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Abstract: Continual learning (CL) aims to learn a sequence of tasks, with task datasets emerging
incrementally over time, and without a predetermined number of tasks. CL models strive to achieve
two primary objectives: preventing catastrophic forgetting and facilitating knowledge transfer be-
tween tasks. Catastrophic forgetting refers to the sharp decline in the performance of CL models
on previously learned tasks as new ones are learned. Knowledge transfer, which leverages acquired
knowledge from previous tasks, empowers the CL model to adeptly tackle new tasks. However, only
a few CL models proposed by far successfully achieve those two objectives simultaneously. In this
paper, we present a task-incremental CL based model that leverages a pre-trained language model
(i.e., BERT) with injected CL-plugins to mitigate catastrophic forgetting in continual learning. Ad-
ditionally, we propose the utilization of two contrastive learning-based losses, namely contrastive
ensemble distillation (CED) and contrastive supervised learning of the current task (CSC) losses,
to enhance our model’s performance. The CED loss improves the knowledge transferability of our
continual learning model, while the CSC loss enhances its performance for the current learning task.
Experimental results on benchmark datasets demonstrate that our proposed model outperforms all
existing continual learning models in the task-incremental learning setting for continual aspect sen-
timent classification.
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1. Introduction

Continual learning (CL) is designed to learn
a sequence of tasks where task datasets become
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available progressively over time, and the number
of tasks is not predetermined [1]. This learning
paradigm allows leveraging acquired knowledge
from past tasks without storing previously trained
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data, thereby addressing security concerns. There
are three popular settings for continual learning
systems [2], namely Task incremental learning
(TIL), Domain incremental learning (DIL) and
Class incremental learning (CIL). TIL needs to
know which task it is handling in the testing
phase. TIL builds a prediction component
specific for each task within one unified network.
During the inference, it is routed to the task-
specific component within the learned model
based on the provided task identity. In contrast
to TIL, DIL does not require knowing the task
identity when testing. DIL aims to learn a
single task, but in different contexts. Both TIL
and DIL demand that when learning a new task
the data labels must be seen in the previous
tasks. CIL relaxes this strict requirement. It
can automatically learn incoming data of a new
class/label that did not appear when learning the
previous tasks [3].

CL encounters a significant obstacle known
as catastrophic forgetting, wherein the model’s
parameters being already learned for previous
tasks must be readjusted to optimize performance
for a new task. As a consequence, this
significantly diminishes the model’s effectiveness
on previously learned tasks. Early CL models
[4] based on fine-tuning a pre-trained language
model BERT [5] subsequently for coming
tasks are severe victims of this parameters’
readjustment [1, 6–8]

To mitigate catastrophic forgetting, a natural
approach is to minimize reconfiguration of
models’ parameters as much as possible. To
this end, various CL models have been proposed,
of which each task has its own specific module
(or subset of the model’s parameters) to be
optimized. When learning a new task, only
the module specific for this task is tuned while
others remain untouched. These modules can
be task-specific adapters [9, 10] or continual
learning plugins (CL-plugin) [11] or a relatively
small 2-layer fully connected network (so-called
a Capsule Networks) [12, 13], which are injected

into the pre-trained BERT.
The isolation of task-specific modules helps

CL models mitigate catastrophic forgetting.
However, it hinders (or even prohibit from) the
shared knowledge utilization (update included)
among tasks, which can be useful for enhancing
the model’s performance on related tasks.
Knowledge utilization enables CL models to
leverage insights acquired from past learned tasks
in one domain and apply them effectively to
new tasks in other domains. Without effective
knowledge exploitation mechanisms, CL models
may struggle to adapt to the nuances of different
domains, resulting in reduced performance and
reliability. This contradiction causes CL hard
to achieve both objectives together, namely
preventing catastrophic forgetting and facilitating
knowledge transfer. They are still two significant
challenges for continual learning.

To our knowledge, only a few proposed CL
models successfully achieve those two objectives
at the same time. Among them, CTR [11] and
CLASSIC [14] recently proposed are two well-
established CL models. The former belongs
to the TIL setting while the latter is of the
DIL setting. Both are dedicated to the Aspect
Sentiment Classification (ASC) tasks. ASC is a
task that identifies a sentiment about the aspect of
an object whether positive, negative, or neutral.
For example, the sentence “the mic quality is
quite nice” is an opinion about the aspect of “mic
quality” of a mobile phone object. This sentence
should be classified as a ”Positive” sentiment by
an ASC model.

Given a text, Aspect Sentiment Classification
(ASC) involves determining whether the
sentiment towards a specific aspect of an object
is positive, negative, or neutral. For instance,
the sentence ”the mic quality is quite nice,”
expresses the sentiment pertaining to the aspect
”mic quality” of a mobile phone. An ASC
model should correctly classify this sentence as
conveying a ”Positive” sentiment. In the realm of
Aspect Sentiment Classification (ASC) continual
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learning, discerning sentiment nuances are about
various aspects and/or objects of totally different
evolving contexts and domains.

In the realm of Aspect Sentiment
Classification (ASC) continual learning, the
challenges of catastrophic forgetting and
insufficient knowledge transfer are particularly
pronounced due to the intricate nature of
sentiment analysis tasks. ASC models, tasked
with discerning sentiment nuances across various
aspects and domains, confront a relentless stream
of new data and evolving contexts. Inevitably,
this causes ASC continual learning models to
suffer from severe catastrophic forgetting.

Even when domains for ASC tasks largely
differ, sentiment expressions inherent to one
domain still share some commonalities with those
in other domains, as they are all conveyed using
the same language. Therefore, the importance
of knowledge transfer in Continual Learning for
ASC becomes even more pronounced and crucial
for ensuring robust adaptation and accurate
sentiment analysis, particularly when dealing
with disparate domains. This process allows
a CL model to grasp domain-specific sentiment
patterns and nuances more efficiently, leading
to improved accuracy and generalization across
diverse domains.

In this work, we explore how much
knowledge should be transferred in continual
learning and empirically demonstrate its
effectiveness for sequential aspect sentiment
classification (ASC) tasks in the TIL setting. To
this end, we propose a continual ASC model
in the TIL setting that selectively transfers
knowledge across ASC tasks. This is achieved by
utilizing a normalized cross-attention contrastive
loss in the classification head of the model. In
addition, our model enhances its performance on
the current task through contrastive supervised
learning (CSC).

To evaluate our model, we conduct extensive
experiments on 19 benchmark ASC data sets
from various domains. Experimental results

indicate that our model outperforms recent state-
of-the-art continual learning ASC models in the
TIL setting, thus demonstrating the effectiveness
of our model in transferring selective distilled
knowledge between tasks for continual learning.

The rest of this paper is organized as follows:
Section 2 reviews the related work; Section 3
presents our proposed method; Section 4 details
the experimental results; and the final section
concludes with future directions.

2. Related Work

Various advanced approaches have been
proposed for continual learning to mitigate CF
[1], such as Regularization-based approach [15]
and Memory (or Replay) based approach [16–
18]. The former estimates the importance
of parameters for previously learned tasks to
penalize changes in these parameters to avoid
catastrophic forgetting. The latter stores a few
samples of all previous tasks and then exert these
in-memory data to update the parameters of the
current task. As a result, it helps CL models retain
the knowledge of the previous tasks, thereby
mitigating catastrophic forgetting.

Recent years have seen a surge of research
efforts focusing on the integration of advanced
pre-trained models, such as BERT (Bidirectional
Encoder Representations from Transformers) [5],
into continual learning approaches. BERT
adapters, lightweight task-specific neural network
components, have emerged as a promising
solution [9], which chooses to freeze the
parameters of the pre-trained BERT, only tuning
a small number of parameters of injected task-
specific adapters [9–11]. A BERT adapter can be
a relatively small 2-layer fully connected network
or a Capsule Networks (CapsNet) [12, 13] that
uses vector capsules instead of scalar feature
detectors. These task-specific adapters enable
CL models to learn new tasks while preserving
knowledge from previous tasks. Researchers
have explored combining regularization and
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memory-based techniques with BERT adapters to
further enhance their performance in continual
learning scenarios. Regularization methods
are applied to adapter parameters to mitigate
forgetting, while memory-based strategies such
as Experience Replay and Generative Replay are
integrated to retain knowledge from past tasks.
By leveraging the strengths of both pre-trained
models and continual learning techniques, these
approaches aim to develop robust and adaptable
models across diverse tasks and domains.

Although the CL capability of existing
advanced models have been empirically
demonstrated they still struggle with CF issues
when tasks lack substantial shared knowledge
[11, 14].

Isolating task-specific modules in CL models
aids in mitigating catastrophic forgetting to some
extent. However, it poses a challenge by limiting
the utilization and updating of shared knowledge
across tasks, which could enhance the model’s
performance on related tasks. This contradiction
makes it difficult for CL to simultaneously
achieve both objectives: preventing catastrophic
forgetting and facilitating knowledge transfer.

As far as we know, only a handful of
continual learning (CL) models have effectively
achieved both objectives simultaneously.
Notably, CTR [11] and CLASSIC [14] are
two prominent CL models that have recently
demonstrated success in this regard. Both models
employ task masks to isolate task-specific
knowledge for dealing with CF. While CTR
operates within the TIL setting, CLASSIC is
designed for the DIL scenario. Remarkably,
both models are specifically tailored for Aspect
Sentiment Classification (ASC) tasks.

CLASSIC introduces an approach for
knowledge transfer though contrastive learning,
focusing on domain continual learning (i.e. DIL
setting). Its key innovation lies in a contrastive
continual learning method facilitating both
knowledge transfer across tasks and distillation
from old tasks to the new task. CLASSIC

utilizes BERT-Adapter [9], maintaining
BERT parameters unchanged while achieving
performance comparable to BERT fine-tuning.
By proposing task masks to isolate task-specific
knowledge and a contrastive continual learning
method for knowledge transfer and distillation,
CLASSIC significantly enhances the accuracy of
all tasks.

CTR utilizes a key component known as the
CL-plugin that is injected into BERT at two
locations. Comparing with BERT-Adapter, CL-
plugins differ significantly. While an adapter is a
simple 2-layer fully-connected network inserted
into BERT (to be fine-tuned) for each specific
end task, the CL-plugin functions as a capsule
network, which deviates from traditional neural
networks by utilizing vector-output capsules
instead of scalar activations, thereby preserving
additional information in a more nuanced manner.
CL-plugin integrates a novel transfer routing
mechanism that facilitates knowledge exchange
across tasks while safeguarding task-specific
information to prevent interference. CTR can
learn all tasks using only one pair of CL-
plugin modules inserted into BERT. By this
strategical integration, CTR eliminates the need
for individual fine-tuning of BERT for each task,
which often leads to catastrophic forgetting [11].

3. Method

Taking inspiration from [11], we employ
a continual learning plugin (CL-plugin) into
our model within the TIL setting. The
CL-Plugin comprises two essential modules,
namely Knowledge Sharing Sub-Module (KSM)
and Task-Specific Sub-Module (TSM). KSM
identifies and transfers shareable knowledge from
analogous previous tasks to the new task and
TSM focuses on learning task-specific neurons
and their associated masks. These masks
serve to protect the neurons from updates by
future tasks, thereby addressing the challenge
of catastrophic forgetting (CF). Further, we
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Figure 1. Overall architecture of our proposed model.

propose to boost the TIL performance of
our CL-plugin based model by integrating
contrastive learning losses [14] into classification
heads of our model, including contrastive
ensemble distillation (CED) loss to capture
shared knowledge across tasks and contrastive
supervised learning on the current task (CSC) loss
to further enhance task-specific performance. The
CED loss encourages knowledge transfer further
by distilling knowledge from all previous tasks
into the current task. The CSC loss aims to
improve the plasticity of the current task.

Fig. 1 illustrates the overall architecture of
our proposed method. The detailed components
are presented as follows.

3.1. Continual Learning Plugin (CL-plugin)

Given hidden states h(t) extracted from the
feed-forward layer within a transformer layer, and
the task ID t, the CL-plugin yields outputs that
comprise hidden states with informative features
specific to the tth task. Finally, CL-plugin
employs the cross-entropy loss to optimize the
model’s parameters, expressed as follows:

LCE =

N∑
i=1

−yi log ŷi (1)

Figure 2. General architecture of BERT (left) and the
CTR system (middle) and the CL-plugin (right) that

are integrated into BERT [11].

where ŷi is the probability score of the ith sample
in the batch data after passing through the model.

Inside the CL-plugin, the KSM consists of
two capsule layers, namely the task capsule
layer and the knowledge-sharing capsule layer,
equipped with a dynamic routing algorithm.
This configuration effectively clusters similar
tasks and shared knowledge, enabling knowledge
transfer among tasks with commonalities. In
contrast, the TSM comprises differentiable fully-
connected layers, with each layer’s output
undergoing additional processing using a task-
specific mask. This mask indicates which
neurons need protection for the specific task
to address CF, preventing gradient updates on
these neurons masked for the specific task during
back-propagation when adapting to a new task
(see Fig. 2). Specially, for a specific task
ID t, e(t)

l denotes its embedding trained for
the lth layer within the TSM. This embedding
encompasses differentiable parameters that can
be learned concurrently with other components of
the network. The task mask m(t)

l , akin to a ”soft”
binary mask, is generated by employing a pseudo-
gate function denoted as σ and incorporating
a positive scaling hyper-parameter denoted as
s throughout the training procedure. The
calculation of m(t)

l is outlined as follows:
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Figure 3. The architecture details of CL-plugin within
our model.

m(t)
l = σ(se(t)

l ) (2)

For tasks sharing some common knowledge,
their masks may have some neurons that coincide
with each other. Each layer output k(t)

l in
TSM when learning the task t is element-wise
multiplied with m(t)

l . To this end, the masked
output k(t) from the last layer is then passed to
the subsequent BERT model layer through a skip
connection (see TSM in Fig. 3). The final m(t)

l for
all layers after learning the task t are saved for
further used.

3.2. Contrastive Ensemble Distillation (CED)
Loss

This loss employs contrastive learning to
distill knowledge from all previous tasks into
the current task t. For each previous task i,

the Contrastive Ensemble Distillation (CED) is
calculated as follows:

L
(i)
CED =

N∑
n=1

− log
exp((z(i)

n .z
(t)
n )/τ)∑N

j=1, j,n exp((z(i)
n .z

(t)
j )/τ)

(3)

where N is the batch size; τ is an adjustable
temperature parameter controlling the separation
of classes; n is the index of the data sample in the
batch; z(i)

n and z(t)
n are the logits for the same input

data at the index n, generated from our model for
the previous task i and current task t, respectively.
This logit pair is treated as the positive pair and all
of the other pairs are considered as negative pairs.

Since the model for each previous task
remains fixed during the current task’s training
process, it effectively serves as a teacher for the
current task (acting as the student). For t − 1
models corresponding to all previous tasks, the
final CED is formulated as Formula 4.

LCED =

t−1∑
i=1

L
(i)
CED (4)

3.3. Contrastive Supervised Learning of Current
Task (CSC) Loss

Taking inspiration from CLASSIC [14], we
formulate the Contrastive Supervised Learning
of Current Task (CSC) Loss to enhance the
performance of the current task, as follows:

LCSC =

N∑
n=1

1
Nyn − 1

N∑
j=n,y j=yn

log
exp

(
h(t)

n .h
(t)
j

τ

)
∑N

k=1,yk,yn
exp

(
h(t)

n .h
(t)
k
τ

)
(5)

Where Nyn is the number of samples in the data
batch that have the same label as yn, while h(t)

j is
the masked output of the TSM for the jth sample
in the batch, derived from the layer before the
classification head of the task t model.
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3.4. Model’s Loss

We combine three losses described above to
optimize our CL model in the TIL setting, as
follows:

L = LCE +LCED +LCSC (6)

where LCE denotes the cross-entropy loss, LCED
represents the contrastive ensemble distillation
loss calculated using Formula 4 and LCSC
indicates the contrastive supervise learning of
current task as expressed in Formula 5.

4. Experimental Results

We conducted experimental evaluations,
comparing existing non-continual learning and
task-incremental continual learning models for a
sequence of ASC tasks on benchmark datasets.
The reported results are averaged across five
random task orders.

4.1. Experiment Datasets

Like other state-of-the-art continual learning
models in the TIL setting for ASC tasks (such
as CTR [11]), we employ four benchmark
datasets, namely: (1) HL5Domains [19],
comprising review sentences for 5 products; (2)
Liu3Domains [20], focusing on 3 products; (3)
Ding9Domains [21], covering 9 products; and (4)
SemEval14 [22], relating to 2 products. These
datasets collectively encompass sentiments about
19 aspects, each treated as an individual aspect-
based sentiment classification task. Detailed
statistics for each dataset are provided in Table 1.

In alignment with previous studies, we
partitioned 10% of the original data for validation
and another 10% for testing, for each dataset
(1), (2), and (3). However, for dataset (4), we
opted for a validation set consisting of only 150
examples from the training set. To maintain
methodological consistency with prior research,
we present a comprehensive breakdown of the
sample numbers for each task in Table 1.

4.2. Hyperparameters

Our approach utilises a two-layer fully
connected network with 768 dimensions in
the capsule layers and three transfer capsules.
Concerning the task-specific modules, we employ
2000 dimensions for the final states. To optimize
our model, we use the Adam optimizer and set the
learning rate to 3e−5. We conduct training for ten
epochs on the SemEval datasets and extend it to
30 epochs for other datasets. For all the baseline
models, we utilize the code provided by their
respective authors and adapt it for classification
purposes.

4.3. Results and Analysis

Firstly, we employ multi-task learning,
an approach that incorporates comprehensive
knowledge of all preceding tasks and is trained
on the entire dataset, to evaluate the upper
bound of this problem. Then, we employ non-
continual learning baselines independently for
each task. We have three baselines of such,
namely BERT, BERT (frozen), and Adapter-
BERT. Continuously, we set the foundation
based on ”no forgetting handling” (NFH).
To this end, we compare our model against
12 state-of-the-art continual learning models
in the TIL setting, including KAN [23],
SRK [24], HAT [25], CAT [6], UCL [26], EWC,
L2 [15], OWM [27], A-GEM [28], DER++ [29],
BCL [10], LAMOL [30].

Due to imbalanced classes, we calculate both
Accuracy and Macro-F1 (MF1) scores to account
for potential biases in performance evaluation. As
shown in Table 2, our model demonstrates strong
continual learning ASC performance, achieving
an Accuracy of 88.5% and a Macro-F1 score
of 82.35%. Notably, our model outperforms
all baseline models, including state-of-the-art
(SOTA) continual learning models, in terms
of Macro-F1. While our model’s Accuracy
ranks second, trailing behind LAMOL by only
0.41%, it’s worth noting that LAMOL is based
on GPT-2, whereas our model is based on
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Table 1. Number of sentences per dataset, referred to as tasks in the context of continual learning [11].

Data source Task/domain Train Validation Test

Liu3domain
Speaker 352 44 44
Router 245 31 31
Computer 283 35 36

HL5domain Nokia6610 271 34 34
Nikon4300 162 20 21
Creative 677 85 85
CanonG3 228 29 29
ApexAD 343 43 43

Ding9domain CanonD500 118 15 15
Canon100 175 22 22
Diaper 191 24 24
Hitachi 212 26 27
Ipod 153 19 20
Linksys 176 22 23
MicroMP3 484 61 61
Nokia6600 362 45 46
Norton 194 24 25

SemEval14 Rest. 3452 150 1120
Laptop 2163 150 638

BERT. To ensure a fair comparison, we replicate
experiments with CTR using the same task orders
as those employed in our model experiments
(Results denoted by the label CTR∗). However,
CTR∗ yields inferior results compared to our
model in terms of both Accuracy and Macro-
F1 metrics. It’s worth noting that the Accuracy
and Macro-F1 values reported in their paper are
obtained from different task orders, which are
not disclosed. Additionally, compared to the
non-continual learning method Adapter-BERT,
our continual learning model demonstrates a
higher performance of 3% in both Accuracy
and Macro-F1 metrics. In comparison to the
non-continual learning approach of Adapter-
BERT, our continual learning model achieves a
superior performance, with a 3% increase in both
Accuracy and Macro-F1 metrics.

4.4. Ablation Study
We conducted experiments by removing

specific components from our method, and the
results in Table 3 highlight the effectiveness

of the CL-plugin, CED, and CSC. The
outcomes, averaged across two evaluation
metrics (Accuracy and MF1) from 5 random
task orders, demonstrate notable improvements.
Specifically, when the CL-plugin is omitted, a
two-layer fully connected adapter is employed.
The results reveal that the inclusion of the
CL-plugin enhances the model’s performance
by approximately 2.6% in both accuracy and
MF1 score. Additionally, Table 3 illustrates the
positive impact of incorporating two contrastive
learning-based losses (CED and CSC) on the
continual ASC performance of our model. We
also conducted experiments with our model,
incorporating another contrastive learning-based
loss known as the Knowledge Sharing Loss
(CKS), inspired by [14]. However, experimental
results revealed that CKS did not yield any
improvement for our model (data not shown).
This could be attributed to the fact that our
model already includes the KSM module, which
facilitates knowledge sharing in a manner similar
to CKS.
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Table 2. Average Accuracy (Acc.) and Macro-F1 (MF1) over five random sequences of 19 tasks.

Scenario Category Model Acc.(%) MF1(%).
BERT MTL 91.91 88.11

Non-continual BERT SDL 85.84 76.35
Learning (SDL) BERT (Frozen) SDL 78.14 58.13

Adapter-Bert SDL 85.96 78.07
W2V SDL 77.01 51.89
BERT NFH 49.60 43.08
BERT (Frozen) NFH 85.51 76.64
Adapter-BERT NFH 85.51 76.64
W2V NFH 82.69 73.56

L2 56.04 38.40
A-GEM 86.06 78.44
DER++ 84.27 75.08
KAN 85.49 77.38

BERT (frozen) SRK 84.76 78.52
EWC 86.37 74.52
UCL 83.89 74.82
OWM 87.02 79.31
HAT 86.74 78.16

Continual Learning CAT 83.68 68.64
L2 63.97 52.43
A-GEM 45.88 28.21
DER++ 47.63 35.54
EWC 56.30 49.58
UCL 64.46 36.64
OWM 72.99 66.51

Adapter-BERT HAT 86.14 78.52
BCL 88.29 81.40
LAMOL 88.91 80.59
CTR 89.47 83.62
CTR∗ 88.21 81.19
Ours 88.50 82.35

Table 3. Ablation experimental results of our model.

Model Acc.(%) MF1(%)
Ours 88.50 82.35

without CL-plugin 85.83 79.75
without CSC+CED 86.48 79.32
without CSC 87.52 79.93
without CED 87.98 80.10
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5. Conclusion

This paper investigates the task-incremental
learning (TIL) paradigm for the continual
learning of a sequence of ASC tasks. Our
approach leverages a CL-plugin to capitalize on
the acquired knowledge from a pre-trained
language model, i.e. BERT, mitigating
catastrophic forgetting in continual learning.
Additionally, we propose the utilization of
two contrastive learning-based losses, namely
contrastive ensemble distillation (CED) and
contrastive supervised learning of the current
task (CSC) losses, to enhance our model’s
performance. The CED loss improves the
knowledge transferability of our continual
learning model, while the CSC loss enhances
its performance for the current learning task.
Our proposed model outperforms all existing
continual learning models in the task-incremental
learning setting for continual aspect sentiment
classification. For future research directions,
exploring the application of memory-based
methods to address catastrophic forgetting could
further enhance the effectiveness of our model.
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