
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

Original Article

A Threshold Adaptation Mechanism for Detecting and
Filtering Low-Rate DDoS Attacks

Minh Viet Kieu, Dai Tho Nguyen*, Thanh Thuy Nguyen
VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 01 December 2023
Revised 28 February 2024; Accepted 19 March 2024

Abstract: TCP-targeted low-rate distributed denial-of-service (LDDoS) attacks pose a serious chal-
lenge to the reliability and security of the Internet. Among various proposed solutions, we are par-
ticularly interested in the Congestion Participation Rate (CPR) metric and the CPR-based approach.
Through a simulation study, we show that if the algorithm makes use of a fixed CPR threshold, it
cannot simultaneously preserve high TCP throughput under attacks and achieve good fairness per-
formance for TCP flows in attack-free periods. Then, we propose a method for adaptively changing
the threshold over time to obtain both the objectives. Simulation results show that our adaptive CPR-
based approach can effectively protect TCP flows under attacks while keeping fairness for the flows
when attacks are not present.

Keywords: Low-rate DDoS, TCP protocol, congestion control, active queue management

1. Introduction

Distributed denial-of-service (DDoS) attacks
have been identified as a major threat to the
current Internet. The attacks usually consist of
a few to hundreds of thousands of compromised
computers which send a massive number of
packets toward a victim. The victim and the
gateway in front of the victim’s network are
forced to handle intense attack traffic as they have
no mechanism to differentiate attack packets from

∗Corresponding author.
E-mail address: nguyendaitho@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.1861

normal ones sent by benign computers, which
finally leads to a depletion of their resources
such as network bandwidth, processor cycles, and
memory. As a result, the victim is no longer
able to serve the benign computers and legitimate
users suffer a degradation or a denial of the
victim’s service until the attack stops. Traditional
DDoS attacks can be very dangerous if they
are not properly handled, however their coarse
behavior of sending a large volume of packets
toward a victim usually makes them easy to be
detected and mitigated.

1

2 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

In 2003, Kuzmanovic and Knightly
introduced a class of more clever DDoS
attacks called TCP-targeted low-rate DDoS
(LDDoS) attacks [1]. This kind of DDoS attacks
is difficult to detect as they assault a victim
with a smaller rate thanks to the exploitation of
the TCP’s retransmission timeout mechanism.
The attack periodically sends high-rate, short-
duration bursts of packets, leading to a low
average attaking rate and therefore the ability
to avoid detection from existing counter-DDoS
mechanisms, but at the same time it can force
TCP flows to continually timeout with extremely
low throughput.

The CPR-based approach [2] is a router
support mechanism for detection and filtering
LDDoS attacks. The Congestion Participation
Rate (CPR) metric is proposed to measure the
contribution of a flow to network congestion.
LDDoS flows are expected to have higher CPR
values than TCP flows as they don’t use any
form of congestion control and actively induce
congestion in a network. Through a series of
experiments, the study reveals that the average
CPR of normal TCP flows is around 0.2, whereas
the average CPR of LDDoS flows is much larger,
around 0.8. A CPR threshold is used to determine
whether a packet flow is an attack flow or not.
If a flow’s CPR is greater than the threshold,
it is considered as an LDDoS flow and its
subsequent packets will be dropped. Otherwise,
it is considered as a normal TCP flow and its
packets won’t be dropped and will be processed
as usual. However, like other threshold-based
LDDoS attack detection methods [3, 4], the CPR
threshold represents the tradeoff between the
detection rate and the false positive rate.

In this paper, we conduct a rather different but
complementary study to the one in [2] in which
we investigate both LDDoS and TCP flows’
CPR by varying TCP flows’ propagation delay
and the number of TCP flows under a specific
attack pattern, rather than keeping the number of
TCP flows and their propagation delay fixed and

varying LDDoS attack parameters as carried out
in [2]. Experiments are performed in which TCP
flows start transmitting packets at random times.
This is intended to simulate the random behavior
of downloading files that occurs on the Internet.
In each of the first three sets of experiments,
TCP flows have the same propagation delay and
the delay is varied over the sets. In the last
set of experiments, TCP flows are configured to
have different propagation delay, which intends
to better simulate the diversity of the flows in
the network. Next, through more experiments,
we prove the existence of another tradeoff caused
by the CPR-based approach, the one between
optimizing TCP throughput under attacks and
providing fairness to TCP flows in attack-free
periods. To overcome all of the tradeoffs, we
propose a method that adapts the CPR threshold
according to whether the network is under attack
or not. Performance of the adaptive CPR-based
approach is compared to that of the three fixed
threshold instances of the approach. The results
show that the adaptive CPR-based approach can
preserve TCP throughput under attacks fairly well
while keeping fairness for TCP flows under no
attack condition. Consequently, the adaptive
method for the CPR threshold increases the
feasibility and the applicability of the CPR-based
approach in real networks.

This paper consists of eight sections. The
next section, 2, reviews background knowledge.
Section 3 presents the investigation of the CPRs
of TCP and LDDoS flows while Section 4
analyzes the tradeoffs of the approach. Section
5 describes in detail the adaptive method applied
for the CPR threshold. Section 6 presents
simulation results. Section 7 presents related
work and we conclude the paper in Section 8.

2. Background

2.1. TCP’s Timeout Mechanism

Transmission Control Protocol (TCP) has
been widely used in the current Internet and its

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 3

congestion control mechanism is one of the main
factors behind the success of today’s Internet. To
deal with congestion in the network, TCP uses
two schemes as part of its body: AIMD (Additive
Increase Multiplicative Decrease) policy and
retransmission timeout mechanism. The two
schemes operate interwinningly to make TCP
flexible and robust in diverse network conditions.
When packet loss is rare, the AIMD policy is
used, and vice versa when packet loss is dense,
TCP makes use of the timeout mechanism.

AIMD policy allows TCP flows to adapt their
sending rates to the network conditions (available
network bandwidth, current congestion status).
To do that, each TCP flow maintains a congestion
window, whose size is denoted by cwnd. The
size of the window dictates the number of packets
each flow can send into the network without
acknowledgment. When a TCP flow starts, it has
a window of one packet and then speeds up the
sending rate by doubling the congestion window
size every round trip time. This phase is called a
slow start. When the window size exceeds a slow
start threshold, ssthresh, TCP enters a new phase
called congestion avoidance. In this phase, cwnd
is increased at a much slower rate of one packet
per round trip time.

The congestion window size of a TCP flow
cannot increase forever. When the size is too
large, in particular, it reaches the capacity of the
path from sender to receiver, at that time any
increase in the congestion window size can result
in a packet loss. Packets can also get lost due to
damage in transit [5].

TCP has two different ways to detect and
recover packet losses. One way is through the
receipt of three duplicate acknowledgments for
a data packet. In this case, a TCP sender sets
the ssthresh threshold to one-half of the current
cwnd, and cwnd is then set to ssthresh plus 3,
after that, the sender retransmits the seemingly
lost packet and enters the fast recovery phase.

The fast recovery phase only ends when either
a retransmission timeout occurs or all the packets

in the last window have been acknowledged [6].
If a retransmission timeout occurs, TCP enters
the slow start phase with cwnd set to one packet.
If the latter case happens, TCP returns to the
congestion avoidance phase with cwnd set to
ssthresh, i.e. one-half of the congestion window
size at the time TCP enters the fast recovery
phase.

The second way for TCP to detect and recover
packet losses is through the timeout mechanism.
The mechanism is used when network congestion
occurs and a large number of packets are lost,
the sender cannot receive enough duplicate ACKs
to trigger fast recovery. After a certain time, if
the sender has not received an ACK for a data
packet sent previously while receiving less than
three duplicate ACKs, it gets a timeout, the data
packet is assumed to be lost and needs to be
retransmitted. At that time, TCP sender sets its
new ssthresh value of one-half of the current
cwnd and reduces the cwnd to one packet, the
packet is resent with RTO doubled and the sender
enters a slow start phase. Upon further timeout,
RTO (Retransmission time out) is doubled with
each subsequent timeout along with the resending
of the lost packet.

Typically we have RTO = minRTO =

1 second (as recommended in [7]). Moreover,
when a timeout occurs, and assuming that the
current RTO value is 1 second, TCP reduces its
cwnd to one packet, RTO is doubled to 2 seconds,
and the lost packet is resent. After 2 seconds if
the packet has not been acknowledged then RTO
is set to 4 seconds and so on. RTO values may be
limited by an upper bound of at least 60 seconds
(as specified in [8]). The sequence of doubling
operations, also known as the exponential back-
off algorithm, was originally formed for TCP to
respond to timeout but has now become the target
of LDDoS attacks.

2.2. Modeling LDDoS Attacks

A flow is typically defined by the tuple
(source IP, source port, destination IP, destination

4 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

port, protocol). Each LDDoS flow has four
additional parameters Ta, Tb, Rb and s. Ta is the
inter-burst period, Tb is the burst length, Rb is the
burst rate and s is the starting time (see Figure 1).

Rate

TimeTa

Tb

Rb
s

Figure 1. A LDDoS flow.

Assume that there is only one LDDoS flow,
the attack flow must have rate Rb large enough
to induce loss (Rb should exceed bottleneck
bandwidth), duration Tb of scale RTT, and period
Ta of scale minRTO. In the most common case,
an LDDoS attack consists of many attacking
flows, then it can be modeled as in [2], where
an LDDoS attack is represented as a 4-tuple
(n, g,m, σ) with n is the number of attack flows,
g is the number of attack groups, m is the number
of flows in each attack group and σ – the starting
gap between consecutive attack groups. Attack
flows in a group are assumed to start at the same
time.

2.3. Calculating CPR of a Flow

According to [2], the CPR of a flow Fi

is calculated by a router where the CPR-based
approach is deployed as follows:

θi =
∑
t∈T ∗

S i,t

/∑
t∈T

S i,t (1)

in which S i,t is the number of packets from flow
Fi arriving at the router in the interval [t, t + d],
d is chosen empirically to be 1 ms corresponding
to a sampling frequency of 1000 Hz. T ∗ is the
set of sampling periods when the outgoing link
is congested, and T is the set of all sampling
periods. The outgoing link is considered to be

`

`

`

`

User 1

User 30

Attacker 1

Attacker 20

10 Mbps
2 ms

5 Mbps 10 Mbps
6 ms 2 ms

R0 R1

Bottleneck

Server

Figure 2. Network topology.

congested in a sampling period if there is at least
one packet dropped at the packet queue by the
RED algorithm during the period. Moreover, we
term such a sampling period as congested.

3. Investigation of TCP and LDDoS Flows’
CPRs

To examine the average, minimum and
maximum CPR values of TCP and LDDoS attack
flows, in this section we conduct four sets of
simulations. We use the platform taken from
the address of [9]. For the first set, we use
the network in Figure 2, in which the leftmost
and rightmost links have a one-way propagation
delay of 2 ms. In the second set, the links have
a propagation delay of 7 ms while in the third
set, they have a propagation delay of 22 ms. In
the fourth set, the rightmost link has a one-way
propagation delay of 2 ms but the leftmost links
have a random propagation delay in the range [2,
92] ms so the two-way propagation delay of the
TCP flows is randomized in the range [20, 200]
ms.

The leftmost and rightmost links have the
same bandwidth of 10 Mbps. The link between
router R0 and router R1 has a smaller bandwidth
of 5 Mbps and a one-way propagation delay of 6
ms so that it becomes the congestion point of the
network. The queue size of the bottleneck link is
50 packets. CPR-based approach is deployed at
router R0 on the queue of the link, whereas other

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 5

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	20 	40 	60 	80 	100 	120 	140 	160 	180 	200

CP
R

Number	of	TCP	flows

Normal	TCP	flows LDDoS	flows

(a) Results of the first set.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	20 	40 	60 	80 	100 	120 	140 	160 	180 	200

CP
R

Number	of	TCP	flows

Normal	TCP	flows LDDoS	flows

(b) Results of the second set.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	20 	40 	60 	80 	100 	120 	140 	160 	180 	200

CP
R

Number	of	TCP	flows

Normal	TCP	flows LDDoS	flows

(c) Results of the third set.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	20 	40 	60 	80 	100 	120 	140 	160 	180 	200

CP
R

Number	of	TCP	flows

Normal	TCP	flows LDDoS	flows

(d) Results of the fourth set.

Figure 4. Results of the four sets of simulations.

links use DropTail queues. The CPR threshold,
which we denote as τ in this paper, is set to 2
because we only want to collect flows’ CPR and
don’t want the approach to drop packets as CPR
of a flow is always between 0 and 1.

Figure 2 only illustrates the case when there
are 30 long-lived TCP flows in the network.
However, to see how the number of TCP flows
affects the CPRs of TCP and LDDoS flows,
we vary the number of TCP flows during each
simulation set. In total, each set consists of
10 simulations with the number of TCP flows
ranging from 1 to 200.

Each of the TCP flows originates at one of the

leftmost computers from User 1 to User 200 (not
shown in Figure 2) and terminates at Server, using
an FTP application with unlimited data to send.
The TCP version is NewReno with a packet size
of 1040 bytes. TCP flows randomly start in the
period [20, 120] s and end at time 240 s.

We create an LDDoS attack scenario with
parameters n = 20, g = 20, m = 1, σ = 1 s.
Each LDDoS flow originates at one of 20 attack
computers from Attacker 1 to Attacker 20 and
also terminates at Server, sending UDP packets
of 50 bytes, and having parameters Ta = 20 s,
Tb = 200 ms and Rb = 5 Mbps. The attack starts
at time 120 s and stops at time 220 s.

6 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

	0

	0.02

	0.04

	0.06

	0.08

	0.1

	0.12

	0.14

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1
0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

Pr
ob
ab
ilit
y	
De
ns
ity

CPR

Normal	TCP	flows
LDDoS	flows

Figure 5. Probability distribution of CPR of normal TCP flows and LDDoS flows.

Information of various flows passing router
R0 will be stored in a Bloom filters structure
which is similar to one in RRED algorithm [10].
The Bloom filters structure we use in this study
has the number of levels L = 1, the bins in each
level N = 4200, and a perfect hash function
is used to map each flow to a different bin of
the only level. All simulations start at time 0
s and end at time 240 s. At the finish time,
we record the average, minimum, and maximum
CPRs for all the flows in the network, including
normal and attack ones, and the obtained results
are demonstrated in Figure 4. The average CPRs
of LDDoS flows are depicted by the red lines
and the corresponding ones for TCP flows are
depicted by the blue lines. We fill the area from
the minimum CPR line to the maximum CPR
line of LDDoS flows with pink color and for
the corresponding range of TCP flows we use
the light blue color. One can see that when
the number of TCP flows increases, the average,
minimum, and maximum CPRs of TCP and
LDDoS flows increase accordingly. The average
CPR of normal TCP flows passes 0.2 when the
number of TCP flows reaches 120 for the first
three sets and 70 for the fourth set. The CPR
range of TCP flows tends to be wider while that of
LDDoS flows becomes thinner as the number of

TCP flows increases. The average, minimum, and
maximum CPRs of LDDoS flows drop sharply
when the number of TCP flows is less than 30
and they are larger than 0.8 for all other cases.

However, Figure 4 cannot fully describe the
distribution of CPRs of TCP and LDDoS flows,
instead it only shows the CPR range along with
the mean CPR of the two types of flows. For
the simulations, we have collected a total of 3604
CPR values for TCP flows and 800 CPR values
for LDDoS flows and the probability distribution
of the CPRs is shown in Figure 5. The CPRs
of TCP flows are small and concentrated around
0.2 while the CPRs of LDDoS flows are larger
and concentrated mainly in the range [0.8, 1].
Some CPRs of LDDoS flows are scattered in the
range [0.2, 0.5]. With the probability distribution,
one can choose a CPR threshold τ such that it
maximizes the detection rate (i.e., the ratio of
the red area on the right side of τ to the whole
red area) and minimizes the false positive rate
(i.e., the ratio of the green area on the right side
of τ to the whole green area). However, the
tradeoff between the detection rate and the false
positive rate always exists as the figure shows
that CPRs of LDDoS flows can be as small as
those of TCP flows and vice versa, CPRs of TCP
flows can be as large as those of LDDoS flows in

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 7

some situations, which is shown in some overlap
between the red and green areas.

4. Analysis of the CPR-Based Approach

4.1. Performance of the CPR-Based Approach

To evaluate the performance of the CPR-
based approach, we perform 9 simulations with
the network in Figure 2, in which TCP flows start
simultaneously at time 20 s and stop at time 240 s
while LDDoS attacks start at time 120 s and stop
at time 220 s. Each simulation uses the approach
with a certain value of τ ranging from 0.1 to 0.9.

The approach is configured so that it can only
drop packets after time 120 s,1 which enables
TCP flows to share the bottleneck bandwidth
freely until the attack starts. This intends to
isolate the effect of setting τ only on TCP
throughput under attacks and make no effect to
TCP flows in the period from 20 s to 120 s.
Note that we still calculate CPR for each TCP
flow from time 0 although the approach can only
drop packets after time 120 s. Figure 6 presents
the results of the simulations in which the TCP
throughput is normalized with the bottleneck
link’s bandwidth.

One can observe that the TCP throughput
decreases gradually as τ increases from 0.2 to 0.9,
as τ equals 0.1 there is a substantial drop in the
performance. This is because 0.1 is lower than the
average CPR of TCP flows, as has been pointed
out in [2] and in the previous section. This in turn
results in an increased number of TCP packets
incorrectly dropped by the approach.

4.2. Impact of the Approach on Fairness of New
TCP Flows

As LDDoS attacks do not always happen,
every queue management algorithm and in

1The CPR threshold is set to 2 before time 120 s. At time
120 s, the threshold is re-assigned to one of the nine values
from 0.1 to 0.9. The basis of the assignment is that the CPR
of a flow is always less than or equal to 1.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

T
C

P’
s

no
rm

al
iz

ed
 th

ro
ug

hp
ut

τ

Figure 6. TCP’s normalized throughput under
LDDoS attacks.

particular the CPR-based approach, should
provide fairness to TCP flows under no attack
conditions. If not, a particular user could
experience a long period waiting for a data
transfer to end. This subsection will explore the
fairness amongst new TCP flows when there is
no attack. We conduct another set of simulations
with the network in Figure 2, in which the CPR-
based approach is deployed at router R0 with a
certain value of τ from 0.1 to 0.9. As in the
previous subsection, we only assign each of these
values in turn to the threshold at time 120 s. Each
value of τ is associated with four TCP packet
sizes, which produces 36 simulations in total. 4
other simulations that corresponds to τ = 1 will
be described later in subsection 6.2. In each
simulation, there are 10 TCP flows, all start at
time 20 and stop at time 240. At time 120 ten
new TCP flows start, one every 0.1 seconds, all
stop at time 220. The goodput2 of each new
TCP flow is recorded. The standard deviation
of the goodputs is calculated with the expected
mean value of 1/20-th of the bottleneck link’s
bandwidth multiplied by 100 (equal to 25 Mbit).
The results are shown in Figure 7, in which each
data point depicted by square, circle, diamond, or
triangle shows the result from a single simulation,
with the x-axis showing the fixed value of τ

2The goodput of a flow is the bandwidth delivered to its
destination, excluding duplicate packets.

8 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

S
ta

nd
ar

d
de

vi
at

io
n

(M
bi

t)

τ

TCP−pack−size: 1000 bytes

: 700 bytes

: 400 bytes

: 50 bytes

Figure 7. The standard deviation of 10 new TCP
flows.

used by the approach, and the y-axis showing
the standard deviation. Each line shows the
results of simulations with a specific TCP packet
size ranging from 50 bytes to 1000 bytes (not
including TCP packets’ header size of 40 bytes).

The previous and current subsections clearly
show the tradeoff between maximizing TCP
throughput during attacks and ensuring fairness
for new TCP flows in attack-free periods when
the CPR-based approach is in use. If network
operators want to use the approach with τ
fixed, they must be chosen between high TCP
throughput under attacks (requiring small values
of τ), or fairness to new TCP flows (requiring
large values of τ). Our adaptive method is
proposed to solve the problem. Before going
into the details of the method, in the next two
subsections, we present two groundworks on
which the study depends directly.

4.3. Convergence of LDDoS Flows’ CPRs

Consider the simulation in subsection 4.1,
in which the CPR-based approach is configured
with τ = 0.5 and there is such an LDDoS
attack. Figure 8 shows the CPR of the first
attack flow during the 200 ms period from time
120 to time 120.2 (exactly over its first burst of
packets arriving at the router). In the figure, each
horizontal line presents a period of 1 ms in which
the flow’s packets arrive with the same CPR

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 120 120.05 120.1 120.15 120.2
 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

C
P

R

Time (s)

Figure 8. The CPR of the first attack flow.

value. Such a period can contain exactly 12.5
attack packet arrivals on average, meaning that
every time a period contains 12 packet arrivals,
the next period must contain 13 packet arrivals.
Horizontal lines with CPR greater than or equal
to 0.5 mean that every packet of the flow arriving
in the periods will be dropped by the approach,
otherwise they will be forwarded to the RED
block. We have omitted the first and second
periods when the flow starts, which have CPR
equal to 0 and 1 respectively. Vertical lines
connecting a high horizontal line with a lower one
indicate that the previous period is not congested,
and vertical lines connecting a low horizontal
line with a higher one depict the situation that
the previous period is congested. As the figure
shows, the CPR roughly converges to the τ’s
value, in this case, 0.5, from both sides, below
and above. All subsequent bursts of the flow
happening at time 140, 160, 180, and 200 (not
shown in the figure) have CPR that still oscillates
around 0.5, but in narrower ranges. CPR of all
other attack flows also converges to the value in a
similar way.

4.4. RED with Congestion Sample Rate

Recall that a sampling period is considered
to be congested if during the period there is at
least one packet dropped by the RED algorithm.
We define congestion sample rate (CSR) as the

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 9

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500

C
S

R

TCP packet size (Bytes)

Figure 9. The CSR of the bottleneck link in
attack-free periods.

number of congested periods divided by the total
number of sampling periods. The CSR is, in fact,
the ratio of |T ∗| and |T |:

CSR = |T ∗|
/
|T | (2)

where |T ∗| and |T | are notations for the number
of elements in the set T ∗ and T respectively.
The two sets T and T ∗ have been defined in
equation (1). The difference between CSR and
CPR is that CSR is global while CPR is flow-
specific. Here, we repeat the simulations in
subsection 4.1 without LDDoS attacks, and at the
bottleneck link’s queue, instead of using the CPR-
based approach, we use pure RED only. In each
simulation, all TCP flows use the same packet
size varying from 50 bytes to 1500 bytes, and at
time 240 the CSR of the link is recorded. This is
to survey the CSR of the bottleneck link in attack-
free conditions. Figure 9 shows the obtained
results.

We can see that the CSR of the link is smaller
than 0.2 in all cases, it gradually decreases from
slightly above 0.15 at a TCP packet size of 50
bytes to about 0.05 when the TCP packet size
reaches 1500 bytes.

5. Our Proposed Method

Section 3 shows that it is necessary to
have a high CPR threshold to facilitate packets

Algorithm 1 – Our proposed method.
1: Initialization:
2: τ = 0.8;
3: Every sampling period (miliseconds):
4: if the outgoing link is congested then
5: τ = τ − α;
6: if (τ < 0.2) then
7: τ = 0.2;
8: end if
9: else

10: τ = τ + β;
11: if (τ > 0.8) then
12: τ = 0.8;
13: end if
14: end if
15:

16: Fixed parameters:
17: sampling period: time; 1 (milisecond)
18: α: decrement; 0.06
19: β: increase factor; 0.015

from TCP flows getting through the bottleneck
link. However, it can let LDDoS attacks to be
more effective as the performance of the CPR-
based approach deteriorates when τ increases as
demonstrated in subsection 4.1. Furthermore,
there is a tradeoff between maximizing TCP
throughput under attacks and enforcing fairness
for new TCP flows in attack-free periods if the
CPR-based approach is used. Therefore, we
are clearly aware that we need to use the CPR
threshold in a more sophisticated way to balance
the aspects. This section will present our method
of adjusting τ over time proposed to overcome
the tradeoff, as given in Algorithm 1. In the
method, τ is restricted in the range [0.2, 0.8]
because the average CPR of normal TCP flows
is slightly smaller than 0.2 and the average CPR
of LDDoS flows is slightly greater than 0.8 [2].
Once an attack burst is launched, the bottleneck
link is more likely to be congested, and thus τ
is reduced by the adaptive method, in steps of
α. To react quickly to the attack, τ should be

10 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

reduced to 0.2, or close to 0.2, over some time
smaller than a typical attack burst length, so we
use α set to 0.06, meaning that τ can be decreased
from 0.8 to 0.2 just after 10 sampling periods,
corresponding to 10 ms. The setting of β to 0.015,
one-fourth of α, can be justified as follows. As the
convergence of CPRs of LDDoS flows to the τ’s
value described in subsection 4.3, and τ cannot
be reduced to a value smaller than 0.2, the CPR
of each LDDoS flow tends to converge to 0.2.
Each LDDoS flow has a constant attack rate in the
attack burst periods as well as its CPR near 0.2,
resulting in the CSR of the link about 0.2 over the
attack burst periods. By setting β to one-fourth
of α, we enforce τ to roughly deviate no more
than 0.06 from 0.2 once τ reaches 0.2 during the
attack burst periods. When an attack burst period
elapses, the network returns to normal, and τ is
expected to increase to 0.8. This can happen as
the CSR of the link in normal operation without
attacks is less than 0.2. The ability of τ to increase
to 0.8 and oscillate close to the peak value when
an attack burst subsides does not only depend on
the CSR but also on the distribution of congested
periods over time. If the congested periods are
distributed equally, τ would be constantly swung
in the range [0.74, 0.8] once it reaches 0.8. For
example, during attack-free periods, there are two
congested periods every ten consecutive sampling

periods on average, and assume that the first one
is located at the first position and the second
one is located at the sixth position in the chain
based on the assumption that congested periods
are uniformly distributed over time. After the first
sampling period, the CPR threshold is reduced by
α because the period is congested. After four
following non-congested periods, the threshold
increases by 4 × β = α. The same thing happens
for the rest of the chain. If τ has reached 0.8
before, it will continuously fluctuate in the range
[0.74, 0.8] by our adaptive threshold algorithm.

6. Experimental Evaluation

6.1. Threshold Adaptation

To examine the threshold adaptation method
presented in Section 5, we re-run the simulation
in subsection 4.1 with a change of using the
method from time 0 instead of using τ fixed. The
adaptation of τ over the entire simulation time and
over a short period from time 119 to time 126 are
given in Figure 10. It shows that when there is no
attack, τmainly fluctuates in the range [0.74, 0.8],
except the time when 30 normal TCP flows start
(time 20). At that time τ is decreased to 0.2. This
means that on average, there is one congested
period, followed by four or more non-congested
periods. When the attack begins at time 120, τ is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

τ

Time (s)

(a) Adaptation over the simulation time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 119 120 121 122 123 124 125 126

τ

Time (s)

(b) Adaptation over [119, 126].

Figure 10. The adaptation of τ.

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 11

Table 1. Parameters of LDDoS attacks.

Categories
LDDoS attack Single flow Aggregate flow

n g m σ Ta (s) Tb (ms) Rb (Mbps) T+a (s) T+
b

(ms) R+
b

(Mbps)

AFI 20 20 1 Ta
/

20 [4, 40] 200 5 [0.2, 2] 200 5

AWI 20 20 1 Tb 1 [0, 50] 5 1 [0, 1000] 5

ARI 20 1 20 0 1 200 [0, 0.5] 1 200 [0, 10]

quickly decreased to 0.2 and then fluctuates close
to 0.2, mainly in the range [0.2, 0.26], over the
first attack burst period. When the attack burst
ends, τ increases and again fluctuates near 0.8 as
usual. This behavior repeats until time 220 when
the attack finishes.

6.2. Performance of the Adaptive CPR-Based
Approach

To evaluate the throughput performance of
the CPR-based approach using the adaptation
method, in this subsection, we perform three sets
of simulations as in the paper [2], which are called
Attack Frequency Intensification (AFI), Attack
burst Width Intensification (AWI), and Attack
burst Rate Intensification (ARI). The difference
is that we use broader ranges of values for
parameters Ta, Tb, and Rb as shown in Table 1.
Ta is varied in the range [4, 40] (s) instead of the
range [20, 40] (s), Tb is varied in the range [0,

50] (ms), not the range [0.1, 10] (ms), and Rb is
varied in the range [0, 0.5] (Mbps) rather than the
range [0.01, 0.25] (Mbps). This aims to examine
the robustness of the threshold adaptation method
not only against low-rate DDoS attacks but also
against general DDoS attacks. In each simulation,
the setting for TCP flows is the same as in
subsection 4.1, the attack also starts at time 120
and stops at time 220. The threshold adaptation
method is turned on at time 0. For comparison,
we use three instances of the original and thus
non-adaptive CPR-based approach with τ = 0.2,
τ = 0.6 and τ = 0.8. For the instances, τ is set
to 2 at time 0, and to one of the three values
from time 120 onward. We don’t assign the
three values for τ from time 0 because this may
affect fairness between TCP flows during normal
operation, especially with small values like 0.2.
Simulation results are shown in Figure 11 and
we observe that the adaptive CPR-based approach

4 12 20 28 36 40
0

0.2

0.4

0.6

0.8

1

Ta (s)

T
C
P
’
s

n
o
r
m
a
l
i
z
e
d

t
h
r
o
u
g
h
p
u
t

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Tb (ms)

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Rb (Mbps)

CPR-based approach with adapting τ with τ= 0.2 with τ= 0.6 with τ= 0.8

Figure 11. TCP’s normalized throughput under attacks.

12 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

(depicted by red lines) is slightly worse than the
non-adaptive CPR-based approach with τ = 0.2
(depicted by magenta lines), whereas the other
non-adaptive variants with τ = 0.6 and τ = 0.8
(depicted by blue and green lines respectively)
are considerably worse. The performances of
all the variants drain at different rates when the
attacks become more aggressive (Ta decreases,
Tb increases, Rb increases), with a slower rate
for the non-adaptive variants with a smaller τ and
for the adaptive variant. In two extreme cases
of Ta = 4 s and Tb = 50 ms when a full-time
DDoS happens, the adaptive variant retains about
80% of the bottleneck bandwidth for normal TCP
traffic, and the remaining 20% of the bandwidth
is wasted for attack traffic, which means that the
attack traffic is reduced to 1/5-th of its original
size. Non-adaptive variants with τ = 0.2, τ =
0.6 and τ = 0.8 retain about 85%, 40%, and
25% of the bottleneck bandwidth for TCP traffic,
respectively. With the adaptive variant, there are
usually about 20% of sampling periods during an
attack burst in which the attack traffic still passes
through the bottleneck link. This is an inherent
drawback of the original CPR-based approach as
well as the adaptive variant. Fixing the drawbacks
will be part of our future work.

Let us come back to Figure 7 for the
simulation results about the fairness of our
proposed adaptive CPR-based method. The data
points corresponding to τ = 1 do not show
results from simulations with that value of τ, but
from simulations in which the approach uses our
method to adjust τ (presented in Section 5). We
can observe that the standard deviation varies
both with τ and with TCP packet size, with a
smaller standard deviation for those simulations
with larger τ and smaller packet size. The figure
also confirms that our method keeps the standard
deviation low regardless of TCP packet sizes, just
like as τ = 0.6, 0.8, or 0.9. This means that
by using the adaptive method, the goodputs of
the 10 new TCP flows tend to be close to the
fair bandwidth shares, thus providing fairness to

the flows. In contrast, using τ fixed results in
high and unpredictable standard deviation (except
the three values of τ above), meaning that the
goodputs spread out over a wider range. The
goodputs and the standard deviations of the TCP
flows corresponding to various values of τ are
fully shown in Table 2 on the next page.

7. Related Work

In this section, we will discuss and analyze
some existing mechanisms that counter LDDoS
attacks [11]. In recent years, there has been a
lot of research aimed at detecting LDDoS attacks
[12–18] but very little research on countering the
attacks. Existing counter-LDDoS mechanisms
can be divided into two categories: end-point and
router-assisted.

Since LDDoS attacks aim at the fixed
minRTO and the dependence of the current RTO
on minRTO in timeout state (RTOs are multiple
of the minRTO), there are two apparent ways to
deal with the attacks. First, we should use a
random instead of a fixed value for the minRTO
parameter as suggested in [19]. In the paper, the
authors built a model of TCP throughput under
attacks in which end-points randomize their
minRTO in a range to eliminate the constancy of
TCP’s null frequency to the attacks. In general,
the randomization of minRTO can only mitigate
the attack effect and it cannot eliminate the root
cause of the TCP’s vulnerability to the attacks.
This model can be applied to real networks as
some operating systems (OSs), especially the old
ones, still use coarse-grained clock granularity
(or clock tick) of 500 ms to check timeout
events. TCP flows coming from these old systems
recover randomly in the range [1, 1.5] sec after
a timeout. Consequently, using the large clock
granularity has some counter-effects against the
attacks.

Another way to deal with the attacks is
to choose RTO independently of minRTO. In
doing so, it becomes more difficult for the

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 13

Table 2. Goodputs and the standard deviation – SD (in Mbit) of 10 new TCP flows vs. τ

TCP packet size Flow
τ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Adapting τ

50 bytes

1st flow 0 20.28 0 24.98 23.30 25.37 24.59 26.71 26.71 24.59
2nd flow 0.01 0.01 27.96 26.02 25.42 26.26 25.21 24.35 24.35 25.21
3rd flow 0.03 27.03 26.98 23.94 25.90 24.14 22.06 24.44 24.44 22.06
4th flow 0.02 28.66 21.99 23.00 0 24.70 23.87 23.52 23.52 23.87
5th flow 36.76 28.89 26.08 25.83 27.08 26.14 23.55 27.37 27.37 23.55
6th flow 0 27.55 27.19 26.04 27.09 21.38 24.01 24.29 24.29 24.01
7th flow 33.28 26.52 25.46 22.82 25.78 24.56 24.39 24.53 24.53 24.39
8th flow 0.10 28.76 0.01 23.93 26.88 27.35 23.17 24.21 24.21 23.17
9th flow 36.02 0 24.91 22.49 24.60 25.43 24.53 23.22 23.22 24.53
10th flow 36.96 0.01 25.71 25.63 21.88 21.22 23.17 24.14 24.14 23.17

SD 20.53 13.97 11.30 1.43 8.07 1.93 1.43 1.29 1.29 1.43

400 bytes

1st flow 37.01 26.32 28.09 27.32 22.90 26.71 31.18 27.72 23.01 26.71
2nd flow 0.02 0.02 25.08 28.03 26.50 24.38 23.37 26.68 25.53 24.38
3rd flow 36.64 30.01 27.61 26.15 26.14 21.95 22.28 23.86 25.18 21.95
4th flow 0.15 28.76 28.68 29.53 30.63 22.93 23.79 27 24.44 22.93
5th flow 32.93 26.15 24.42 26.83 23.83 27.46 28.88 22.88 22.81 27.46
6th flow 0 0.02 25.38 0.01 25.97 29.15 31.17 25.26 25.08 29.15
7th flow 0.01 0 30.20 24.88 25.75 24.39 26.47 26.16 27.73 24.39
8th flow 0.01 34.66 21.99 22.69 24.84 24.62 22.93 16.81 25.99 24.62
9th flow 0 21.13 12.18 25.22 21.84 24.24 24.61 25.86 21.45 24.24
10th flow 35.86 32.52 27.07 24.99 23.11 26.52 7.36 18.60 28.63 26.52

SD 20.50 14.42 4.85 8.18 2.37 2.09 6.49 3.61 2.09 2.09

700 bytes

1st flow 0.01 30.90 16.83 22.76 24.76 31.74 30.66 30.66 30.66 30.66
2nd flow 0.04 25.64 30.29 24.98 20.70 25.13 21.21 21.21 21.21 21.21
3rd flow 0 0 22.42 28.43 25.60 20.12 20.40 20.40 20.40 20.40
4th flow 0 28.83 30.35 28.47 24.94 27.73 27.04 27.04 27.04 27.04
5th flow 34.79 25.58 29.32 26.05 23.58 25.14 24.27 24.27 24.27 24.27
6th flow 38.69 23.73 0.01 27.05 27.05 22.12 24.75 24.75 24.75 24.75
7th flow 0.07 30.83 28.91 25.24 26.80 24.62 23.40 23.40 23.40 23.40
8th flow 35.31 32.54 15.24 11.75 21.05 21.48 21.05 21.05 21.05 21.05
9th flow 0.25 8.70 29.08 21.12 24.22 28.54 24.02 24.02 24.02 24.02
10th flow 0.13 0 15.76 27.08 25.38 24.84 21.31 21.31 21.31 21.31

SD 21.77 12.88 9.93 4.79 2.11 3.32 3.24 3.24 3.24 3.24

1000 bytes

1st flow 0.31 29.19 25.58 24.31 25.81 22.65 22.65 22.65 22.65 22.65
2nd flow 0.26 26.02 19.62 26.44 28.37 30.75 30.75 30.75 30.75 30.75
3rd flow 40.76 25.09 27.11 8 18.62 27.58 27.58 27.58 27.58 27.58
4th flow 0.37 25.78 20.67 25.69 25.19 28.24 28.24 28.24 28.24 28.24
5th flow 0.10 25.64 32.41 26.32 24.70 18.22 18.22 18.22 18.22 18.22
6th flow 0 19.83 17.31 25.99 19.35 25.72 25.72 25.72 25.72 25.72
7th flow 0.01 20.73 0.02 25.38 29.99 29.35 29.35 29.35 29.35 29.35
8th flow 0.07 25.75 23.57 28.45 25.18 24.02 24.02 24.02 24.02 24.02
9th flow 0 23.14 29.83 23.35 22.25 23.72 23.72 23.72 23.72 23.72
10th flow 36.94 33.43 23.77 25.94 23.92 24.98 24.98 24.98 24.98 24.98

SD 23.10 3.74 9.04 5.57 3.44 3.52 3.52 3.52 3.52 3.52

14 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

attackers to predict the exact moment when TCP
flows retransmit packets after timeout, and hence
the attackers cannot synchronize their malicious
traffic with RTO of TCP flows to maximize their
attack effect. The TCP flows are partially released
as their packets can pass the bottleneck link when
the queue of the link is not assaulted by attack
bursts. Finally, they can achieve a considerable
fraction of the bottleneck bandwidth as compared
to the very small throughput obtained in the case
RTOs are multiple of the minRTO. It is the core
idea of a typical end-point mechanism called
RTO randomization proposed by Yang et al. in
[20] and is re-examined in a real system (Linux)
by Efstathopoulos [21]. The randomization of
RTO can effectively mitigate the attack effect
while keeping both fairness for randomized TCP
flows and friendliness for randomized and non-
randomized ones.

Randomization on either minRTO or RTO
can help TCP flows to avoid LDDoS attacks,
but the effect comes too late as TCP flows
have entered the timeout state after only
one attack burst, which causes an inevitable
decline in the TCP throughput. It has been
proven in theory through mathematical models
and clearly illustrated through simulation and
practical results. The end-point mechanisms
are fundamentally passive, implying the need
for active defense. That’s the rationale for
various router-assisted mechanisms including
active queue management (AQM) algorithms.
Since 1998, in RFC 2309 [22] the Internet
Engineering Task Force (IETF) has suggested the
deployment of the algorithms in network routers
to replace the conventional drop-tail algorithm
and that Random Early Detection (RED) [23]
should be used by default for routers in the
Internet.

Using drop-tail discipline for packet queue
management in routers can result in some
unwanted phenomena, such as: (1) lock-out
problem in which a single or a group of flows
can monopolize queue space of a common link

and prevent other flows from sharing the queue
and utilizing the link’s bandwidth [24], (2) packet
queues in network routers are chronically full, no
matter how much the buffer size is, and (3) the
global synchronization of TCP flows halving their
window size at the same time when a common
packet queue is full, followed by a sustained
period of lowered link utilization that may cause
a reduction in overall network throughput.

If a router deploys RED for its links, TCP
flows traversing the links can avoid the global
synchronization, data packets often get smaller
RTTs because the average queue size of the
links is reduced, and the lock-out problem can
be mitigated as there will almost always be
a buffer available for any incoming packet.
However, as shown in [25, 26], it is difficult
to set RED’s parameters to have it work well
in all circumstances. Sometimes RED gateways
can deteriorate and behave like a traditional
drop-tail gateway when the RED’s parameters
do not match the requirements of the network
load. Therefore, as of 2015 in RFC 7567 [27],
IETF no longer recommends RED or any other
specific algorithm, such as Flow Random Early
Detection (FRED) [28], CHOKe [29], RED with
Preferential Dropping (RED-PD) [30], Stabilized
Random Early Drop (SRED) [31], or Stochastic
Fair Blue (SFB) [32], to be used by default
although the RFC continues to recommend the
deployment of AQM algorithms in the network.

The design goal of RED is to accompany and
complement an end-to-end congestion control
protocol like TCP. RED is better than the drop-
tail algorithm in cooperating with TCP flows. The
algorithm will have the best performance when
it is deployed in an environment dominated by
responsive flows, i.e., flows that throttle back
their transmission rate upon receipt of congestion
notification from the network. Historically, RED
is designed in the absence of considering its
performance under DDoS attacks. Such an
attack can involve hundreds of thousands of
unresponsive flows, i.e., those that do not use any

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 15

form of end-to-end congestion control and do not
slow down in response to congestion notification.
Indeed, the study in [10] demonstrated that TCP
throughput across a bottleneck link still drops
sharply when LDDoS attacks happen even though
RED is used at routers.

LDDoS attacks create a rather different
lock-out phenomenon against TCP traffic where
TCP flows are prevented from using a link’s
bandwidth while the attack traffic takes up only
a small fraction of the bandwidth rather than
monopolizing it. In search of an AQM algorithm
that can detect and regulate the attack traffic, the
authors of [19] investigated two representatives:
RED-PD and CHOKe. RED-PD uses the RED
packet drop history at a router to detect high-
bandwidth flows. If a flow has a large number
of recently dropped packets, it is likely to
have a high arrival rate [33]. Flows above a
configurable target bandwidth are identified as
high-bandwidth ones. The target bandwidth is
determined by the TCP throughput model in [34].
Only high-bandwidth flows are memorized and
monitored by the router. RED-PD then restricts
the bandwidth allocated to a monitored flow by
dropping its packets with a probability depending
on the excess sending rate of the flow. However,
as RED-PD operates on large time scales of
congestion epoch lengths of a reference TCP
flow while LDDoS attacks can operate on much
smaller time scales, and the response of RED-
PD to the attacks is not strong enough, it cannot
detect nor throttle the attack traffic. Simulation
results showed that RED-PD can only detect and
mitigate unnecessarily high-rate attacks with an
inter-burst period of less than 0.5 sec. Also, it can
only detect LDDoS attack flows with long attack
burst lengths (e.g., 300 ms) or high burst rates
(e.g., more than twice the bottleneck bandwidth)
while much shorter attack burst lengths or much
lower burst rates are sufficient to throttle the entire
aggregates of the TCP traffic. CHOKe has been
shown to have comparable performance as RED-
PD against LDDoS attacks.

RED needs additional mechanisms to better
protect TCP flows when the attacks are present.
In this direction, Zhang et al. proposed the Robust
RED (RRED) algorithm [10]. The main idea of
RRED is to detect and filter out attack packets
before they are fed into the RED algorithm for
further processing. RRED has two main function
blocks: detection and filtering block and pure
RED block. An incoming packet from a flow f
is suspected to be an attacking packet if it arrives
within a short time interval after a packet from
the same flow that is dropped by the detection and
filtering block or after a packet from any flow that
is dropped by the RED block. An indicator f .I is
used to determine whether flow f is an LDDoS
attack flow or a normal TCP flow. If a packet from
flow f is considered to be an attacking packet,
f .I is decreased by one; otherwise, the packet
is considered a normal TCP packet, and f .I is
increased by one. When a packet arrives at a
router, the f .I indicator of the associated flow
f is updated. After that if f .I is negative, the
packet is dropped; otherwise, the packet will be
forwarded to the RED block. The algorithm uses
Bloom filters data structure [35] to store statistical
information of various flows passing the router.
Simulation results showed that Robust RED with
a carefully chosen suspicion time interval can
effectively filter out attack packets and preserve
TCP throughput.

Zhang and his fellows in [2] also proposed
a novel metric called Congestion Participation
Rate (CPR) to identify LDDoS flows based on
their intention to congest the network. Normal
TCP flows actively avoid network congestion as
they use the TCP congestion control mechanism
and hence tend to send fewer packets during
network congestion. Whereas, LDDoS flows
deliberately induce network congestion and do
not slow down their rate when the network
congestion occurs. The authors also proposed
and implemented the CPR-based approach to
detect and filter LDDoS attacks. Simulation
results and test-bed experiments showed that

16 M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17

the CPR-based approach can effectively identify
LDDoS flows while the normalized cumulative
amplitude spectrum (NCAS) approach [3], a
Discrete Fourier Transform (DFT)-based method,
is only effective for a small set of the attacks.

The study in [4] proposed and evaluated two
new information metrics to differentiate LDDoS
attack flows from normal TCP flows called
Fourier Power Spectrum Entropy and Wavelet
Power Spectrum Entropy, and then proposed an
idea of integration of the metrics into the RRED
algorithm. The simulation results proved that the
combination can reduce RRED’s false positive
rate and improve TCP throughput under attacks.

8. Conclusion

In this paper, we have shown that when
using the CPR-based approach to counter LDDoS
attacks, there is a tradeoff between maximizing
TCP throughput under attacks and providing
fairness to TCP flows in attack-free periods.
We have proposed an adaptive method for
the CPR threshold and the simulation results
confirm that our proposition helps the approach
to simultaneously achieve high TCP throughput
under attacks and fairness for TCP flows when
attacks are not present, thereby increasing the
approach’s feasibility and applicability in real
networks.

References

[1] A. Kuzmanovic, E. Knightly, Low-Rate TCP-Targeted
Denial of Service Attacks (The Shrew vs. the Mice and
Elephants), Proceedings of ACM SIGCOMM, 2003,
pp. 75–86, https://doi.org/10.1145/863955.863966.

[2] C. Zhang, Z. Cai, W. Chen, et al., Flow Level
Detection and Filtering of Low-Rate DDoS, Computer
Networks, Vol. 56, No. 15, 2012, pp. 3417–3431,
https://doi.org/10.1016/j.comnet.2012.07.003.

[3] Y. Chen, K. Hwang, Collaborative Detection and
Filtering of Shrew DDoS Attacks Using Spectral
Analysis, Journal of Parallel and Distributed
Computing, Vol. 66, No. 9, 2006, pp. 1137–1151,
https://doi.org/10.1016/j.jpdc.2006.04.007.

[4] Z. Chen, C. Yeo, B. Lee, C. Lau, Power Spectrum
Entropy Based Detection and Mitigation of Low-Rate

DoS Attacks, Computer Networks, Vol. 136, 2018, pp.
80–94, https://doi.org/10.1016/j.comnet.2018.02.029.

[5] V. Jacobson, M. Karels, Congestion Avoidance
and Control, ACM Computer Communication
Review, Vol. 18, No. 4, 1988, pp. 314–329,
https://doi.org/10.1145/52324.52356.

[6] T. Henderson, S. Floyd, A. Gurtov, Y. Nishida,
The NewReno Modification to TCP’s Fast
Recovery Algorithm, RFC 6582, 2012,
https://doi.org/10.17487/RFC6582.

[7] V. Paxson, M. Allman, On Estimating End-to-
End Network Path Properties, ACM Computer
Communication Review, Vol. 29, No. 4, 1999, pp.
263–274, https://doi.org/10.1145/316194.316230.

[8] V. Paxson, M. Allman, J. Chu, M. Sargent, Computing
TCP’s Retransmission Timer, RFC 6298, 2011,
https://doi.org/10.17487/RFC6298.

[9] AQM&DoS Simulation Platform,
https://github.com/mleoking/LeoDoS,
2016 (accessed on March 1st, 2024).

[10] C. Zhang, J. Yin, Z. Cai, W. Chen, RRED:
Robust RED Algorithm to Counter Low-Rate
Denial-of-Service Attacks, IEEE Communications
Letters, Vol. 14, No. 5, 2010, pp. 489–491,
https://doi.org/10.1109/LCOMM.2010.05.091407.

[11] Z. Wu, W. Li, L. Liu, M. Yue, Low-
Rate DoS Attacks, Detection, Defense, and
Challenges: A Survey, IEEE Access, Vol.
8, No. 19442570, 2020, pp. 43920–43943,
https://doi.org/10.1109/ACCESS.2020.2976609.

[12] M. Yue, Z. Wu, J. Wang, Detecting LDoS Attack
Bursts Based on Queue Distribution, IET Information
Security, Vol. 13, No. 3, 2019, pp. 285–292,
https://doi.org/10.1049/iet-ifs.2018.5097.

[13] S. Zhan, D. Tang, J. Man, R. Dai, X. Wang,
Low-Rate DoS Attacks Detection Based on MAF-
ADM, Sensors, Vol. 20, No. 1, 2019, pp. 189,
https://doi.org/10.3390/s20010189.

[14] D. Tang, R. Dai, L. Tang, X. Li, Low-Rate DoS
Attack Detection Based on Two-Step Cluster Analysis
and UTR Analysis, Human-Centric Computing and
Information Sciences, Vol. 10, No. 1, 2020, pp. 6,
https://doi.org/10.1186/s13673-020-0210-9.

[15] D. Tang, L. Tang, R. Dai, J. Chen, X. Li,
J. Rodrigues, MF-Adaboost: LDoS Attack
Detection Based on Multi-Features and
Improved Adaboost, Future Generation Computer
Systems, Vol. 106, No. 7, 2020, pp. 347–359,
https://doi.org/10.1016/j.future.2019.12.034.

[16] D. Tang, J. Man, L. Tang, Y. Feng, Q. Yang,
WEDMS: An Advanced Mean Shift Clustering
Algorithm for LDoS Attacks Detection, Ad
Hoc Networks, Vol. 102, 2020, pp. 102145,
https://doi.org/10.1016/j.adhoc.2020.102145.

M. V. Kieu et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 1–17 17

[17] D. Tang, Y. Feng, S. Zhang, Z. Qin, FR-RED:
Fractal Residual Based Real-Time Detection
of the LDoS Attack, IEEE Transactions on
Reliability, Vol. 70, No. 3, 2021, pp. 1143–1157,
https://doi.org/10.1109/TR.2020.3023257.

[18] D. Tang, X. Wang, X. Li, P. Vijayakumar,
N. Kumar, AKN-FGD: Adaptive Kohonen Network
Based Fine-Grained Detection of LDoS Attacks,
IEEE Transactions on Dependable and Secure
Computing, Vol. 20, No. 1, 2023, pp. 273–287,
https://doi.org/10.1109/TDSC.2021.3131531.

[19] A. Kuzmanovic, E. Knightly, Low-Rate TCP-
Targeted Denial of Service Attacks and
Counter Strategies, IEEE/ACM Transactions on
Networking, Vol. 14, No. 4, 2006, pp. 683–696,
https://doi.org/10.1109/TNET.2006.880180.

[20] G. Yang, M. Gerla, M. Sanadidi, Defense
against Low-Rate TCP-Targeted Denial-of-
Service Attacks, IEEE Symposium on Computers
and Communications, 2004, pp. 345–350,
https://doi.org/10.1109/ISCC.2004.1358428.

[21] P. Efstathopoulos, Practical Study of a Defense
against Low-Rate TCP-Targeted DoS Attack,
Proceedings of IEEE ICITST, 2009, pp. 49–54,
https://doi.org/10.1109/ICITST.2009.5402593.

[22] B. Braden, D. Clark, et al., Recommendations
on Queue Management and Congestion
Avoidance in the Internet, RFC 2309, 1998,
https://doi.org/10.17487/RFC2309.

[23] S. Floyd, V. Jacobson, Random Early Detection
Gateways for Congestion Avoidance, IEEE/ACM
Transactions on Networking, Vol. 1, No. 4, 1993, pp.
397–413, https://doi.org/10.1109/90.251892.

[24] S. Floyd, V. Jacobson, Traffic Phase Effects in
Packet-Switched Gateways, ACM Computer
Communication Review, Vol. 21, No. 2, 1991,
pp. 26–42, https://doi.org/10.1145/122419.122421.

[25] W. Feng, D. Kandlur, D. Saha, K. Shin, A
Self-Configuring RED Gateway, Proceedings

of IEEE INFOCOM, 1999, pp. 1320–1328,
https://doi.org/10.1109/INFCOM.1999.752150.

[26] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED:
An Algorithm for Increasing the Robustness of
RED’s Active Queue Management, https://www.

icir.org/floyd/papers/adaptiveRed.pdf,
2001 (accessed on March 1st, 2024).

[27] F. Baker, G. Fairhurst, IETF Recommendations
Regarding Active Queue Management, RFC 7567,
2015, https://doi.org/10.17487/RFC7567.

[28] D. Lin, R. Morris, Dynamics of Random Early
Detection, ACM Computer Communication
Review, Vol. 27, No. 4, 1997, pp. 127–137,
https://doi.org/10.1145/263109.263154.

[29] R. Pan, B. Prabhakar, K. Psounis, CHOKe -
A Stateless Active Queue Management Scheme
for Approximating Fair Bandwidth Allocation,
Proceedings of IEEE INFOCOM, 2000, pp. 942–951,
https://doi.org/10.1109/INFCOM.2000.832269.

[30] R. Mahajan, S. Floyd, D. Wetherall, Controlling
High-Bandwidth Flows at the Congested Router,
Proceedings of IEEE ICNP, 2001, pp. 192–201,
https://doi.org/10.1109/ICNP.2001.992899.

[31] T. Ott, T. Lakshman, L. Wong, SRED: Stabilized RED,
Proceedings of IEEE INFOCOM, 1999, pp. 1346–
1355, https://doi.org/10.1109/INFCOM.1999.752153.

[32] W. Feng, K. Shin, D. Kandlur, D. Saha, The BLUE
Active Queue Management Algorithms, IEEE/ACM
Transactions on Networking, Vol. 10, No. 4, 2002, pp.
513–528, https://doi.org/10.1109/TNET.2002.801399.

[33] S. Floyd, K. Fall, K. Tieu, Estimating Arrival Rates
from the RED Packet Drop History, Draft Paper, 1998.

[34] S. Floyd, K. Fall, Promoting the Use of End-to-
End Congestion Control in the Internet, IEEE/ACM
Transactions on Networking, Vol. 7, No. 4, 1999, pp.
458–472, https://doi.org/10.1109/90.793002.

[35] B. Bloom, Space/Time Trade-Offs in Hash
Coding with Allowable Errors, Communications
of the ACM, Vol. 13, No. 7, 1970, pp. 422–426,
https://doi.org/10.1145/362686.362692.

