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Abstract 

One of the main tasks of structural biology is comparing the structure of proteins. Comparisons of protein 

structure can determine their functional similarities. Multigraph alignment is a useful tool for identifying 

functional similarities based on structural analysis. This article proposes a new algorithm for aligning protein 

binding sites called ACOTS-MGA. This algorithm is based on the memetic scheme. It uses the ant colony 

optimization (ACO) method to construct a set of solutions, then selects the best solution for implementing Tabu 

Search to improve the solution quality. Experimental results have shown that ACOTS-MGA outperforms state-

of-the-art algorithms while producing alignments of better quality. 
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1. Introduction* 

The functional inference of unknown 

proteins through known proteins plays an 

important role in the field of life sciences in 

general and in the field of pharmaceutical 

chemistry in particular. In this  study, 

comparison of proteins plays a central role. 

Prediction of protein function can be 

executed at both the sequence level and the 

structural level. Recognizing that proteins with 

an amino acid sequence similarity more than 

40% often have similar functions [1], so 

comparison at sequence level is the first method 

used. Many diference approaches are 

introduced and widely used [2-7]. However, 

________ 
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these methods are not suitable for determining 

inter-molecular functional similarity because 

functitionality is more closely associated with 

structures specific than sequential features  

[6, 12, 16, 18]. 

To analyze proteins structure, some authors 

[9, 12-18] proposed using graph model to 

represent the three-dimensional structure of the 

protein. Recent studies are based on the 

Cavbase database [19, 20]. Graph alignment 

techniques are used to identify functional 

similarities based on structural analysis. The 

first methods mainly relie on techniques that 

exact matching the pairs of graphs. These 

studies have yielded significant results when 

studying the functional evolution of  

non-homologous molecules. However, it is 

difficult to apply these techniques to discover of 
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meaningful biological patterns that are 

approximately conserved. 

In order to overcome the disadvances of 

graph matching methods, the multiple graph 

alignment problem (MGA) was first proposed 

by Weskamp et al [21] in 2007. They used it for 

structural analysis of protein active sites. They 

also proposed a heuristic algorithm to solve  

this problem. 

MGA was proven to be NP-hard problem 

[8, 21]. The heuristic algorithms are only 

suitable for small size problems, so they are not 

suitable for real applications. Fober et al [8] 

have extended the usage of MGA problem for 

the structural analysis of biomolecules and have 

proposed an evolutionary algorithm called 

GAVEO. Experiments show that this algorithm 

is more efficient than greedy algorithm 

although it is more time consuming. 

In [22] we proposed ACO-MGA algorithm 

that using simply ant colony optimization 

scheme to solve the multiple graph alignment 

problem. Experiment shows that this algorithm 

has better results than the GAVEO algorithm. 

However, its runtime is long and its efficiency 

is not good for large data sets. 

Memetic algorithm was introduced by 

Moscato in 1989[23]. It introduces local search 

techniques for iterative algorithms based on 

population. The solutions found after each 

iteration are selected upon to apply the local 

search techniques in a flexible way. Recently, 

the algorithms based on this framework are 

efficient applied in field of bioinformatics [24–

26]. In [27] we proposed a two-stage memetic 

algorithm to solve MGA problem called ACO-

MGA2. This algorithm based on ACO 

algorithm, but it has some changes: the first 

change is the way to calculate heuristic 

information, the second one is that local search 

procedure is applied only in the second stage of 

algorithm to decrease runtime. Experiments on 

real datasets have shown that ACO-MGA2 

produced better solution quality than ACO-

MGA and GAVEO. Because the local search 

procedure is only executed in the second stage, 

ACO-MGA2 runs faster than ACO-MGA. 

This paper introduces a new two-stage 

memetic algorithm based on ant colony 

optimization called ACOTS-MGA (Ant Colony 

Optimization and Tabu Search for Multiple 

Graph Alignment) as an improvement of the 

ACO-MGA2 to solve MGA problem. We keep 

construction graph as in ACO-MGA2, but 

improve the random walk procedure, heuristic 

information and the local search procedures. 

The local search is replaced by Tabu Search. It 

only applied at the second stage of the memetic 

scheme [23]. Improvements in solution quality 

of ACOTS-MGA is demonstrated empirically 

by comparison with GAVEO and Greedy. 

The rest of this paper is organized as 

follows: Section 2 provides mathematical 

statements for multiple graph alignment 

problem. Section 3 introduces the proposed 

algorithm. The experimental results are 

presented in Section 4. Several conclusions are 

presented in the last section. 

2. Problem statement 

2.1. Modeling protein binding sites  

as graphs 

The studies [8, 21, 22, 27] are based on the 

Cavbase database [19]. In this database, the 

binding pockets are approximately presented by 

graphs [19, 20]. Each binding pocket is 

represented by a graph G (V, E), where V is the 

set of labeled vertices and E is the weighted 

edges set. A vertex of graph is called as 

pseudocenter. The pseudocenter represented the 

arrangement  in the space and the 

phisicochemiscal properties of a binding 

pocket. The labels of the vertites belong to a 

labeled set L = {A,B,C,D,E,F,G}, where A 

stands for donor, B for acceptor, ... Two centers 

are  considered the connection and represented 

by an edge in G if the euclidean distance of 

them is less than 12 Å. Its label is the weight 

w(e) of it. 

In each graph, there are three edit 

operations:  

i) Insertion or deletion of a node: A node 

v V and edges associated with it can be 

deleted or inserted.  

ii) Change of the label of a node: The label 

𝑙(𝑣) of a node 𝑣 ∈ 𝑉 can be replaced by other 

label in L.  
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iii) Change of the weight of an edge. The 

weight 𝑤(𝑒) of an edge 𝑒 can be changed based 

on the conformation. 

The edit distance of two graphs, G1 and G2, 

is defined as the cost of a cost-minimal 

sequence of edit operations to transform graph 

G1 to G2. As in sequences alignments, this 

allows for the introduction of the concept of an 

alignment of two (or more) graphs. 

Corresponding to the gaps in sequence 

alignment, the dummy nodes is defined as 

placeholders of deleted nodes.  

2.2. Multiple graph alignment problem 

To study proteins characteristics, Weskamp 

et al introduced the multiple graph alignment 

problem [21].  

Multigraph is defined as a set of n graphs G 

= {G1(V1, E1),... , Gn(Vn, En)}, where Gi (Vi, Ei) 

is a connected graph, each vertex is labeled 

under a given set L, and the edges weight 

represent the Euclidean distances between the 

vertices. 

Call 
*

i
V  is a set of vertices that is created 

by add a dummy node (denoted ) to set Vi. 

Dummy node is a node that is not connected to 

the other nodes. Then * * *

1 2 ... nA V V V    is an 

alignment of multigraph G if and only if: 

i) For all i=1,…,n and for each 𝑣 ∈ 𝑉𝑖, 

there exists exactly one column vector 

1( ,..., )j j j T

na a a A   such that 𝑣 = 𝑎𝑖
𝑗
 

ii) For each column vector

1( ,..., )j j j T

na a a A  , there exists at least one 

1 ≤ i ≤ n such that 𝑎𝑖
𝑗

≠ . 

Each 
1( ,..., )j j j T

na a a A   (1 ≤ j ≤ m, m  

is the number of vertices of the graph with 

the highest number of vertices) is called a 

column vector at column j of corresponding 

alignment matrix A, 𝑣 ∈ 𝑉𝑖 is a real node.  
Figure 1 is an example of MGA. Mutual 

assignments of nodes are indicated by dashed 
lines. Note that the third assignment involves a 

mismatch node, since the label of node in the 

fourth graph is D. Likewise, the fourth 

assignment involves a dummy node (indicated 

by a box), since a node is missing in the  

third graph.  

 

Figure 1. A simple illustration of MGA by an 

approximate match of four graphs. 

For readers’ ease, we call 

 * * * * * * *

1 1 1 2 1 2
( , ), ( , ),..., ( , )

n n n
G G V E G V E G V E  to refer to 

the multigraph in which the graph Gi has been 

added a dummy node.  

The main task of an MGA problem is to 

find an alignment A = (a1,…, am) that 

maximizes  the scoring function 𝑠(𝐴). 

1 1

( ) ( ) ( , )
m

i i j

i i j m

s A nodeScore a edgeScore a a
   

   (1) 

where nodeScore calculated by the equation 2 

evaluates the correspondence of all mutually 

assigned nodes in a  column ai of matrix the 

alignment. Matching node labels rewarded by a 

positive value nsm, mismatches or the alignment 

of dummy node are penalized by negatives 

values nsmm and nsdummy respectively. 

1

1

i

i

n

i i

m j k

i i

mm j k

i i
j k n dummy j k

i i

dummy j k

a

nodeScore

a

ns        l(a )=l(a )

ns      l(a ) l(a )

ns   a = , a

ns    a , a

  

 
 

 
 
 







 


 



 (2) 

and edgeScore evaluates the compatibility of 

the edge weights. Tolerance towards edge 

weights deviation is again realized by  
threshold. Hence, the assignment of two edges 

is considered a match, if respective weights 

deviate by  at most, and otherwise is 

mismatches. edgeScore of two column ai and aj 
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of the alignment matrix A is calculated by the 

equation 3: 

1 1

1

,

,

,

i j

i j

n n

i j i j

mm k k k l l l

i j i j

mm k k k l l l

ij
k l n m kl

ij

mm kl

a a

edgeScore

a a

es        (a ,a ) E (a ,a ) E

es        (a ,a ) E (a ,a ) E

es          d

es    d ε

  

    
    

    
    
    

  


 



 


ε

(3)  

In Equation 3, 𝑑𝑘𝑙
𝑖𝑗

= |𝑤(𝑎𝑘
𝑖 ) − 𝑤(𝑎𝑙

𝑗
)|. 

Parameters (nsm, nsmm ,nsdummy , esm , esmm) are 

constants used to reward or penalize matches, 

mismatches and dummies, respectively. In this 

article, they are initialized as same as in [8]: nsm 

= 1.0; nsmm = -5.0; nsdummy = -2.5; esm = 0.2; 

esmm =-0.1. 

Call Vmax is the number of vertices of the 

graph with the highest number of vertices and n 

is the number of graphs. Because MGA is a 

NP-hard problem (see [8, 21]), so its 

complexity will be 𝑶((𝑽𝒎𝒂𝒙)!𝒏) if we use the 

exhaustive method to solve it 

3. The proposed algorithm 

The proposed algorithm based on the ACO 

algorithm. It combines the ACO with Tabu 

Search procedure arcording to the memetic 

scheme. An algorithm based on the ant colonies 

optimization method has four important 

components: construction graph, heuristic 

information, pheronome update rules, and local 

search procedure. These components of 

ACOTS-MGA are presented as follows. 

3.1. Components of ACOTS-MGA 

a) Construction Graph 

The construction graph consists of n layers 

where layer i is graph 
*

i
G  in the set 

*G . Each 

vertex of the above layer is connected to all of 

vertices of the next below layer. The top layer 

considered as the next layer of the bottom layer.  

Figure 2 illustrates the construction graph 

where ants start from the graph G1 which does 

not display edges within a graph, white nodes 

are real vertices and grey nodes are dummy. 

An alignment of graphs is a path from G1 

through every layer to Gn such that each path 

passes only one vertex of each layer and each 

vertex of the construction graph has only one 

path passing through. Dummy nodes allow 

more than one paths to passes through.  

Remark. Note that the paths forming this 

alignment can be considered as a single path by 

the insight of the popular ACO algorithm. This 

implied path starts from a vertex of the graph 

G1 passing through all next graphs to the last 

graph. It then "walks" to the vertex of the top 

layer of another alignment vector until passing 

through all real nodes, each node exactly  

once time. 

b) Heuristic information 

Heuristic information 𝜂𝑗,𝑘
𝑖 (𝑎𝑗) is the node 

score. It is calculated by equation (2) when 

aligning node k of graph Gi at position i of 

column vector aj. 

c) Random walk procedure to construct an 

alignment 

G2 

………………

…………. 

G3 

 G1 

Gn 

Real Node Dummy Node 

Figure 2. Construction graph for n-graphs 

alignment. 
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In each iteration, each ant will repeat the 

process to build vectors 
1( ,..., )j j j T

na a a for 

an alignment A as follows. 

The ant selects randomly one vertex on the 

first layer as initial vertex. At the next layers, 

difference with ACO-MGA2 which consider all 

vertices of graph Gi to choose a vertex to align, 

in ACOTS-MGA, the aligned node is chosen   

by beam search strategy. This stratery helps 

ACOTS-MGA decrease time to indentify node 

to align. This procedure is described as follows. 

We denoted ( )jlabel a  is the set of labels 

of the vertices in the column vector aj, called 

{ | (v) (a )}j

i iB v RV label label   is the set 

of unalign vertices of the graph Gi (denote by 

RVi) whose labels are like to the labels of the 

vertices in the alignment vector aj. In the case 

of having  no vertices which have label belong 

to label(aj). Bi will be assigned by the set of 

unalign remaining vertices. Ant will randomly 

select a node in Bi with the probability given in 

Equation 4. 

For ease of visualization, we assume the ant 

start from the graph G1 and random walk along 

the path 
1 2 1, ,...,j j j

ia a a    to graph Gi where it 

chose vertex k in Gi  with probability: 

, ,

,

, ,

( ) *[ (a )]

( ) *[ (a )]
i

i i j

j k j ki

j k i i j

j s j ss B

p

 

 

 

 





 (4)   

After a vector is fully developed into

1( ,..., )j j j T

na a a , the real vertices in vector aj 

is removed from the construction graph to 

continue repeating the alignment procedure of 

ants until all vertices have already aligned. 

d) Pheromone Update Rule 

Pheromone trail intensity 𝜏𝑗,𝑘
𝑖  is initialized 

as 𝜏𝑚𝑎𝑥 and will be updated after each iteration. 

After the ants found the solutions or carried 

out local search (in the second stage), the 

pheromone trail is updated according to 

SMMAS pheromone trail update rule in [28], 

[29], as follows: 

, , ,(1 )i i i

j k j k j k       (5)  

,

*

*

*

max

i

j k mid

min

      (i,j,k)  gbest solution

      (i,j,k)  ibest solution

      otherwise

 

 

 




  



(6)  

where max, min and ∈ (0,1)   are given 

parameters, best solution is the best solution 

found in current iteration.  

Note that in Equation (5), parameter  

defines two properties: reinforcement search 

around the best-found solution and explore new 

solution. In ACOTS-MGA, at the first stage, 

the  is set small to efficient use reinforcement 

information, and set it higher at the second 

stage to emphasise on exploration. 

Focusing on equation 6, difference  to 

ACO-MGA and ACO-MGA2, ACOTS-MGA 

uses combine ibest solution and gbest solution 

to update pheromone trail. 

e) Tabu search procedure 

In the last iterations of ACOTS-MGA 

algorithm, Tabu Search algorithm is applied to 

enhance the solution quality. 

Tabu search procedure will review the 

vertices of graphs, with each graph it swap the 

pairs of vertices belong this graph on the 

alignment vectors. If this change increases the 

score, the best solution will be updated with the 

current solution. Unlike conventional search 

procedures, Tabu Search procedure uses a Tabu 

list to save the node swap. These node pairs in 

Tabu list will not be reviewed again to avoid 

being  repeated the swapping of two node. 

Another difference of ACOTS-MGA from 

the ACOMGA2 algorithm is that the local 

search procedure of ACOMGA2 is only called 

once time at each iteration, in the ACOTS-

MGA algorithm, the Tabu search procedure is 

repeatedly called until it does not improve the 

solution quality anymore. 

3.2. General framework  

The ACOTS-MGA algorithm is 

implemented in multiple loops until it satisfies 

the predefined stop condition. It includes two 

stages as in Algorithm 1. 
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At the first 80% of iterations, in each 

iteration, each ant builds solutions on the 

construction graph based on heuristic 

information and pheromone trail intensity. Then 

the algorithm determines the best solution of 

the iteration, updates pheromone trail according 

to SMMAS rule and updates the best solution 

found by then. 

At the last 20% of iterations, in each 

iteration, after ants build solutions, Tabu search 

techniques are applied to find the best solution 

of iteration. Then ACOTS-MGA updates 

pheromone trail according to SMMAS rule and 

updates the best solution. 

4. Experiment results 

4.1. Data descriptions 

The experiment data contains 74 structures 

extracted from Cavbase database[19]. Each 

structure represents a protein cavity belonging 

to protein family of thermolysin, bacteria 

protease commonly used in analysis of protein 

and annotated with the EC number 3.4.24.27 in 

the ENZYME database [8]. 

In this data set, each generated graph has 42 

to 94 vertices. The graphs are selected from 74 

structures to generate random data sets contain 

4, 8, 16, 32 graphs. 

4.2. Parameters and computer configuration 

Because the ACO-MGA2 is an improved 

version of ACO-MGA, experiments presented 

here only compare ACOTS-MGA with Greedy 

[21], GAVEO [8] and ACO-MGA2[27]. 

The parameters of ACOTS-MGA areset as 

follow: 

 The number of ants at each iteration is 30 

 1=0.3, 2=0.7 (=1 at the first stage, and 

(=2 at the second stage) 

 𝛼 = 𝛽 = 1 

 max = 1, mid=0.8  and 
max

min 2

max
V


  , 

where 
1 2

,( ,..., )
max n

V max V V V  . 

 Local search procedure is applied in the 

last 20% of iterations. 

Our experiments are performed on a 

computer with following configuration: CPU 

Intel Core 2 Duo 3 Ghz, RAM DDR3 4GB and 

Windows 7 operating system. 

4.3. Effect and runtime comparison 

In this experiment, we run the algorithms 

on the same data sets with a predetermined 

number of iterations. To compare the solution 

quality and runtime of algorithms, we 

performed each algorithm on each data set 20 

times and took the average values for 

comparison.  

The score and the runtime of the algorithms 

are shown in Table 1 and Table 2. The 

experimental results in Table 1 show that 

ACOTS-MGA algorithm in any case has better 

solution quality than GAVEO and ACO-MGA2 

and gready. Especially when increasing the 

number of graphs, the outperformance of 

ACOTS-MGA over other methods is more 

prominent.  

When comparing in terms of runtime, table 

2 shows that the ACOTS-MGA algorithm run 

faster than the GAVEO and ACO-MGA2 does 

in case of the number of graphs is 4 or 8. 

However, in case of the number of graph is 16, 

ACOTS-MGA is faster than GAVEO and 

slower than ACO-MGA2; in case of the number 

of graph is 32, ACOTS-MGA is slower than 

ACO-MGA2 and GAVEO. 

Algorithm 1: ACOTS-MGA algorithm 

Input:A set of graphs G ={G1(V1,E1),…,Gn(Vn,En) 

Output: The best alignment
   1( ) ... ( )nA V V       for G 

Begin 

 Initialize; //initialize pheromone trail matrix and nant 

ants;  

 while (stop conditions not satisfied) do 

 for i=1 to nant do 

 anti builds a multiple graph alignment; 

  Tabu search //run only at the second stage 

 Update pheromone trail; 

 Update the best solution; 

End while; 

 Save the best solution; 

End; 
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4.4. Comparing GAVEO and ACOTS-MGA 

under a predetermined amount of time 

Because the greedy method requires small 

runtime and its solution quality is too bad, in 

this section, we only compare the solution 

quality of GAVEO, ACO-MGA2 and the 

solution quality of ACOTS-MGA in the  

same runtime. 

We run GAVEO, ACO-MGA2 and 

ACOTS-MGA algorithms on a data set of 16 

graphs, each graph contains 42 to 94 vertices, 

with the runtime increase from 1000s to the 

6000s. The results are shown in Figure 3. It 

shows that when the runtime increases from 

1000s to 6000s, solution quality of ACOTS-

MGA is always better than GAVEO and ACO-

MGA2 algorithm. 

In addition, to compare the solution quality 

of ACOTS-MGA with ACO-MGA2 and 

GAVEO algorithms in the same time. We run 

the GAVEO and ACO-MGA2 algorithm on the 

same dataset at the same time as the runtime of 

the ACOTS-MGA algorithm given in Table 1. 

The results are shown in table 3. It can be seen 

from table 3 that when running in the same 

time, with all data sets, ACOTS-MGA 

algorithm is better than ACO-MGA2 and 

GAVEO. 

Table 1. Comparison of the score of algorithms with the data sets consisting of 4, 8, 16 and 32 graphs 

Method/Number of graphs 4 8 16 32 

Greedy -4098.00 -11827.00 -56861.00 -267004.00 

GAVEO -1223.50 -2729.67 -10604.00 -63205.33 

ACO-MGA2 -971.80 -2277.80 -7857.20 -53960.10 

ACOTS-MGA -963.12 -1088.81 -5670.86 -42215.91 

Table 2. Comparison of the algorithm runtime (seconds) with the data sets consisting of 4, 8, 16 and 32 graphs 

Method/Number of graphs 4 8 16 32 

GAVEO 1892 s 2851 s 10067 s 20671 s 

ACO-MGA2 272 s 1374 s 4151 s 18005 s 

ACOTS-MGA 171 s 809 s 6839 s 53800 s 

Table 3. Comparison of score of GAVEO, ACO-MGA2 and ACOTS-MGA algorithms with the same 

runtime with datasets include 4,8,16 and 32 graphs 

Method/Number of graphs 4 8 16 32 

GAVEO -1223.50 -2879.00 -10744.00 -63205.33 

ACO-MGA2 -989.48 -1524.43 -7757.20 -53960.10 

ACOTS-MGA -963.12 -1088.81 -5670.86 -42215.91 
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Figure 3. Comparison of results of ACOTS-MGA algorithm with ACO-MGA2 and GAVEO algorithms  

with data set of 16 graphs when runtime increase from 1000s to 6000s.

5. Conclusions 

This paper proposes a new algorithm for 

solving a multi-graph alignment problem called 

ACOTS-MGA. This algorithm is an 

improvement of the ACO-MGA2 algorithm. In 

ACOTS-MGA, the local search procedure is 

replaced by Tabu Search procedure. In addition, 

there are some changes in ACOTS-MGA: the 

random walk procedure to construct the 

solution, heuristic information and pheromone 

update manner. Experiments on the real data set 

show that the proposed algorithm yield the 

solution quality better than previous algorithms. 

When the number of graphs increases, the 

proposed algorithm runs slowly. However, as 

well as the other ACO-based algorithms, 

ACOTS-MGA could be implemented as 

parallel to work with the higher number  

of graphs. 
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