
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 1 (2018) 1-9

1

A new Memetic Algorithm for Multiple Graph Alignment

Tran Ngoc Ha1,3, Le Nhu Hien2, Hoang Xuan Huan3,*

1Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Thai Nguyen, Vietnam
2Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Ha Noi, Vietnam

3VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

One of the main tasks of structural biology is comparing the structure of proteins. Comparisons of protein

structure can determine their functional similarities. Multigraph alignment is a useful tool for identifying

functional similarities based on structural analysis. This article proposes a new algorithm for aligning protein

binding sites called ACOTS-MGA. This algorithm is based on the memetic scheme. It uses the ant colony

optimization (ACO) method to construct a set of solutions, then selects the best solution for implementing Tabu

Search to improve the solution quality. Experimental results have shown that ACOTS-MGA outperforms state-

of-the-art algorithms while producing alignments of better quality.

Received 08 March 2018, Revised 21 May 2018, Accepted 28 May 2018

Keywords: Multiple Graph Alignment, Tabu Search, Ant Colony Optimization, local search, memetic algorithm,

SMMAS pheromone update rule, protein active sites.

1. Introduction*

The functional inference of unknown

proteins through known proteins plays an

important role in the field of life sciences in

general and in the field of pharmaceutical

chemistry in particular. In this study,

comparison of proteins plays a central role.

Prediction of protein function can be

executed at both the sequence level and the

structural level. Recognizing that proteins with

an amino acid sequence similarity more than

40% often have similar functions [1], so

comparison at sequence level is the first method

used. Many diference approaches are

introduced and widely used [2-7]. However,

* Corresponding author. E-mail: huanhx@vnu.edu.vn.

 https://doi.org/10.25073/2588-1086/vnucsce.194

these methods are not suitable for determining

inter-molecular functional similarity because

functitionality is more closely associated with

structures specific than sequential features

[6, 12, 16, 18].

To analyze proteins structure, some authors

[9, 12-18] proposed using graph model to

represent the three-dimensional structure of the

protein. Recent studies are based on the

Cavbase database [19, 20]. Graph alignment

techniques are used to identify functional

similarities based on structural analysis. The

first methods mainly relie on techniques that

exact matching the pairs of graphs. These

studies have yielded significant results when

studying the functional evolution of

non-homologous molecules. However, it is

difficult to apply these techniques to discover of

mailto:huanhx@vnu.edu.vn

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9

2

meaningful biological patterns that are

approximately conserved.

In order to overcome the disadvances of

graph matching methods, the multiple graph

alignment problem (MGA) was first proposed

by Weskamp et al [21] in 2007. They used it for

structural analysis of protein active sites. They

also proposed a heuristic algorithm to solve

this problem.

MGA was proven to be NP-hard problem

[8, 21]. The heuristic algorithms are only

suitable for small size problems, so they are not

suitable for real applications. Fober et al [8]

have extended the usage of MGA problem for

the structural analysis of biomolecules and have

proposed an evolutionary algorithm called

GAVEO. Experiments show that this algorithm

is more efficient than greedy algorithm

although it is more time consuming.

In [22] we proposed ACO-MGA algorithm

that using simply ant colony optimization

scheme to solve the multiple graph alignment

problem. Experiment shows that this algorithm

has better results than the GAVEO algorithm.

However, its runtime is long and its efficiency

is not good for large data sets.

Memetic algorithm was introduced by

Moscato in 1989[23]. It introduces local search

techniques for iterative algorithms based on

population. The solutions found after each

iteration are selected upon to apply the local

search techniques in a flexible way. Recently,

the algorithms based on this framework are

efficient applied in field of bioinformatics [24–

26]. In [27] we proposed a two-stage memetic

algorithm to solve MGA problem called ACO-

MGA2. This algorithm based on ACO

algorithm, but it has some changes: the first

change is the way to calculate heuristic

information, the second one is that local search

procedure is applied only in the second stage of

algorithm to decrease runtime. Experiments on

real datasets have shown that ACO-MGA2

produced better solution quality than ACO-

MGA and GAVEO. Because the local search

procedure is only executed in the second stage,

ACO-MGA2 runs faster than ACO-MGA.

This paper introduces a new two-stage

memetic algorithm based on ant colony

optimization called ACOTS-MGA (Ant Colony

Optimization and Tabu Search for Multiple

Graph Alignment) as an improvement of the

ACO-MGA2 to solve MGA problem. We keep

construction graph as in ACO-MGA2, but

improve the random walk procedure, heuristic

information and the local search procedures.

The local search is replaced by Tabu Search. It

only applied at the second stage of the memetic

scheme [23]. Improvements in solution quality

of ACOTS-MGA is demonstrated empirically

by comparison with GAVEO and Greedy.

The rest of this paper is organized as

follows: Section 2 provides mathematical

statements for multiple graph alignment

problem. Section 3 introduces the proposed

algorithm. The experimental results are

presented in Section 4. Several conclusions are

presented in the last section.

2. Problem statement

2.1. Modeling protein binding sites

as graphs

The studies [8, 21, 22, 27] are based on the

Cavbase database [19]. In this database, the

binding pockets are approximately presented by

graphs [19, 20]. Each binding pocket is

represented by a graph G (V, E), where V is the

set of labeled vertices and E is the weighted

edges set. A vertex of graph is called as

pseudocenter. The pseudocenter represented the

arrangement in the space and the

phisicochemiscal properties of a binding

pocket. The labels of the vertites belong to a

labeled set L = {A,B,C,D,E,F,G}, where A

stands for donor, B for acceptor, ... Two centers

are considered the connection and represented

by an edge in G if the euclidean distance of

them is less than 12 Å. Its label is the weight

w(e) of it.

In each graph, there are three edit

operations:

i) Insertion or deletion of a node: A node

v V and edges associated with it can be

deleted or inserted.

ii) Change of the label of a node: The label

𝑙(𝑣) of a node 𝑣 ∈ 𝑉 can be replaced by other

label in L.

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9 3

iii) Change of the weight of an edge. The

weight 𝑤(𝑒) of an edge 𝑒 can be changed based

on the conformation.

The edit distance of two graphs, G1 and G2,

is defined as the cost of a cost-minimal

sequence of edit operations to transform graph

G1 to G2. As in sequences alignments, this

allows for the introduction of the concept of an

alignment of two (or more) graphs.

Corresponding to the gaps in sequence

alignment, the dummy nodes is defined as

placeholders of deleted nodes.

2.2. Multiple graph alignment problem

To study proteins characteristics, Weskamp

et al introduced the multiple graph alignment

problem [21].

Multigraph is defined as a set of n graphs G

= {G1(V1, E1),... , Gn(Vn, En)}, where Gi (Vi, Ei)

is a connected graph, each vertex is labeled

under a given set L, and the edges weight

represent the Euclidean distances between the

vertices.

Call
*

i
V is a set of vertices that is created

by add a dummy node (denoted ) to set Vi.

Dummy node is a node that is not connected to

the other nodes. Then * * *

1 2 ... nA V V V   is an

alignment of multigraph G if and only if:

i) For all i=1,…,n and for each 𝑣 ∈ 𝑉𝑖,

there exists exactly one column vector

1(,...,)j j j T

na a a A  such that 𝑣 = 𝑎𝑖
𝑗

ii) For each column vector

1(,...,)j j j T

na a a A  , there exists at least one

1 ≤ i ≤ n such that 𝑎𝑖
𝑗

≠ .

Each
1(,...,)j j j T

na a a A  (1 ≤ j ≤ m, m

is the number of vertices of the graph with

the highest number of vertices) is called a

column vector at column j of corresponding

alignment matrix A, 𝑣 ∈ 𝑉𝑖 is a real node.
Figure 1 is an example of MGA. Mutual

assignments of nodes are indicated by dashed
lines. Note that the third assignment involves a

mismatch node, since the label of node in the

fourth graph is D. Likewise, the fourth

assignment involves a dummy node (indicated

by a box), since a node is missing in the

third graph.

Figure 1. A simple illustration of MGA by an

approximate match of four graphs.

For readers’ ease, we call

 * * * * * * *

1 1 1 2 1 2
(,), (,),..., (,)

n n n
G G V E G V E G V E to refer to

the multigraph in which the graph Gi has been

added a dummy node.

The main task of an MGA problem is to

find an alignment A = (a1,…, am) that

maximizes the scoring function 𝑠(𝐴).

1 1

() () (,)
m

i i j

i i j m

s A nodeScore a edgeScore a a
   

   (1)

where nodeScore calculated by the equation 2

evaluates the correspondence of all mutually

assigned nodes in a column ai of matrix the

alignment. Matching node labels rewarded by a

positive value nsm, mismatches or the alignment

of dummy node are penalized by negatives

values nsmm and nsdummy respectively.

1

1

i

i

n

i i

m j k

i i

mm j k

i i
j k n dummy j k

i i

dummy j k

a

nodeScore

a

ns l(a)=l(a)

ns l(a) l(a)

ns a = , a

ns a , a

  

 
 

 
 
 







 


 



 (2)

and edgeScore evaluates the compatibility of

the edge weights. Tolerance towards edge

weights deviation is again realized by 
threshold. Hence, the assignment of two edges

is considered a match, if respective weights

deviate by  at most, and otherwise is

mismatches. edgeScore of two column ai and aj

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9

4

of the alignment matrix A is calculated by the

equation 3:

1 1

1

,

,

,

i j

i j

n n

i j i j

mm k k k l l l

i j i j

mm k k k l l l

ij
k l n m kl

ij

mm kl

a a

edgeScore

a a

es (a ,a) E (a ,a) E

es (a ,a) E (a ,a) E

es d

es d ε

  

    
    

    
    
    

  


 



 


ε

(3)

In Equation 3, 𝑑𝑘𝑙
𝑖𝑗

= |𝑤(𝑎𝑘
𝑖) − 𝑤(𝑎𝑙

𝑗
)|.

Parameters (nsm, nsmm ,nsdummy , esm , esmm) are

constants used to reward or penalize matches,

mismatches and dummies, respectively. In this

article, they are initialized as same as in [8]: nsm

= 1.0; nsmm = -5.0; nsdummy = -2.5; esm = 0.2;

esmm =-0.1.

Call Vmax is the number of vertices of the

graph with the highest number of vertices and n

is the number of graphs. Because MGA is a

NP-hard problem (see [8, 21]), so its

complexity will be 𝑶((𝑽𝒎𝒂𝒙)!𝒏) if we use the

exhaustive method to solve it

3. The proposed algorithm

The proposed algorithm based on the ACO

algorithm. It combines the ACO with Tabu

Search procedure arcording to the memetic

scheme. An algorithm based on the ant colonies

optimization method has four important

components: construction graph, heuristic

information, pheronome update rules, and local

search procedure. These components of

ACOTS-MGA are presented as follows.

3.1. Components of ACOTS-MGA

a) Construction Graph

The construction graph consists of n layers

where layer i is graph
*

i
G in the set

*G . Each

vertex of the above layer is connected to all of

vertices of the next below layer. The top layer

considered as the next layer of the bottom layer.

Figure 2 illustrates the construction graph

where ants start from the graph G1 which does

not display edges within a graph, white nodes

are real vertices and grey nodes are dummy.

An alignment of graphs is a path from G1

through every layer to Gn such that each path

passes only one vertex of each layer and each

vertex of the construction graph has only one

path passing through. Dummy nodes allow

more than one paths to passes through.

Remark. Note that the paths forming this

alignment can be considered as a single path by

the insight of the popular ACO algorithm. This

implied path starts from a vertex of the graph

G1 passing through all next graphs to the last

graph. It then "walks" to the vertex of the top

layer of another alignment vector until passing

through all real nodes, each node exactly

once time.

b) Heuristic information

Heuristic information 𝜂𝑗,𝑘
𝑖 (𝑎𝑗) is the node

score. It is calculated by equation (2) when

aligning node k of graph Gi at position i of

column vector aj.

c) Random walk procedure to construct an

alignment

G2

………………

………….

G3

 G1

Gn

Real Node Dummy Node

Figure 2. Construction graph for n-graphs

alignment.

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9 5

In each iteration, each ant will repeat the

process to build vectors
1(,...,)j j j T

na a a for

an alignment A as follows.

The ant selects randomly one vertex on the

first layer as initial vertex. At the next layers,

difference with ACO-MGA2 which consider all

vertices of graph Gi to choose a vertex to align,

in ACOTS-MGA, the aligned node is chosen

by beam search strategy. This stratery helps

ACOTS-MGA decrease time to indentify node

to align. This procedure is described as follows.

We denoted ()jlabel a is the set of labels

of the vertices in the column vector aj, called

{ | (v) (a)}j

i iB v RV label label   is the set

of unalign vertices of the graph Gi (denote by

RVi) whose labels are like to the labels of the

vertices in the alignment vector aj. In the case

of having no vertices which have label belong

to label(aj). Bi will be assigned by the set of

unalign remaining vertices. Ant will randomly

select a node in Bi with the probability given in

Equation 4.

For ease of visualization, we assume the ant

start from the graph G1 and random walk along

the path
1 2 1, ,...,j j j

ia a a   to graph Gi where it

chose vertex k in Gi with probability:

, ,

,

, ,

() *[(a)]

() *[(a)]
i

i i j

j k j ki

j k i i j

j s j ss B

p

 

 

 

 





 (4)

After a vector is fully developed into

1(,...,)j j j T

na a a , the real vertices in vector aj

is removed from the construction graph to

continue repeating the alignment procedure of

ants until all vertices have already aligned.

d) Pheromone Update Rule

Pheromone trail intensity 𝜏𝑗,𝑘
𝑖 is initialized

as 𝜏𝑚𝑎𝑥 and will be updated after each iteration.

After the ants found the solutions or carried

out local search (in the second stage), the

pheromone trail is updated according to

SMMAS pheromone trail update rule in [28],

[29], as follows:

, , ,(1)i i i

j k j k j k      (5)

,

*

*

*

max

i

j k mid

min

 (i,j,k) gbest solution

 (i,j,k) ibest solution

 otherwise

 

 

 




  



(6)

where max, min and ∈ (0,1) are given

parameters, best solution is the best solution

found in current iteration.

Note that in Equation (5), parameter 

defines two properties: reinforcement search

around the best-found solution and explore new

solution. In ACOTS-MGA, at the first stage,

the  is set small to efficient use reinforcement

information, and set it higher at the second

stage to emphasise on exploration.

Focusing on equation 6, difference to

ACO-MGA and ACO-MGA2, ACOTS-MGA

uses combine ibest solution and gbest solution

to update pheromone trail.

e) Tabu search procedure

In the last iterations of ACOTS-MGA

algorithm, Tabu Search algorithm is applied to

enhance the solution quality.

Tabu search procedure will review the

vertices of graphs, with each graph it swap the

pairs of vertices belong this graph on the

alignment vectors. If this change increases the

score, the best solution will be updated with the

current solution. Unlike conventional search

procedures, Tabu Search procedure uses a Tabu

list to save the node swap. These node pairs in

Tabu list will not be reviewed again to avoid

being repeated the swapping of two node.

Another difference of ACOTS-MGA from

the ACOMGA2 algorithm is that the local

search procedure of ACOMGA2 is only called

once time at each iteration, in the ACOTS-

MGA algorithm, the Tabu search procedure is

repeatedly called until it does not improve the

solution quality anymore.

3.2. General framework

The ACOTS-MGA algorithm is

implemented in multiple loops until it satisfies

the predefined stop condition. It includes two

stages as in Algorithm 1.

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9

6

At the first 80% of iterations, in each

iteration, each ant builds solutions on the

construction graph based on heuristic

information and pheromone trail intensity. Then

the algorithm determines the best solution of

the iteration, updates pheromone trail according

to SMMAS rule and updates the best solution

found by then.

At the last 20% of iterations, in each

iteration, after ants build solutions, Tabu search

techniques are applied to find the best solution

of iteration. Then ACOTS-MGA updates

pheromone trail according to SMMAS rule and

updates the best solution.

4. Experiment results

4.1. Data descriptions

The experiment data contains 74 structures

extracted from Cavbase database[19]. Each

structure represents a protein cavity belonging

to protein family of thermolysin, bacteria

protease commonly used in analysis of protein

and annotated with the EC number 3.4.24.27 in

the ENZYME database [8].

In this data set, each generated graph has 42

to 94 vertices. The graphs are selected from 74

structures to generate random data sets contain

4, 8, 16, 32 graphs.

4.2. Parameters and computer configuration

Because the ACO-MGA2 is an improved

version of ACO-MGA, experiments presented

here only compare ACOTS-MGA with Greedy

[21], GAVEO [8] and ACO-MGA2[27].

The parameters of ACOTS-MGA areset as

follow:

 The number of ants at each iteration is 30

 1=0.3, 2=0.7 (=1 at the first stage, and

(=2 at the second stage)

 𝛼 = 𝛽 = 1

 max = 1, mid=0.8 and
max

min 2

max
V


  ,

where
1 2

,(,...,)
max n

V max V V V .

 Local search procedure is applied in the

last 20% of iterations.

Our experiments are performed on a

computer with following configuration: CPU

Intel Core 2 Duo 3 Ghz, RAM DDR3 4GB and

Windows 7 operating system.

4.3. Effect and runtime comparison

In this experiment, we run the algorithms

on the same data sets with a predetermined

number of iterations. To compare the solution

quality and runtime of algorithms, we

performed each algorithm on each data set 20

times and took the average values for

comparison.

The score and the runtime of the algorithms

are shown in Table 1 and Table 2. The

experimental results in Table 1 show that

ACOTS-MGA algorithm in any case has better

solution quality than GAVEO and ACO-MGA2

and gready. Especially when increasing the

number of graphs, the outperformance of

ACOTS-MGA over other methods is more

prominent.

When comparing in terms of runtime, table

2 shows that the ACOTS-MGA algorithm run

faster than the GAVEO and ACO-MGA2 does

in case of the number of graphs is 4 or 8.

However, in case of the number of graph is 16,

ACOTS-MGA is faster than GAVEO and

slower than ACO-MGA2; in case of the number

of graph is 32, ACOTS-MGA is slower than

ACO-MGA2 and GAVEO.

Algorithm 1: ACOTS-MGA algorithm

Input:A set of graphs G ={G1(V1,E1),…,Gn(Vn,En)

Output: The best alignment
   1() ... ()nA V V       for G

Begin

 Initialize; //initialize pheromone trail matrix and nant

ants;

 while (stop conditions not satisfied) do

 for i=1 to nant do

 anti builds a multiple graph alignment;

 Tabu search //run only at the second stage

 Update pheromone trail;

 Update the best solution;

End while;

 Save the best solution;

End;

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9 7

4.4. Comparing GAVEO and ACOTS-MGA

under a predetermined amount of time

Because the greedy method requires small

runtime and its solution quality is too bad, in

this section, we only compare the solution

quality of GAVEO, ACO-MGA2 and the

solution quality of ACOTS-MGA in the

same runtime.

We run GAVEO, ACO-MGA2 and

ACOTS-MGA algorithms on a data set of 16

graphs, each graph contains 42 to 94 vertices,

with the runtime increase from 1000s to the

6000s. The results are shown in Figure 3. It

shows that when the runtime increases from

1000s to 6000s, solution quality of ACOTS-

MGA is always better than GAVEO and ACO-

MGA2 algorithm.

In addition, to compare the solution quality

of ACOTS-MGA with ACO-MGA2 and

GAVEO algorithms in the same time. We run

the GAVEO and ACO-MGA2 algorithm on the

same dataset at the same time as the runtime of

the ACOTS-MGA algorithm given in Table 1.

The results are shown in table 3. It can be seen

from table 3 that when running in the same

time, with all data sets, ACOTS-MGA

algorithm is better than ACO-MGA2 and

GAVEO.

Table 1. Comparison of the score of algorithms with the data sets consisting of 4, 8, 16 and 32 graphs

Method/Number of graphs 4 8 16 32

Greedy -4098.00 -11827.00 -56861.00 -267004.00

GAVEO -1223.50 -2729.67 -10604.00 -63205.33

ACO-MGA2 -971.80 -2277.80 -7857.20 -53960.10

ACOTS-MGA -963.12 -1088.81 -5670.86 -42215.91

Table 2. Comparison of the algorithm runtime (seconds) with the data sets consisting of 4, 8, 16 and 32 graphs

Method/Number of graphs 4 8 16 32

GAVEO 1892 s 2851 s 10067 s 20671 s

ACO-MGA2 272 s 1374 s 4151 s 18005 s

ACOTS-MGA 171 s 809 s 6839 s 53800 s

Table 3. Comparison of score of GAVEO, ACO-MGA2 and ACOTS-MGA algorithms with the same

runtime with datasets include 4,8,16 and 32 graphs

Method/Number of graphs 4 8 16 32

GAVEO -1223.50 -2879.00 -10744.00 -63205.33

ACO-MGA2 -989.48 -1524.43 -7757.20 -53960.10

ACOTS-MGA -963.12 -1088.81 -5670.86 -42215.91

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9

8

Figure 3. Comparison of results of ACOTS-MGA algorithm with ACO-MGA2 and GAVEO algorithms

with data set of 16 graphs when runtime increase from 1000s to 6000s.

5. Conclusions

This paper proposes a new algorithm for

solving a multi-graph alignment problem called

ACOTS-MGA. This algorithm is an

improvement of the ACO-MGA2 algorithm. In

ACOTS-MGA, the local search procedure is

replaced by Tabu Search procedure. In addition,

there are some changes in ACOTS-MGA: the

random walk procedure to construct the

solution, heuristic information and pheromone

update manner. Experiments on the real data set

show that the proposed algorithm yield the

solution quality better than previous algorithms.

When the number of graphs increases, the

proposed algorithm runs slowly. However, as

well as the other ACO-based algorithms,

ACOTS-MGA could be implemented as

parallel to work with the higher number

of graphs.

References

[1] A. E. Todd, C. A. Orengo, and J. M. Thornton,

“Evolution of function in protein superfamilies,

from a structural perspective,” J. Mol. Biol., vol.

307, no. 4, pp. 1113–1143, Apr. 2001.

[2] S. F. Altschul et al., “Gapped BLAST and PSI-

BLAST: a new generation of protein database

search programs,” Nucleic Acids Res., vol. 25, pp.

3389–3402, 1997.

[3] R. C. Edgar, “MUSCLE: multiple sequence

alignment with high accuracy and high

throughput,” Nucleic Acids Res., vol. 32, no. 5,

pp. 1792–1797, Mar. 2004.

[4] J. D. Thompson, D. G. Higgins, and T. J. Gibson,

“CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through

sequence weighting, position-specific gap

penalties and weight matrix choice,” Nucleic

Acids Res., vol. 22, no. 22, pp. 4673–4680,

Nov. 1994.

[5] M. Larkin, G. Blackshields, N. Brown, … R. C.-,

and undefined 2007, “Clustal W and Clustal X

version 2.0,” academic.oup.com.

[6] C. Notredame, D. G. Higgins, and J. Heringa, “T-

coffee: a novel method for fast and accurate

multiple sequence alignment,” J. Mol. Biol., vol.

302, no. 1, pp. 205–217, Sep. 2000.

[7] K. Sjolander, “Phylogenomic inference of protein

molecular function: advances and challenges,”

Bioinformatics, vol. 20, no. 2, pp. 170–179,

Jan. 2004.

[8] T. Fober, M. Mernberger, G. Klebe, and E.

Hüllermeier, “Evolutionary construction of

multiple graph alignments for the structural

analysis of biomolecules,” Bioinformatics, vol.

25, no. 16, pp. 2110–2117, 2009.

[9] M. Mernberger, G. Klebe, and E. Hullermeier,

“SEGA: Semiglobal Graph Alignment for

Structure-Based Protein Comparison,”

IEEE/ACM Trans. Comput. Biol. Bioinforma.,

vol. 8, no. 5, pp. 1330–1343, Sep. 2011.

[10] D. Shasha, J. T. L. Wang, and R. Giugno,

“Algorithmics and applications of tree and graph

S
co

re

T.N.Ha et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 34, No. 1 (2018) 1-9 9

searching,” in Proceedings of the twenty-first

ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems - PODS ’02,

2002, p. 39.

[11] R. V. Spriggs, P. J. Artymiuk, and P. Willett,

“Searching for Patterns of Amino Acids in 3D

Protein Structures,” J. Chem. Inf. Comput. Sci.,

vol. 43, no. 2, pp. 412–421, Mar. 2003.

[12] D. Conte, P. Foggia, C. Sansone, And M. Vento,

“Thirty years of graph matching in pattern

recognition,” Int. J. Pattern Recognit. Artif.

Intell., vol. 18, no. 3, pp. 265–298, May 2004.

[13] K. Kinoshita and H. Nakamura, “Identification of

the ligand binding sites on the molecular surface

of proteins,” Protein Sci., vol. 14, no. 3, pp. 711–

718, Mar. 2005.

[14] O. Kuchaiev and N. Pržulj, “Integrative network

alignment reveals large regions of global network

similarity in yeast and human,” Bioinformatics,

vol. 27, 2011.

[15] Xifeng Yan, Feida Zhu, Jiawei Han, and P. S. Yu,

“Searching Substructures with Superimposed

Distance,” in 22nd International Conference on

Data Engineering (ICDE’06), 2006, pp. 88–88.

[16] X. Yan, P. S. Yu, and J. Han, “Substructure

similarity search in graph databases,” in

Proceedings of the 2005 ACM SIGMOD

international conference on Management of data

- SIGMOD ’05, 2005, p. 766.

[17] S. Zhang, M. Hu, and J. Yang, “TreePi: A Novel

Graph Indexing Method,” in 2007 IEEE 23rd

International Conference on Data Engineering,

2007, pp. 966–975.

[18] A. E. Aladag and C. Erten, “SPINAL: scalable

protein interaction network alignment,”

Bioinformatics, vol. 29, pp. 917–924, 2013.

[19] S. Schmitt, D. Kuhn, and G. Klebe, “A New

Method to Detect Related Function Among

Proteins Independent of Sequence and Fold

Homology,” J. Mol. Biol., vol. 323, no. 2, pp.

387–406, Oct. 2002.

[20] M. Hendlich, A. Bergner, J. Günther, and G.

Klebe, “Relibase: Design and Development of a

Database for Comprehensive Analysis of

Protein–Ligand Interactions,” J. Mol. Biol., vol.

326, no. 2, pp. 607–620, Feb. 2003.

[21] N. Weskamp, E. Hüllermeier, D. Kuhn, and G.

Klebe, “Multiple graph alignment for the

structural analysis of protein active sites,”

IEEE/ACM Trans. Comput. Biol. Bioinforma.,

vol. 4, no. 2, pp. 310–320, 2007.

[22] T. N. Ha, D. D. Dong, and H. X. Huan, “An

efficient ant colony optimization algorithm for

Multiple Graph Alignment,” in 2013

International Conference on Computing,

Management and Telecommunications

(ComManTel), 2013, pp. 386–391.

[23] F. Neri, Handbook of memetic algorithms, vol.

379. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011.

[24] M. Gong, Z. Peng, L. Ma, and J. Huang, “Global

Biological Network Alignment by Using

Efficient Memetic Algorithm,” IEEE/ACM

Trans. Comput. Biol. Bioinforma., vol. 13, no. 6,

pp. 1117–1129, Nov. 2016.

[25] J. M. Caldonazzo Garbelini, A. Y. Kashiwabara,

and D. S. Sanches, “Sequence motif finder using

memetic algorithm,” BMC Bioinformatics, vol.

19, 2018.

[26] L. Correa, B. Borguesan, C. Farfan, M. Inostroza-

Ponta, and M. Dorn, “A Memetic Algorithm for

3-D Protein Structure Prediction Problem,”

IEEE/ACM Trans. Comput. Biol. Bioinforma., pp.

1–1, 2016.

[27] H. Tran Ngoc, D. Do Duc, and H. Hoang Xuan,

“A novel ant based algorithm for multiple graph

alignment,” in 2014 International Conference on

Advanced Technologies for Communications

(ATC 2014), 2014, pp. 181–186.

[28] H. X. Huan, N. Linh-Trung, H.-T. Huynh, and

others, “Solving the Traveling Salesman Problem

with Ant Colony Optimization: A Revisit and

New Efficient Algorithms,” REV J. Electron.

Commun., vol. 2, no. 3–4, 2013.

[29] D. Do Duc, H. Q. Dinh, and H. Hoang Xuan, “On

the Pheromone Update Rules of Ant Colony

Optimization Approaches for the Job Shop

Scheduling Problem,” 2008, pp. 153-160.

