ prolongs
the path for an ant a, it means that ant @’ will
go over the similar journey as ant a before
moving to the next vertex in the next column.
When having NewAnts with the same size as
Ants, we move to the next column and repeat
such a new ant set building procedure from
NewAnts until having a complete solution set.
This procedure is depicted in pseudo code in
Algorithm 3.

For more details, when going from the
column i—1 to the column i, each ant
a' € NewAnts will randomly choose an ant
a € Ants to prolong its path and a vertex j in

the column i to move forward. The ant a is
chosen with a probability also based on the
heuristic and pheromone information, as
follows:

[z, ,1"[n,,)

P =
DY AL G

a
X

Algorithm 3 Ants find solutions synchronously

1: fori=1tomdo
P « ProbabilityTable(Ants, i);
for a’ € NewAnts do

a, j « PickRandom(P);
a’ « SetColumns(a, 1, j);
Ants = NewAnts;

& B o

4.4.2. Other improvements

Neighborhood search: To lower the
probability of missing good solutions while
searching, we recommend using the reduced
version of the algorithm RecBlock (3.2) to find
other better solutions within the vicinity of the best
by far solution found by ants. Instead of browsing
the whole founder sequences, for each founder in

the optimal solution found by far we use RecBlock
to find another alternative better one.

Searching along two dimensions: With the
newly proposed search strategy, ants will
quickly converge onto some solution regions,
leading to a low diversity of found solutions. To
improve this problem, apart from searching
forward from the start to the end vertex, we also
let ants search backward along the opposite
direction (i.e. from the end back to start vertex).
The search direction is periodically changed.
When searching backward, the complete
different heuristic information is used, leading
to the potential of finding new solutions.

5. Experimental results

We compare our proposed FSR algorithm
called ACOFSRP with the best corresponding
one by far, i.e. LNS-1c [4] on 3 benchmark data
sets, namely rnd (random), evo and ms (each
contains 6 test set). All sequences in the first
data set is randomly generated while those in
the two latter ones are generated according to
evolutionary models. All three are used in the
study of LNS-1c. We do experiments with the
founder sequence length k €5,6,7,8,9,10 for

each of such 3 test sets, leading to a total of
108 tests.

We also do experiments with different
variants of ACOFSRP by not using either one
of two improvements or both on the same three
benchmark sets. Experimental results show that
ACOFSRP outperforms its two variants,
demonstrating the power of two proposed
improvements in ACOFSRP (data not shown).

Due to the random nature of ACOFSRP, we
perform each test 20 times and the run time of
each is limited to 10 hours. These numbers are
1 and 72, respectively, in the study of LNS-1c
[4]. The program is run on a CPU with 12GB
RAM and 4GHz processor. Table ?? shows the
detailed performance, in terms of the solution
quality (number of required breakpoints) and
the running time, of ACOFSRP and LNS-1c on
three benchmark data sets. Note that the values
for ACOFSRP are the averages of those from
20 running times.



64 A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65

Table 1. Detailed performance of our ACOFSRP and LNS-1c¢ on three benchmark sets

# founders ACOFSRP LNS-1c ACOFSRP LNS-1c ACOFSRP LNS-1c
Value| Time(s) Value| Time(s) Value|Time(s) Value|Time(s) Value| Time(s) Value| Time(s)
rnd-30 60 evo-30 60 ms-30 60
5 372 | 4501 | 372 | 48427 | 145 | 3996 | 145 4 124 | 4520 | 124 209
6 324 | 5695 | 324 | 44255 | 94 5394 | 94 53 929 5871 | 100 | 98859
7 289 | 8136 | 293 906 65 7644 65 86 81 7194 | 81 17273
8 263 | 12361 | 268 | 96096 | 45 | 12502 | 45 353 69 | 11135 70 | 54798
9 240 | 22388 | 246 | 175659 | 36 | 27293 | 36 51 59 | 17377 | 60 2002
10 221 | 34456 | 229 | 90559 | 28 | 36041 | 28 1 50 | 33364 50 | 38579
rnd-30 90 evo-30 90 ms-30 90
5 585 | 6753 | 585 | 72903 | 203 | 6222 | 203 60 167 | 8933 | 167 747
6 514 | 8501 | 516 | 79754 | 118 | 7491 | 118 52 136 | 10240 | 136 768
7 461 | 12506 | 472 | 55418 | 69 | 12225] 69 19 114 | 12369 | 114 | 30934
8 417 | 19270 426 | 07173 | 43 | 20652 | 43 3 96 | 16197 | 97 | 126402
9 382 | 31562 | 399 | 12679 35 | 35383 | 35 69 83 | 32062 | 85 216
10 353 | 36055| 370 | 244167 | 31 | 36056| 31 28 73 | 36057 74 1648
rnd-30 150 evo-30 150 ms-30 150
5 976 | 11244 | 976 | 134777 | 381 | 10419 | 381 893 252 | 11476 | 251 | 4986
6 858 | 14045 | 865 | 216875 | 230 | 13178 | 230 72 189 | 16279 189 | 1421
7 766 | 20532 | 778 | 140918 | 131 | 21422 | 131 72 154 | 24401 | 153 | 25361
8 698 | 31618 | 710 | 250463 | 63 | 30531 | 63 59 125 | 32750 | 125 | 7590
9 639 | 36054 | 666 | 87405 39 [36071 ] 39 1 103 | 36050 | 103 | 106022
10 591 | 36094 | 619 | 21046 | 38 | 36120| 35 12 88 | 36118 | 88 | 22794
rnd-50 100 evo-50 100 ms-50 100
5 1211 9290 | 1213 | 65968 | 368 | 8644 | 368 145 | 310 | 12258 | 310 | 2192
6 1084 | 12766 | 1097 | 60881 | 250 | 12072 | 250 113 251 | 16089 | 251 | 18039
7 985 | 20193 | 1009 | 8769 | 174 | 21207 | 174 | 14706 | 210 | 25576 | 212 442
8 910 | 31773 | 928 | 44145 | 123 | 34994 | 124 149 177 | 34846 | 178 | 51495
9 845 36063 | 875 | 113792 | 99 | 36061 | 99 2507 | 156 | 36056 | 155 | 38758
10 794 | 36098 | 830 [ 221118 | 84 | 36128 | 83 3696 | 138 | 36137 | 137 | 30080
rnd-50 150 evo-50 150 ms-50 150
5 1797 | 14459 | 1800 | 195873 | 522 | 12464 | 522 132 430 | 18911 | 429 | 48449
6 1606 | 19572 | 1622 | 144474 | 319 | 19894 | 319 109 | 346 | 25681 | 346 | 26957
7 1466 | 31384 | 1484 | 221180 | 205 | 33503 | 205 4 287 | 30661 | 286 | 1958
8 1354 | 36044 | 1385 | 85140 | 135 | 36059 | 135 169 | 240 | 36047 | 241 | 130741
9 1262 | 36130 | 1320 | 222181 | 101 | 36116 | 101 108 | 201 | 36072 | 203 | 170493
10 1194 | 36122 | 1240 | 244166 | 83 | 36174 | 82 291 175 | 36120 | 174 | 8253
rnd-50 250 evo-50 250 ms-50 250
5 3031 | 26742 | 3043 | 101246 | 1126 | 21491 | 1126 | 3060 | 615 | 23672 | 613 | 2171
6 2698 | 34085 | 2725 | 172785 | 726 | 29774 | 726 | 1060 | 482 | 33887 | 479 | 48013
7 2461 | 36056 | 2508 | 251951 | 450 | 36042 | 450 259 | 396 | 36050 | 396 | 16430
8 2276 | 36090 | 2330 | 176486 | 258 | 36072 | 258 603 338 | 36076 | 336 | 23916
9 2133 | 36137 | 2204 | 244380 | 141 | 36186 | 141 | 12100 | 288 | 36121 | 283 | 243608
10 2012 | 36256 | 2097 | 257557 | 85 | 36269 | 83 275 | 257 | 36228 | 248 | 7413




A.V.T. Ngoc et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 33, No. 2 (2017) 59-65 65

On the random data set (#nd ), ACOFSRP
could procedure solutions better than LNS-1c
for 32 among total 36 cases. On-par solutions
are observed in the 4 remaining cases.
Regarding the running time, ACOFSRP
requires shorter time than LNS-1c for 32 cases
while longer only for 4 remaining cases.

On the data set evo, ACOFSRP is beated
by LNS-1c in terms of excution time for all
cases. Nevertheless, solutions yielded by
ACOFSRP are on-par with those of LNS-1c¢ for
32 out of 36 cases. For the remaining 4 cases,
the solution goodness scores by ACOFSRP are
worse than those by LNS-lc (The small
differences are observed, ie. up to 3
breakpoints).

On the data set ms, ACOFSRP produced
solutions are better than and equal to those
yielded by LNS-lc for 12 and 10 -cases,
respectively. Interestingly, among such 22,
ACOFSRP requires remarkably shorter runing
time than LNS-lc for 12 cases. For the
remaining 14 cases, ACOFSRP produce
solutions worse than LNS-
lc. ./table combine_all.tex

6. Conclusion

Founder gene sequence reconstruction
(FSR) for a given population can be modeled as
a combinatorial optimization problem, which
has been proven NP-hard. In this paper we
propose a novel method based on ant colony
optimization algorithms (ACO) coupled with
two other important improvements (i.e. local
search and back forward search) to solve the
founder gene sequence reconstruction problem.
Experiments on the benchmark data sets show
better or equal results for almost sets when
comparing to the best corresponding method,
demonstrating the efficacy and future
perspectives of our proposed method.

Acknowledgments

This work has been supported by Vietnam
National University, Hanoi (VNU), under
Project No. QG.15.21.

References

[11 G. Tyson, J. Chapman, H. Philip, E. Allen, R.
Ram, P. M. Richardson, V. Solovyev, E. M.
Rubin, D. Rokhsar, J. F. Banfield, Community
structure and metabolism through
reconstruction of microbial genomes from the
environment, Nature 428 (2004) 37-43.

[2] E. Ukkonen, Finding Founder Sequences from

a Set of Recombinants, Springer Berlin
Heidelberg,  Berlin, Heidelberg, 2002,

pp- 277-286.
[3] A.Roli, C. Blum, Tabu Search for the Founder
Sequence  Reconstruction  Problem: A

Preliminary Study, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, pp. 1035-1042.

[4] A. Roli, S. Benedettini, T. StAVtzle, C. Blum,
Large neighbourhood search algorithms for the
founder sequence reconstruction problem,
Computers Operations Research 39 (2) (2012)
pp. 213-224.

[5] C. Blum, A. Roli, Metaheuristics in
combinatorial optimization: Overview and
conceptual comparison, ACM Comput. Surv.
35 (3) (2003) 268-308.

[6] P. Rastas, E. Ukkonen, Haplotype inference via
hierarchical genotype parsing, in: Proceedings
of the 7th International Conference on
Algorithms in Bioinformatics, WABI’07,
Springer-Verlag, Berlin, Heidelberg, 2007,
pp- 85-97.

[71] M. Dorigo, T. Stiitzle, Ant Colony
Optimization, Bradford Company, Scituate,
MA, USA, 2004.

[8] D. Do Duc, H. Hoang Xuan, Smooth and three-
levels ant systems: Novel aco algorithms for
solving traveling salesman problem, in: Ad.
Cont. to the International Conference: IEEE-
RIVF 2010, pp. 33-37.



