
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

On Locally Strongest Assumption Generation Method for
Component-Based Software Verification

Hoang-Viet Tran∗, Pham Ngoc Hung
Faculty of Information Technology, VNU University of Engineering and Technology,
No. 144 Xuan Thuy Street, Dich Vong Ward, Cau Giay District, Hanoi, Vietnam

Abstract
Assume-guarantee reasoning, a well-known approach in component-based software (CBS) verification, is in

fact a language containment problem whose computational cost depends on the sizes of languages of the software
components under checking and the assumption to be generated. Therefore, the smaller language assumptions,
the more computational cost we can reduce in software verification. Moreover, strong assumptions are more
important in CBS verification in the context of software evolution because they can be reused many times in the
verification process. For this reason, this paper presents a method for generating locally strongest assumptions with
locally smallest languages during CBS verification. The key idea of this method is to create a variant technique
for answering membership queries of the Teacher when responding to the Learner in the L∗–based assumption
learning process. This variant technique is then integrated into an algorithm in order to generate locally strongest
assumptions. These assumptions will effectively reduce the computational cost when verifying CBS, especially
for large–scale and evolving ones. The correctness proof, experimental results, and some discussions about the
proposed method are also presented.

Received 14 June 2018, Revised 18 September 2018, Accepted 15 October 2018

Keywords: Assume-guarantee reasoning, Model checking, Component-based software verification, Locally
strongest assumptions, Locally smallest language assumptions.

1. Introduction

The assume-guarantee verification proposed
in [1–5] has been recognized as a promising,
incremental, and fully automatic method
for modular verification of CBS by model
checking [6]. This method decomposes a
verification target about a CBS into smaller parts
corresponding to the individual components such
that we can model check each of them separately.
Thus, the method has a potential to deal with

∗ Corresponding author. Email.: vietth2004@gmail.com
https://doi.org/10.25073/2588-1086/vnucsce.209

the state explosion problem in model checking.
The key idea of this method is to generate an
assumption such that the assumption is strong
enough for the component to satisfy a required
property and weak enough to be discharged by
the rest of the software. The most common rule
that is used in assume-guarantee verification
is the non-circular rule as shown in formula 1.
Given a CBS M = M1 ∥ M2, and a predefined
property p, we need to find an assumption A so

16

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 17

that formula 1 holds.

M1 ∥ A |= p
M2 |= A

M1 ∥M2 |= p
(1)

This is actually the language containment
problem of the two couples of components (M1 ∥
A, p), and (M2, A), i.e., to decide if L(M1 ∥
A)↑Σp ⊆ L(p), and L(M2)↑ΣA

⊆ L(A),
where ∥ is the parallel composition operator
defined in Definition 4, |= and ↑ Σ is the
satisfiability and projection operator defined
in Definition 6, respectively. Therefore, the
stronger the assumption (i.e., an assumption with
smaller language) is, the more computational
cost can be reduced, especially when model
checking large-scale CBSs. Furthermore, when
a component is evolved in the context of
the software evolution, we can recheck the
evolved CBS effectively by reusing the generated
stronger assumptions. As a result, generating
assumptions with as small as possible languages
is of primary importance for assume-guarantee
verification of CBSs.

Although the assumption generation method
proposed in [2] has already tried to generate
stronger assumptions than those generated by
the method proposed in [1], it has not been
able to generate strongest assumptions. This
is because the method proposed in [2] uses a
learning algorithm called L∗ [7, 8] for learning
regular languages. In fact, L∗ algorithm depends
on a minimally adequate Teacher for being
able to generate the strongest assumptions
(i.e., the assumptions with minimal languages).
Therefore, the algorithms that implement
Teacher will affect the languages of the
generated assumptions. On the other hand, in the
context of software compositional verification,
depends on the implementation of Teacher,
L∗ learning algorithm always terminates and
returns the first assumption that satisfies
the assume-guarantee rules before reaching
the strongest assumptions. As a result, the
assumptions generated by the assume-guarantee
verification method proposed in [2] are not

the strongest ones. In addition, in fact, there
exist many candidate assumptions satisfying
the assume-guarantee rules. Section 4 shows
a counterexample that there exists another
assumption (denoted by ALS) which is stronger
than the assumptionA generated by theL∗–based
assumption generation method proposed in [2]
(i.e., L(ALS)↑ΣA

⊆ L(A)). The problem is
how to find the strongest assumptions (i.e.,
assumptions with smallest languages) in the
space of candidate assumptions.

Recently, there are many researches that have
been proposed in improvement of the L∗–based
assumption generation method proposed in [2].
In the series of papers presented in [9–11], Hung
et al. proposes a method that can generate the
state minimal assumptions (i.e., assumptions
with the smallest number of states) using the
depth-limited search. However, this does
not guarantee that these assumptions have
the smallest languages. In 2007, Chaki and
Strichman proposed three optimizations to the
L∗–based assumption generation method in
which they proposed a method to minimize
the alphabet used by the assumption that
allows us to reduce the sizes of the generated
assumptions [12]. Nonetheless, in [12], the size
of languages of the generated assumptions is
not guaranteed to be smaller than the size of
those generated by the L∗–based assumption
generation method proposed in [2]. In [13],
Gupta et al. proposed a method to compute
an exact minimal automaton to act as an
intermediate assertion in assume-guarantee
reasoning, using a sampling approach and a
Boolean satisfiability solver. However, this
automaton is not the stronger assumption with
smaller language and this method is suitable
for hardware verification. Therefore, from the
above researches, we can see that although
generating stronger assumptions is a very
important problem, there is no research into this
so far.

For the above reasons, the purpose of this
paper is to generate the strongest assumptions
for compositional verification. However, for
some reasons which will be explained in more

18 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

details in Section 4, the proposed method can
only generate the locally strongest ones. The
method is based on an observation that the
technique to answer membership queries from
Learner of Teacher uses the language of
the weakest assumption, denoted by L(AW),
to decide whether to return true or false to
Learner [2]. If a trace s belongs to L(AW),
it returns true even if s may not belongs to
the language of the assumption to be generated.
For this reason, the key idea of the proposed
technique for answering membership queries is
that Teacher will not directly return true to the
query. It will return “?” to Learner whenever
the trace s belongs to L(AW). Otherwise, it
will return false. After that, this technique is
integrated into an improved L∗–based algorithm
that tries every possibility that a trace belongs to
language of the assumption A to be generated.
For this purpose, at the ith iteration of the
learning process, when the observation table
(S, E, T) is closed with n “?” results, we have the
corresponding candidate assumptionAi where all
“?” results are considered as true. We decide
if (S, E, T) is closed with the consideration that
all “?” results are true, this is the same as the
assumption generation method proposed in [2].
The algorithm tries every k–combination of n “?”
results and considers those “?” results as false
(i.e., the corresponding traces do not belong to
L(A)), where k is from n (all “?” results are
false) to 1 (one “?” result is false). If none
of these k–combinations is corresponding to a
satisfied assumption, the algorithm will turn all
“?” results into true (all corresponding traces
belong to L(A)) and generate corresponding
candidate assumptionAi then ask an equivalence
query for Ai. After that, the algorithm continues
the learning process again for the next iteration.
The algorithm terminates as soon as it reaches
a conclusive result. Consequently, with this
method of assumption generation, the generated
assumptions, if exists, will be the locally
strongest assumptions.

The rest of this paper is organized as follows.
Section 2 presents background concepts which
will be used in this paper. Next, Section 3

reviews the L∗–based assumption generation
method for compositional verification. After
that, Section 4 describes the proposed method
to generate locally strongest assumptions. We
prove the correctness of the proposed method in
Section 5. Experimental results and discussions
are presented in Section 6. Related works to the
paper are also analyzed in Section 7. Finally, we
conclude the paper in Section 8.

2. Background

In this section, we present some basic
concepts which will be used in this work.
LTSs. This research uses Labeled Transition
Systems (LTSs) to model behaviors of
components. Let Act be the universal set of
observable actions and let τ denote a local action
unobservable to a component environment. We
use π to denote a special error state. An LTS is
defined as follows.

Definition 1. (LTS). An LTS M is a quadruple
⟨Q, Σ, δ, q0⟩, where:

• Q is a non-empty set of states,

• Σ ⊆ Act is a finite set of observable actions
called the alphabet of M ,

• δ ⊆ Q×Σ∪{τ}×Q is a transition relation,
and

• q0 ∈ Q is the initial state.

Definition 2. (Trace). A trace σ of an LTS M
= ⟨Q, Σ, δ, q0⟩ is a finite sequence of actions
a1a2...an, such that there exists a sequence of
states starting at the initial state (i.e., q0q1...qn)
such that for 1 ≤ i ≤ n, (qi−1, ai, qi) ∈ δ,
qi ∈ Q.

Definition 3. (Concatenation operator). Given
two sets of event sequences P and Q, P.Q =
{pq | p ∈ P, q ∈ Q}, where pq presents the
concatenation of the event sequences p and q.

Note 1. The set of all traces of M is called the
language of M , denoted by L(M). Let σ =
a1a2...an be a finite trace of an LTS M . We use

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 19

[σ] to denote the LTS Mσ = ⟨Q, Σ, δ, q0⟩ with Q
= {q0, q1, ..., qn}, and δ = {(qi−1, ai, qi)}, where
1 ≤ i ≤ n.

Parallel Composition. The parallel composition
operator ∥ is a commutative and associative
operator up-to language equivalence that
combines the behavior of two models by
synchronizing the common actions to their
alphabets and interleaving the remaining actions.

Definition 4. (Parallel composition operator).
The parallel composition between M1 =
⟨Q1, ΣM1 , δ1, q1

0⟩ and M2 = ⟨Q2, ΣM2 , δ2, q2
0⟩,

denoted by M1∥M2, is defined as follows.
M1∥M2 is equivalent to

∏
if either M1 or

M2 is equivalent to
∏
, where

∏
denotes the

LTS ⟨{π}, Act, , π⟩. Otherwise, M1∥M2 is an
LTS M = ⟨Q, Σ, δ, q0⟩ where Q = Q1×Q2,
Σ = ΣM1 ∪ ΣM2 , q0 = (q1

0, q2
0), and the

transition relation δ is given by the following
rules:

(i)α ∈ ΣM1 ∩ ΣM2 , (p, α, p′) ∈ δ1, (q, α, q′) ∈ δ2

((p, q), α, (p′, q′)) ∈ δ
(2)

(ii)α ∈ ΣM1\ΣM2 , (p, α, p′) ∈ δ1

((p, q), α, (p′, q)) ∈ δ
(3)

(iii)α ∈ ΣM2\ΣM1 , (q, α, q′) ∈ δ2

((p, q), α, (p, q′)) ∈ δ
(4)

Safety LTSs, Safety Property, Satisfiability
and Error LTSs.

Definition 5. (Safety LTS). A safety LTS is a
deterministic LTS that contains no state that is
equivalent to π state.

Note 2. A safety property asserts that nothing
bad happens for all time. A safety property p is
specified as a safety LTS p = ⟨Q, Σp, δ, q0⟩ whose
language L(p) defines the set of acceptable
behaviors over Σp.

Definition 6. (Satisfiability). An LTSM satisfies
p, denoted by M |=p, if and only if ∀σ ∈ L(M):

(σ↑Σp) ∈ L(p), where σ↑Σp denotes the trace
obtained by removing from σ all occurrences of
actions a /∈ Σp.

Note 3. When we check whether an LTS M
satisfies a required property p, an error LTS,
denoted by perr, is created which traps possible
violations with the π state. perr is defined as
follows:

Definition 7. (Error LTS). An error LTS of
a property p = ⟨Q, Σp, δ, q0⟩ is perr = ⟨Q ∪
{π}, Σp, δ′, q0⟩, where δ′ = δ ∪ {(q, a, π) | a ∈
Σp and ̸∃q′ ∈ Q : (q, a, q′) ∈ δ}.
Remark 1. The error LTS is complete, meaning
each state other than the error state has outgoing
transitions for every action in the alphabet. In
order to verify a component M satisfying a
property p, both M and p are represented by
safety LTSs, the parallel compositional system
M∥perr is then computed. If some states (q, π)
are reachable in the compositional system, M
violates p. Otherwise, it satisfies p.

Definition 8. (Deterministic finite state
automata) (DFA). A DFA D is a five tuple
⟨Q, Σ, δ, q0, F ⟩, where:
• Q, Σ, δ, q0 are defined as for deterministic
LTSs, and

• F ⊆ Q is a set of accepting states.

Note 4. LetD be a DFA and σ be a string overΣ.
We use δ(q, σ) to denote the state thatD will be in
after reading σ starting from the state q. A string
σ is accepted by a DFA D = ⟨Q, Σ, δ, q0, F ⟩ if
δ(q0, σ) ∈ F . The set of all string σ accepted by
D is called the language ofD (denoted by L(D)).
Formally, we have L(D) = {σ | δ(q0, σ) ∈ F}.
Definition 9. (Assume-Guarantee Reasoning).
Let M be a system which consists of two
components M1 and M2, p be a safety property,
andA be an assumption aboutM1’s environment.
The assume-guarantee rules are described as
following formula [2].

(step 1) ⟨A⟩M1 ⟨p⟩
(step 2) ⟨true⟩M2 ⟨A⟩

⟨true⟩M1||M2 ⟨p⟩

20 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

Note 5. We use the formula ⟨true⟩ M ⟨A⟩ to
represent the compositional formula M∥Aerr.
The formula ⟨A⟩ M ⟨p⟩ is true if whenever M
is part of a system satisfying A, then the system
must also guarantee p. In order to check the
formula, where both A and p are safety LTSs, we
compute the compositional formula A∥M∥perr

and check if the error state π is reachable in
the composition. If it is, the formula is violated.
Otherwise it is satisfied.

Definition 10. (Weakest Assumption) [1]. The
weakest assumption AW describes exactly those
traces over the alphabet Σ = (ΣM1 ∪ Σp) ∩
ΣM2 which, the error state π is not reachable in
the compositional system M1∥perr. The weakest
assumption AW means that for any environment
component E, M1∥E |= p if and only if E |=
AW .

Definition 11. (Strongest Assumption). Let
AS be an assumption that satisfies the
assume-guarantee rules in Definition 9. If
for all A satisfying the assume-guarantee rules
in Definition 9: L(AS)↑ΣA

⊆ L(A), we call AS

the strongest assumption.

Note 6. Let A be a subset of assumptions
that satisfy the assume-guarantee rules in
Definition 9 and ALS ∈ A. If for all
A ∈ A: L(ALS)↑ΣA

⊆ L(A), we call ALS

the locally strongest assumption.

Definition 12. (Observation table). Given a set
of alphabet symbols Σ, an observation table is a
3-tuple (S, E, T), where:

• S ∈ Σ∗ is a set of prefixes,

• E ∈ Σ∗ is a set of suffixes, and

• T : (S ∪ S.Σ).E → {true, false}. With
a string s ∈ Σ∗, T (s) = true means s ∈
L(A), otherwise s /∈ L(A), where A is the
corresponding assumption to (S, E, T).

An observation table is closed if ∀s ∈
S, ∀a ∈ Σ,∃s′ ∈ S, ∀e ∈ E : T (sae) = T (s′e).
In this case, s′ presents the next state from s
after seeing a, sa is indistinguishable from s′

by any of suffixes. Intuitively, an observation

table (S, E, T) is closed means that every row
sa ∈ S.Σ has a matching row s′ in S.

When an observation table (S, E, T) over an
alphabetΣ is closed, we define the corresponding
DFA that accepts the associated language as
follows [7]. M = ⟨Q, ΣM , δ, q0, F ⟩, where

• Q = {row(s) : s ∈ S},

• q0 = row(λ),

• F = {row(s) : s ∈ S and T (s) = 1},

• ΣM = Σ, and

• δ(row(s), a) = row(s.a).

From this way of constructing DFA from
an observation table (S, E, T), we can see that
each states of the DFA which is being created is
corresponding to one row in S. Therefore, from
now on, we sometimes call the rows in (S, E, T)
its states.

Remark 2. The DFAs generated from
observation table in this context are complete,
minimal, and prefix-closed (an automaton D
is prefix-closed if L(D) is prefix-closed, i.e.,
for every σ ∈ L(D), every prefix of σ is also
in L(D)). Therefore, these DFAs contain a
single non-accepting state (denoted by nas) [2].
Consider a DFAD = ⟨Q∪{nas}, Σ, δ, q0, Q⟩ in
this context, we can calculate the corresponding
safety LTSA by removing the non-accepting state
nas and all of its ingoing transitions. Formally,
we have A = ⟨Q, Σ, δ ∩ (Q× Σ× {nas}), q0⟩.

3. L∗–based assumption generation method

3.1. The L∗ algorithm

L∗ algorithm [7] is an incremental learning
algorithm that is developed by Angluin and
later improved by Rivest and Schapire [8]. L∗

can learn an unknown regular language and
generate a deterministic finite automata (DFA)
that accepts it. The key idea of L∗ learning
algorithm is based on the “Myhill Nerode
Theorem” [14] in the formal languages theory.
It said that for every regular set U ⊆ Σ∗,

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 21

Learner IsEquivalent (D)

IsMember (σ)

true/false

Unknown regular

language U

yes/no+cex

Teacher

Figure 1. The interaction between L∗ Learner and T eacher.

there exists a unique, minimal deterministic
automaton whose states are isomorphic to the set
of equivalence classes of the following relation:
w ≈ w′ if and only if ∀u ∈ Σ∗ : wu ∈ U ⇔
w′u ∈ U . Therefore, the main idea of L∗ is to
learn equivalence classes, i.e., two prefixes are
not in the same class if and only if there is a
distinguishing suffix u.

Let U be an unknown regular language over
some alphabet Σ. L∗ will produce a DFA
D such that L(D) = U . In this learning
model, the learning process is performed by the
interaction between the two objects Learner
(i.e., L∗) and Teacher. The interaction is shown
in Figure 1 [17]. Teacher is an oracle that must
be able to answer the following two types of
queries from Learner.

• Membership queries: These queries consist
of a string σ ∈ Σ∗ (i.e., “is σ ∈ U?”).
The answer is true if σ ∈ U , and false
otherwise.

• Equivalence queries: These queries consist
of a candidate DFA D whose language the
algorithm believes to be identical to U (“is
L(D) = U?”). The answer is Y ES if
L(D) = U . Otherwise Teacher returnsNO
and a counterexample cex which is a string
in the symmetric difference of L(D) and U .

3.2. Generating assumption using L∗ algorithm

Given a CBS M that consists of two
components M1 and M2 and a safety property p.
The L∗–based assumption generation algorithm
proposed in [2, 17] generates a contextual
assumption using the L∗ algorithm [7].
The details of this algorithm are shown in

Algorithm 1. In order to learn an assumption

Algorithm 1: L∗–based assumption
generation algorithm
1 begin
2 Let S = E = {λ}
3 while true do
4 Update T using membership

queries
5 while (S, E, T) is not closed do
6 Add sa to S to make (S, E, T)

closed where s ∈ S and a ∈ Σ
7 Update T using membership

queries
8 end
9 Construct candidate DFA D from

(S, E, T)
10 Make the conjecture C from D
11 equiResult← Ask an equivalence

query for the conjecture C
12 if equiResult.Key is Y ES then
13 return C
14 else if equiResult.Key is

UNSAT then
15 return UNSAT + cex
16 else

/* Teacher returns
NO + cex */

17 Add e ∈ Σ∗ that witnesses the
counterexample to E

18 end
19 end
20 end

A, Algorithm 1 maintains an observation table
(S, E, T). The algorithm starts by initializing
S and E with the empty string λ (line 2).
After that, the algorithm updates (S, E, T) by
using membership queries (line 4). While the
observation table is not closed, the algorithm
continues adding sa to S and updating the
observation table to make it closed (from
line 5 to line 8). When the observation table
is closed, the algorithm creates a conjecture
C from the closed table (S, E, T) and asks an
equivalence query to Teacher (from line 9

22 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

to line 11). The algorithm then stores the
result of candidate query to equiResult. An
equivalence query result contains two properties:
Key ∈ {Y ES, NO, UNSAT} (i.e., Y ES
means the corresponding assumption satisfies
the assume-guarantee rules in Definition 9; NO
means the corresponding assumption does not
satisfy assume-guarantee rules in Definition 9,
however, at this point, we could not decide
if the given system M does not satisfy p yet,
we can use the corresponding counterexample
cex to generate a new candidate assumption;
UNSAT means the given system M does not
satisfy p and the counterexample is cex); the
other property is an assumption when Key
is Y ES or a counterexample cex when Key
is NO or UNSAT . If equiResult.Key is
Y ES (i.e., C is the needed assumption), the
algorithm stops and returns C (line 13). If
equiResult.Key is UNSAT , the algorithm
will stops and returns UNSAT and cex is the
corresponding counterexample. Otherwise, if
equiResult.Key is NO, it analyzes the returned
counterexample cex to find a suitable suffixes
e. This suffix e must be such that adding it to
E will cause the next assumption candidate to
reflect the difference and keep the set of suffix
E closed. The method to find e is not in the
scope of this paper, please find more details
in [8]. It then adds e to E (line 17) and continues
the learning process again from line 4. The
incremental composition verification during the
iteration ith is shown in Figure 2 [2, 17].

In order to answer a membership query
whether a trace σ = a1a2...an belongs to L(A) or
not, we create an LTS [σ] = ⟨Q, Σ, δ, q0⟩ with Q
= {q0, q1, ..., qn}, and δ = {(qi−1, ai, qi)}, where
1 ≤ i ≤ n. Teacher then checks the formula
⟨[σ]⟩M1⟨p⟩ by computing compositional system
[σ]||M1||perr. If the error state π is unreachable,
Teacher returns yes (i.e., σ ∈ L(A)). Otherwise,
Teacher returns no (i.e., σ ̸∈ L(A)).

In regards to dealing with equivalence
queries, as mentioned above in Section 3.1,
these queries are handled in Teacher by
comparing L(A) = U . However, in case of
assume-guarantee reasoning, we have not known

what is U yet. The only thing we know is that
the assumption A to be generated must satisfy
the assume-guarantee rules in Definition 9.
Therefore, instead of checking L(A) = U , we
check if A satisfies the assume-guarantee rules
in Definition 9.

(step 1) <Ci> M1 <p>

Analysis

Assumption

Generation
Ci

true

false

cex

false

counterexample – strengthen assumption

counterexample – weaken assumption

(step 2) <true> M2 <Ci>

Figure 2. Incremental compositional verification during
iteration ith.

4. Learning locally strongest assumptions

As mentioned in Section 1, the assumptions
generated by the L∗–based assumption
generation method proposed in [2] are not
strongest. In the counterexample shown
in Figure 3, given two component models
M1, M2, and a required safety property p,
the L∗–based assumption generation method
proposed in [2] generates the assumption A.
However, there exists a stronger assumption
ALS with L(ALS)↑ΣA

⊆ L(A) as shown in
Figure 3. We have checked L(ALS)↑ΣA

⊆ L(A)
by using the tool named LTSA [15, 16]. For
this purpose, we described A as a property and
checked if ALS |= A using LTSA. The result is
correct. This means that L(ALS)↑ΣA

⊆ L(A).
The original purpose of this research is

to generate the strongest assumptions for
assume-guarantee reasoning verification of
CBS. However, in the space of assumptions that
satisfy the assume-guarantee reasoning rule in
Definition 9, there can be a lot of assumptions.
Moreover, we cannot compare the languages of
two arbitrary assumptions in general. This is
because given two arbitrary assumptions A1 and
A2, we can have a scenario that L(A1) ̸⊆ L(A2)
and L(A2) ̸⊆ L(A1) but L(A1) ∩ L(A2) ̸= ∅
and L(A1) ∩ L(A2) is not an assumption. In this
scenario, we cannot decide if A1 is stronger than

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 23

admit dispatch

timeout

ack

M1

release
dispatch

out release

cal

M2

out

ack

p

out

dispatch, release

release

ALS

release out

dispatch

proc

out

release

dispatch

release
dispatch,

out,

release

release
dispatch

dispatch release

dispatch

dispatch

A

out

Figure 3. A counterexample proves that the assumptions generated in [2] are not strongest.

A2 or vice versa. Another situation is that there
exist two assumptions A3 and A4 which are the
locally strongest assumptions in two specific
subsets A3 and A4, but we also cannot decide if
A3 is stronger than A4 or vice versa. Besides, we
may even have a situation where there are two
incomparable locally strongest assumptions in a
single set of assumptions A. Furthermore, there
exist many methods to improve the L∗–based
assumption generation method to generate
locally strongest assumptions. However, with
the consideration of time complexity, we choose
a method that can generate locally strongest
assumptions in an acceptable time complexity.

We do this by creating a variant technique
for answering membership queries of Teacher.
This technique is then integrated intoAlgorithm 3
to generate locally strongest assumptions. We
prove the correctness of the proposed method in
Section 5.

4.1. A variant of the technique for answering
membership queries

In Algorithm 1, Learner updates the
observation table during the learning process by
asking Teacher a membership query if a trace
s belongs to the language of an assumption A

that satisfies the assume-guarantee rules (i.e.,
s ∈ L(A)?).

L(AW)
L(A)

s

Figure 4. The relationship between L(A) and L(AW).

Algorithm 2: An algorithm for answering
membership queries
input :A trace s = a0a1...an

output :If s ∈ L(AW) then “?”, otherwise
false

1 begin
2 if ⟨[s]⟩M1⟨p⟩ then
3 return “?”
4 else
5 return false
6 end
7 end

In order to answer this query, the algorithm
in [2] bases on the language of the weakest
assumption (L(AW)) to consider if the given
trace belongs to L(A). If s ∈ L(AW), the
algorithm returns true, otherwise, it returns

24 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

false. However, when the algorithm returns
true, it has not known whether s really belongs
to L(A). This is because ∀A : L(A) ⊆
L(AW). The relationship between L(A) and
L(AW) is shown in Figure 4 [17]. For this
reason, we use the same variant technique
as proposed in [9–11, 17] for answering the
membership queries described in Algorithm 2. In
this variant algorithm when Teacher receives a
membership query for a trace s = a0a1...an ∈
Σ∗, it first builds an LTS [s]. It then model
checks ⟨[s]⟩M1⟨p⟩. If true is returned (i.e.,
s ∈ L(AW)), Teacher returns “?” (line 3).
Otherwise, Teacher returns false (line 5). The
“?” result is then used in Learner to learn the
locally strongest assumptions.

4.2. Generating the locally strongest assumptions

In order to employ the variant technique
for answering membership queries proposed in
Algorithm 2 to generate assumption while doing
component-based software verification, we use
the improved L∗–based algorithm shown in
Algorithm 3. Given a CBSM that consists of two
components M1 and M2 and a safety property
p. The key idea of this algorithm bases on
an observation that at each step of the learning
process where the observation table is closed
(OTi), we can generate one candidate assumption
(Ai). OTi can have many “?” membership query
results (for example, n results). When we try
to take the combination of k “?” results out
of n “?” results (where k is from n to 1) and
consider all of these “?” results as false (all
of the corresponding traces do not belong to
the language of the assumption to be generated)
while we consider other “?” results as true,
there are many cases that the corresponding
observation table (OTkj) is closed. Therefore, we
can consider the corresponding candidate Ckj as
a new candidate and ask an equivalence query
for Ckj . In case both of Ai and Ckj satisfy
the assume-guarantee rules in Definition 9, we
always haveL(Ckj) ⊆ L(Ai). Wewill prove that
the assumptions generated by Algorithm 3 are the
locally strongest assumptions later in this paper.

The details of the improved L∗–based algorithm
are shown in Algorithm 3.

The algorithm starts by initializing S and E
with the empty string (λ) (line 2). After that,
the algorithm updates the observation (S, E, T)
by using membership queries (line 4). The
algorithm then tries to make (S, E, T) closed
(from line 5 to line 8). We decide if (S, E, T) is
closed with the consideration that all “?” results
are true, this is the same as the assumption
generation method proposed in [2]. When the
observation table (S, E, T) closed, the algorithm
updates those “?” results in rows of (S, E, T)
which are corresponding to not final states to true
(line 9). This is because we want to reduce the
number of “?” results in the observation table
(S, E, T) so that the number of combinations in
the next step will be smaller. The algorithm
then checks the candidates that are corresponding
to k-combinations of n “?” results which are
considered as false (line from 10 to 20). This
step is performed in some smaller steps: For
each k from n to 1 (line 10), the algorithm
gets a k–combination of n “?” results (line 11);
Turn all “?” results in the k–combination to
false, the other “?” results will be turned to
true (line 12); If the corresponding observation
table (S, E, T) is closed (line 13), the algorithm
calculates a candidate Cikj (line 14). After
that, the algorithm asks Teacher an equivalence
query (line 15) and stores result in result. An
equivalence query result contains two properties:
Key ∈ {Y ES, NO, UNSAT} (i.e., Y ES
means the corresponding assumption satisfies
the assume-guarantee rules in Definition 9; NO
means the corresponding assumption does not
satisfy assume-guarantee rules in Definition 9,
however, at this point, we could not decide
if the given system M does not satisfy p yet,
we can use the corresponding counterexample
cex to generate a new candidate assumption;
UNSAT means the given system M does
not satisfy p and the counterexample is cex);
the other property is an assumption when
Key is Y ES or a counterexample cex when
Key is NO or UNSAT . If result.Key
is Y ES, the algorithm stops and returns the

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 25

assumption associated with result (line 17).
Algorithm 3: Learning locally strongest
assumptions algorithm

1 begin
2 Let S = E = {λ}
3 while true do
4 Update T using membership queries
5 while (S, E, T) is not closed do
6 Add sa to S to make (S, E, T)

closed where s ∈ S and a ∈ Σ
7 Update T using membership

queries
8 end
9 Update “?” results to true in rows in

(S, E, T) which are not
corresponding to final states

10 for each k from n to 1 do
11 Get k–combination of n “?”

results.
12 Turn all those “?” results to false,

other “?” results are turned to
true.

13 if The corresponding observation
table (S, E, T) is closed then

14 Create a candidate assumption
Cikj .

15 result← Ask an equivalence
query for Cikj .

16 if result.Key is Y ES then
17 return

result.Assumption
18 end
19 end
20 end
21 Turn all “?” results in (S, E, T) to

true
22 Construct candidate DFA D from

(S, E, T)
23 Make the conjecture Ai from D
24 equiResult← ask an equivalence

query for Ai
25 if equiResult.Key is Y ES then
26 return Ai

27 else if equiResult.Key is UNSAT
then

28 return UNSAT + cex
29 else

/* Teacher returns
NO + cex */

30 Add e ∈ Σ∗ that witnesses the
counterexample to E

31 end
32 end
33 end

In this case, we have the locally strongest
assumption generated. When the algorithm

runs into line 21, it means that no stronger
assumption can be found in this iteration of
the learning progress, the algorithm turns all
“?” results of (S, E, T) to true and generates
the corresponding candidate assumption Ai

(lines from 21 to 23). The algorithm then asks
an equivalence query for Ai (line 24). If the
equivalence query result equiResult.Key is
Y ES, the algorithm stops and returns Ai as the
needed assumption (line 26). If equiResult.Key
is UNSAT , the algorithm returns UNSAT
and the corresponding counterexample cex
(line 28). This means that the given system M
violates property p with the counterexample cex.
Otherwise, the equiResult.Key is NO and a
counterexample cex. The algorithm will analyze
the counterexample cex to find a suitable suffix
e. This suffix e must be such that adding it to
E will cause the next assumption candidate to
reflect the difference and keep the set of suffixes
E closed. The method to find e is not in the
scope of this paper, please find more details
in [8]. The algorithm then adds it to E in order
to have a better candidate assumption in the next
iteration (line 30). The algorithm then continues
the learning process again from line 4 until it
reaches a conclusive result.

5. Correctness

The correctness of our assumption generation
method is proved through three steps: proving its
soundness, completeness, and termination. The
correctness of the proposed algorithm is proved
based on the correctness of the assumption
generation algorithm proposed in [2].

Lemma 1. (Soundness). Let Mi =
⟨QMi , ΣMi , δMi , qi

0⟩ be LTSs, where i = 1, 2 and
p be a safety property.

1. If Algorithm 3 reports “Y ES and an
associated assumption A”, then M1||M2 |=
p and A is the satisfied assumption.

2. If Algorithm 3 reports “UNSAT and a
witness cex”, then cex is the witness to
M1||M2 ̸|= p.

26 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

Proof. 1. WhenAlgorithm 3 reports “Y ES”, it
has asked Teacher an equivalence query at
line 15 or line 24 and get the result “Y ES”.
When returning Y ES, Teacher has verified
that the candidate A actually satisfied the
assume-guarantee rules in Definition 9 using
the proposed algorithm in [2]. Therefore,
M1||M2 |= p and A is the required
assumption thanks to the correctness of the
learning algorithm proposed in [2].

2. On the other hand, when Algorithm 3 reports
“UNSAT ” and a counterexample cex, all
of the candidate assumptions that have been
asked to Teacher in line 15 did not satisfy
the assume-guarantee rules in Definition 9.
The equivalence query in line 24 has the
result UNSAT and cex. When returning
UNSAT and cex, Teacher has checked that
M actually violates property p and cex is the
witness. Therefore, thanks to the correctness
of the learning algorithm proposed in [2],
M1||M2 ̸|= p and cex is the witness.

Lemma 2. (Completeness). Let Mi =
⟨QMi , ΣMi , δMi , qi

0⟩ be LTSs, where i = 1, 2 and
p be a safety property.

1. If M1||M2 |= p, then Algorithm 3 reports
“Y ES” and the associated assumption A is
the required assumption.

2. If M1||M2 ̸|= p, then Algorithm 3
reports “UNSAT” and the associated
counterexample cex is the witness to
M1||M2 ̸|= p.

Proof. 1. Compare Algorithm 1 and
Algorithm 3, we can see that Algorithm 3
is different from Algorithm 1 at lines
from 9 to 21. On the other hand, these
steps are finite steps asking Teacher some
more equivalence queries. Therefore, in
the worst case, we cannot find out any
satisfied assumption from these steps, the
algorithm is equivalent to Algorithm 1.
Therefore, if M1||M2 |= p, then in the
worst case, Algorithm 3 returns Y ES and
the corresponding assumption A thanks to

the correctness of the learning algorithm
proposed in [2].

2. The same as the above description, in the
worst case, where no satisfied assumption
can be found in Algorithm 3 from line 9
to line 21, Algorithm 3 is equivalent to
Algorithm 1. Therefore, if M1||M2 ̸|= p,
then Algorithm 3 will return UNSAT and
the associated cex is the counterexample
thanks to the correctness of the learning
algorithm proposed in [2].

Lemma 3. (Termination). Let Mi =
⟨QMi , ΣMi , δMi , qi

0⟩ be LTSs, where i = 1, 2 and
p be a safety property. Algorithm 3 terminates in
a finite number of learning steps.

Proof. The termination of Algorithm 3 follows
directly from the above Lemma 1 and 2.

Lemma 4. (Locally strongest assumption). Let
Mi = ⟨QMi , ΣMi , δMi , qi

0⟩ be LTSs, where i =
1, 2 and p be a safety property. Let’s assume that
M1||M2 |= p and Algorithm 3 does not return
the assumption immediately after getting the
first satisfied assumption (line 17). It continues
running to find all possible assumptions until all
of the question results are turned into “true”
results in the corresponding observation table.
Let A be the set of those assumptions and A be
the first generated assumption. A is the locally
strongest assumption in A.

Proof. The key idea of Algorithm 3 is shown
in Figure 5. In this learning process, at the

Ai-1

Cik(j-1) Cik1Cikj Ai

(Si,Ei,Ti)

C
k

n combinations with k “?” results considered as

“false”, where k is from n to 1

(Si-1,Ei-1,Ti-1)

Figure 5. The key idea of the improved L∗–based assumption
generation method.

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 27

iteration ith, we have a closed table (Si, Ei, Ti)
and the corresponding candidate assumption Ai

in which all “?” results are considered as true.
This means all of the associated traces with those
“?” results are considered in the language of the
assumption to be generated. If we have n “?”
results in (Si, Ei, Ti), the algorithm will start
this iteration by trying to get k–combinations
of n “?” results and consider all “?” results
in those k–combinations as false, where k is
from n to 1. This means that the algorithm
will try to consider those corresponding traces
as not in the language of the assumption to
be generated. By doing this, the algorithm
has tried every possibility that a trace does not
belong to the language of the assumption to be
generated. This is because k = n means no trace
corresponding to “?” belongs to the language of
the assumption to be generated. k = n − 1
means only one trace corresponding to “?” results
belongs to the language of the assumption to
be generated, and so on. On the other hand,
Algorithm 3 stops learning right after reaching a
conclusive result. Therefore, in the worst case,
where all of “?” results are considered as true,
Algorithm 3 is equivalent to Algorithm 1. In
other cases where there is a candidate assumption
Cikj ̸= Ai that satisfies the assume-guarantee
rules in Definition 9, obviously, we have
L(Cikj) ⊂ L(Ai) because there are k “?” results
in (Si, Ei, Ti) are considered as false. This
means k traces that belong to L(Ai) but do not
belong to L(Cikj).

In case Cikj exists, Cikj is the locally
strongest assumption because the algorithm has
tried all possibilities that n, n − 1, ..., k + 1
“?” results do not belong to the language of
the assumption to be generated but it has not
been successful yet. This way, the algorithm
has tries the strongest candidate assumption first,
then weaker candidate assumptions later. On
the other hand, with one value of k, we have
many k–combinations of n “?” results which
can be considered as false. Each of the
k–combination is corresponding to one Cikj ,
where 1 ≤ j ≤ Ck

n. However, we cannot
compare L(Cikj) and L(Cikt), where 1 ≤ j, t ≤

Ck
n. Therefore, Algorithm 3 stops right after

reaching the conclusive result and does not check
all other Cikj with the same value of k. As
a result, the generated assumption must be the
locally strongest assumption in the same iteration
of the learning process.

We can remove line 21 from Algorithm 3.
At that time, Algorithm 3 can generate stronger
assumptions than those generated byAlgorithm 1.
However, it will not have the list of candidate
assumptions of Algorithm 1 which plays a
guideline role during the learning process. As
a result, the algorithm will become much
less efficient.

Lemma 5. (Complexity). Assume that
Algorithm 1 takes mequi equivalence queries
and mmem membership queries. Assume that
at the iteration ith, there are ni “?” results. In
the worst case where we have one candidate
assumption for every k–combination of “?”,
it will takes Σni

k=1Ck
ni

equivalence queries,
but no more membership queries. Therefore,
in total and in the worst case, Algorithm 3
takes Σmequi

i=1 Σni

k=1Ck
ni

equivalence queries
and mmem membership queries. As a result,
the complexity of the proposed algorithm at
iteration ith isO(2ni). For the target of reducing
this complexity to a polynomial one, we have
plan to another research that is based on
the baseline candidate assumption Ai itself,
not on its corresponding observation table
(Si, Ei, Ti) anymore.

6. Experiment and discussion

This section presents our implemented
tool for the improved L∗–based assumption
generation method, Algorithm 3, and
experimental results by applying the tool
for some test systems. We also discuss
the advantages and disadvantages of the
proposed method.

28 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

6.1. Experiment

We have implemented Algorithm 3 in a tool
called Locally Strongest Assumption Generation
Tool (LSAGTool1) in order to compareL∗–based
assumption generation algorithm proposed in [2]
with Algorithm 3. The tool is implemented using
Microsoft Visual Studio 2017 Community. The
test is carried out with some artificial test cases on
amachine with the following system information:
Processor: Intel(R) Core(TM) i5-3230M; CPU:
@2.60GHz, 2601 Mhz, 2 Core(s), 4 Logical
Processor(s); OS Name: Microsoft Windows 10
Enterprise. The experimental results are shown
in Table 1. In this table, the sizes of M1, M2,
and p are shown in columns |M1|, |M2|, and |p|,
respectively. Column “Is stronger” shows if the
assumptions generated byAlgorithm 3 is stronger
than those generated by L∗–based assumption
generation method. “yes” means that the
assumption generated by Algorithm 3 is stronger
than the one generated by L∗–based assumption
generation method while “no” indicates that the
assumption generated by Algorithm 3 is actually
the same as the one generated by L∗–based
assumption generation method. When they are
not the same (i.e., ALS ̸≡ Aorg), in order to
check if the assumption generated byAlgorithm 3
(ALS) is stronger than the one generated by the
L∗–based assumption generation method (Aorg),
we use a tool called LTSA [15, 16]. For
this purpose, we describe Aorg as a property
and check if ALS |= Aorg. If the error
state cannot be reached in LTSA tool (i.e.,
L(ALS) ⊂ L(Aorg)), then the corresponding
value in column “Is stronger” will be “yes”.
Otherwise, we have ALS ≡ A and the value in
column “Is stronger” will be “no”. Columns “AG
Time(ms)” and “LSAGTime(ms)” show the time
required to generate assumptions for L∗–based
assumption generation method and Algorithm 3,
respectively. Columns “MAG”, “EQAG” and
“MLS”, “EQLS” show the corresponding number
of membership queries and equivalence queries
needed when generating assumptions using

1http://www.tranhoangviet.name.vn/p/lsagtools.html

L∗–based assumption generation method and
Algorithm 3. From the above experimental
results, we have the following observations:

• For some systems (test case 1, 2, 3,
and 4), Algorithm 3 can generate the
same assumptions as the ones generated
by L∗–based assumption generation method.
For other systems (test case 5, 6, 7,
and 8), Algorithm 3 can generate stronger
assumptions than the ones generated by
L∗–based assumption generation method.

• Algorithm 3 requires more time to generate
assumptions than L∗–based assumption
generation method.

• In test case 6 and 8, the number of
membership queries needed to generate
locally strongest assumption MLS is less
than the number of membership queries
needed to generate original assumption.
This is because, in this case, we can find
a satisfied locally strongest assumption at
a step prior to the step where the original
assumption generation method can generate
the satisfied assumption.

6.2. Discussion

In regards to the importances of the generated
locally strongest assumptions when verifying
CBS, there are several interesting points
as follows:

• Modular verification for CBS is done by
model checking the assume-guarantee
rules with the generated assumption as
one of its components. This is actually
a problem of language containment
of the languages of components of the
system under checking and the assumption
to be generated. For this reason, the
computational cost of this checking is
affected by the assumption language.
Therefore, the stronger assumption we
have, the more reduction we gain for the
computational cost of the verification.

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 29

Table 1. Experimental results

No. TestCase |M1| |M2| |p| Is
stronger MAG EQAG

AG
Time (ms) MLSAG EQLSAG

LSAG
Time (ms)

1 TestCase1 3 3 2 no 17 2 51 17 11 106
2 TestCase2 43 5 3 no 161 5 1391 161 14 1601
3 TestCase3 3 5 3 no 254 6 147 254 51 1184
4 TestCase4 3 3 2 no 49 4 23 49 15 184
5 TestCase5 5 4 2 yes 38 3 19 38 17 57
6 TestCase6 4 4 2 yes 79 4 51 38 12 76
7 TestCase7 24 4 2 yes 112 4 732 101 79 1871
8 TestCase8 33 4 2 yes 145 4 2817 129 782 112932

• The key idea of this work is to consider that
all possible combinations of traces which are
not in the language of the assumption A to
be generated. We do that by considering
from the possibility that no trace belongs to
L(A) to the possibility that all traces belong
to L(A). Besides, the algorithm terminates
as soon as it reaches a conclusive result.
Because of this, the returned assumptions
will be the local strongest ones.

• When a component is evolved after adapting
some refinements in the context of software
evolution, the whole evolved CBS needs to
be rechecked. In this case, we can reduce
the cost of rechecking the evolved system by
using the locally strongest assumptions.

• Time complexity of Algorithm 3 is high in
comparison to that of Algorithm 1 when
generating the first assumption. However,
this assumption can be used several times
during software development life cycle. The
more times we can reuse this assumption,
the more computational cost we save for
software verification. Further more, we are
working on a method to reduce this time
complexity of Algorithm 3.

• Locally strongest assumptions mean less
complex behavior so this assumption is
easier for human to understand. This is
interesting for checking large–scale systems.

• The key point when implementing
Algorithm 3 is how to keep the observation
table closed and consistent so that the
language of the corresponding assumption

candidate can be consistent with the
observation table. This can be done with a
suitable algorithm to choose suffix e when
adding new item to suffix list E of the
observation table in line 30. This algorithm
is not in the scope of this paper. Please refer
to [8] for more details.

Despite the advantages mentioned above,
the algorithm needs to try every possible
combinations of “?” results to see if a trace can
be in the language of L(A), the complexity of the
Algorithm 3 is clearly higher than the complexity
of Algorithm 1.

The most complex step in Algorithm 3 is
the step from line 10 to line 20 where the
algorithm tries every possible k–combination of
n “?” question results and consider them as
false. Therefore, the complexity of Algorithm 3
depends on the number of “?” results in each
steps of the learning process. For this reason,
in Algorithm 3, we introduce an extra step in
line 9 to reduce the number of “?” results that
need to be processed. This is based on an
observation that those traces that are associated to
not final states in theDFAwhich is corresponding
to the observation table do not have much
value in the assumption to be generated. This
is because those states will be removed when
generating the candidate assumption from a
closed observation table.

In the general case, not all of the cases that
Algorithm 3 requires more time to generate
assumption than the L∗–based assumption
generation method. For example, if running
Algorithm 1, it takes mequi steps to reach the
satisfied assumption. However, there may be a

30 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

step i before mequi where a combination of “?”
results considered as false results in a satisfied
assumption. In this case, the time required to
generate locally strongest assumption will be
less than the time to generate assumption using
L∗–based assumption generation method.

You may notice that Algorithm 3 bases
on Algorithm 1 for making the observation
table (S, E, T) closed, creating local candidate
assumptions in the ith iteration of the learning
process. We can apply the method that considers
“?” results as false first when making the
observation table (S, E, T) closed, if the
corresponding candidate assumption does
not satisfy the assume-guarantee rules in
Definition 9, we can go one step back to consider
one by one “?” results as true until we find out
the satisfied candidate assumption. However,
this method of finding candidate assumption
has a very much greater time complexity. We
chose the method that bases on the L∗–based
assumption generation method as a framework
for providing baseline candidate assumptions
during the learning process. We only generate
local strongest candidate assumptions based
on those baseline candidate assumptions. This
method of learning can effectively generate
locally strongest assumptions in an acceptable
time complexity.

7. Related works

There are many researches related to
improving the compositional verification for
CBS. Consider only the most current works, we
can refer to [2, 9–13, 17].

Tran et al. proposed a method to generate
strongest assumption for verification of CBS [17].
However, this method has not considered
assumptions that cannot be found by the
algorithm. Therefore, the method can only find
out locally strongest assumptions. Although
the method presented by Tran et al. uses the
same variant membership queries answering
technique as proposed by Hung et al. [9–11], it
has not considered using candidate assumptions
generated by the method of Cobleigh et al. [2]

as baseline candidates. As a result, the cost
for verification is very high. Sharing the same
idea of using the variant membership queries
answering technique, we take the baseline
candidate assumptions generated by the method
of Cobleigh et al. into account when trying to
find the satisfied assumptions. This results in an
acceptable assumption generation time. In the
meantime, the generated assumptions are also
locally strongest assumptions.

The framework proposed in [2] by Cobleigh
et al. can generate assumptions for compositional
verification of CBS. However, because the
algorithm is based on the language of the weakest
assumption (L(AW)), the generated assumptions
are not strongest. By observing this, we focus
on improving the method so that the algorithm
can generate locally strongest assumptions which
can reduce the computational cost when verifying
large–scale CBS.

In [13], Gupta et al. proposed a method
to compute an exact minimal automaton to act
as an intermediate assertion in assume-guarantee
reasoning, using a sampling approach and
a Boolean satisfiability solver. This is an
approach which is suitable to compute minimal
separating assumptions for assume-guarantee
reasoning for hardware verification. Our work
focuses on generating the locally strongest
assumptions when verifying CBS by improving
the L∗–based assumption generation algorithm
proposed in [2].

In a series of papers of [9–11], Hung
et al. proposed a method for generating
minimal assumptions, improving, and optimizing
that method to generate those assumptions
for compositional verification. However, the
generated minimal assumptions in these works
mean to have a minimal number of states.
Our work shares the same observation that a
trace s that belongs to L(AW) does not always
belong to the generated assumption language
L(A). Besides, the satisfiability problem is
actually the problem of language containment.
Therefore, our work will effectively reduce the
computational cost when verifying CBS.

Chaki and Strichman proposed three

H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32 31

optimizations in [12] to the L∗–based automated
assume-guarantee reasoning algorithm for
the compositional verification of concurrent
systems. Among those three optimizations, the
most important one is to develop a method for
minimizing the alphabet used by the assumptions,
which reduces the size of the assumptions and
the number of queries required to construct them.
However, the method does not generate the
locally strongest assumptions as the proposed
method in this paper.

8. Conclusion

We have presented a method to
generate locally strongest assumptions for
assume-guarantee verification of CBS. The
key idea of this method is to develop a variant
technique for answering membership queries
from Learner of Teacher. This technique
is then integrated into an improved L∗–based
algorithm for trying every possible combination
that a trace belongs to the language of the
assumption to be generated. Because the
algorithm terminates as soon as it reaches the
conclusive result, the generated assumptions are
the locally strongest ones. These assumptions
can effectively reduce the computational cost
when doing verification for CBS, especially for
large-scale and evolving ones.

Although the proposed method can generate
locally strongest assumptions for compositional
verification, it still has an exponential time
complexity. On the other hand, there are many
other methods that can generate other locally
strongest assumptions. We are in progress
of researching a method which can generate
other locally strongest assumptions that are
stronger than those generated by the proposed
method in this paper but has a polynomial time
complexity. Besides, we are also applying
the proposed method for software in practice
to prove its effectiveness. Moreover, we are
investigating how to generalize the method for
larger systems, i.e., systems contain more than
two components. On the other hand, the current
work is only for safety properties, we are going

to extend our proposed method for checking
other properties such as liveness properties and
apply the proposed method for general systems,
e.g., hardware systems, real-time systems, and
evolving ones.

Acknowledgments

This work was funded by the Vietnam
National Foundation for Science and Technology
Development (NAFOSTED) under grant number
102.03-2015.25.

References

[1] D. Giannakopoulou, C. S. Păsăreanu, H. Barringer,
Assumption generation for software component
verification, in: Proceedings of the 17th IEEE
International Conference on Automated Software
Engineering, ASE ’02, IEEE Computer Society,
Washington, DC, USA, 2002, pp. 3–12.

[2] J. M. Cobleigh, D. Giannakopoulou, C. S.
Păsăreanu, Learning assumptions for compositional
verification, in: Proceedings of the 9th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’03,
Springer-Verlag, Berlin, Heidelberg, 2003, pp.
331–346.

[3] E. Clarke, D. Long, K. McMillan, Compositional
model checking, in: Proceedings of the Fourth
Annual Symposium on Logic in Computer Science,
IEEE Press, Piscataway, NJ, USA, 1989, pp.
353–362.

[4] O. Grumberg, D. E. Long, Model checking and
modular verification, ACM Trans. Program. Lang.
Syst. 16 (3) (1994) 843–871.

[5] A. Pnueli, In transition from global to modular
temporal reasoning about programs, in: K. R. Apt
(Ed.), Logics and Models of Concurrent Systems,
Springer-Verlag New York, Inc., New York, NY,
USA, 1985, Ch. In Transition from Global to
Modular Temporal Reasoning About Programs, pp.
123–144.

[6] E. M. Clarke, Jr., O. Grumberg, D. A. Peled, Model
Checking, MIT Press, Cambridge, MA, USA, 1999.

[7] D. Angluin, Learning regular sets from queries

http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=786769.787035
http://dl.acm.org/citation.cfm?id=1765871.1765903
http://dl.acm.org/citation.cfm?id=1765871.1765903
http://dl.acm.org/citation.cfm?id=77350.77387
http://dl.acm.org/citation.cfm?id=77350.77387
http://doi.acm.org/10.1145/177492.177725
http://doi.acm.org/10.1145/177492.177725
http://dl.acm.org/citation.cfm?id=101969.101977
http://dl.acm.org/citation.cfm?id=101969.101977
http://dx.doi.org/10.1016/0890-5401(87)90052-6

32 H.V. Tran, P.N. Hung / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 34, No. 2 (2018) 16–32

and counterexamples, Inf. Comput. 75 (2) (1987)
87–106.

[8] R. L. Rivest, R. E. Schapire, Inference of finite
automata using homing sequences, in: Proceedings
of the Twenty-first Annual ACM Symposium on
Theory of Computing, STOC ’89, ACM, New York,
NY, USA, 1989, pp. 411–420.

[9] P. Ngoc Hung, T. Aoki, T. Katayama, Theoretical
Aspects of Computing - ICTAC 2009: 6th
International Colloquium, Kuala Lumpur, Malaysia,
August 16-20, 2009. Proceedings, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, Ch. A
Minimized Assumption Generation Method for
Component-Based Software Verification, pp.
277–291.

[10] P. N. Hung, V.-H. Nguyen, T. Aoki, T. Katayama,
An improvement of minimized assumption
generation method for component-based software
verification, in: Computing and Communication
Technologies, Research, Innovation, and Vision for
the Future (RIVF), 2012 IEEE RIVF International
Conference on, 2012, pp. 1–6.

[11] P. N. Hung, V. H. Nguyen, T. Aoki, T. Katayama,
On optimization of minimized assumption
generation method for component-based software
verification, IEICE Transactions 95-A (9) (2012)
1451–1460.

[12] S. Chaki, O. Strichman, Tools and Algorithms for
the Construction and Analysis of Systems: 13th
International Conference, TACAS 2007, Held as
Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2007 Braga,
Portugal, March 24 - April 1, 2007. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg,
2007, Ch. Optimized L*-Based Assume-Guarantee
Reasoning, pp. 276–291.

[13] A. Gupta, K. L. Mcmillan, Z. Fu, Automated
assumption generation for compositional
verification, Form. Methods Syst. Des. 32 (3)
(2008) 285–301.

[14] A. Nerode, Linear automaton transformations,
Proceedings of the American Mathematical Society
9 (4) (1958) 541–544.

[15] J. Magee, J. Kramer, Labelled transition system
analyser v3.0, https://www.doc.ic.ac.uk/ltsa/.

[16] J. Magee, J. Kramer, D. Giannakopoulou,
Behaviour Analysis of Software Architectures,
Springer US, Boston, MA, 1999, pp. 35–49.

[17] H.-V. Tran, C. L. Le, P. N. Hung, A
strongest assumption generation method for
component-based software verification, in:
Computing and Communication Technologies,
Research, Innovation, and Vision for the Future,
IEEE–RIVF International Conference, 2016.

http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://doi.acm.org/10.1145/73007.73047
http://doi.acm.org/10.1145/73007.73047
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://dx.doi.org/10.1007/978-3-642-03466-4_18
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://search.ieice.org/bin/summary.php?id=e95-a_9_1451
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/978-3-540-71209-1_22
http://dx.doi.org/10.1007/s10703-008-0050-0
http://dx.doi.org/10.1007/s10703-008-0050-0
http://dx.doi.org/10.1007/s10703-008-0050-0
http://www.jstor.org/stable/2033204
https://doi.org/10.1007/978-0-387-35563-4_3

	Introduction
	Background
	L*–based assumption generation method
	The L* algorithm
	Generating assumption using L* algorithm

	Learning locally strongest assumptions
	A variant of the technique for answering membership queries
	Generating the locally strongest assumptions

	Correctness
	Experiment and discussion
	Experiment
	Discussion

	Related works
	Conclusion

