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Abstract 

Abbreviations have been widely used in clinical notes because generating clinical notes often takes place 

under high pressure with lack of writing time and medical record simplification. Those abbreviations limit the 

clarity and understanding of the records and greatly affect all the computer-based data processing tasks. In this 

paper, we propose a solution to the abbreviation identification task on clinical notes in a practical context where 

a few clinical notes have been labeled while so many clinical notes need to be labeled. Our solution is defined 

with a semi-supervised learning approach that uses level-wise feature engineering to construct an abbreviation 

identifier, from using a small set of labeled clinical texts and exploiting a larger set of unlabeled clinical texts. A 

semi-supervised learning algorithm, Semi-RF, and its advanced adaptive version, Weighted Semi-RF, are 

proposed in the self-training framework using random forest models and Tri-training. Weighted Semi-RF is 

different from Semi-RF as equipped with a new weighting scheme via adaptation on the current labeled data set. 

The proposed semi-supervised learning algorithms are practical with parameter-free settings to build an effective 

abbreviation identifier for identifying abbreviations automatically in clinical texts. Their effectiveness is 

confirmed with the better Precision and F-measure values from various experiments on real Vietnamese clinical 

notes. Compared to the existing solutions, our solution is novel for automatic abbreviation identification in 

clinical notes. Its results can lay the basis for determining the full form of each correctly identified abbreviation 

and then enhance the readability of the records. 
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1. Introduction
 
 

In recent years, electronic medical records 

(EMRs) have become increasingly popular and 

significant in medical, biomedical, and 

healthcare research activities because of their 

_______ 
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advantages and the problems of the traditional 

medical records discussed in Shortliffe (1999) 

[21]. Experienced along the time, their 

successful adoption has been encouraged for 

their benefits in quality and patient care 

improvements in Cherry et al. (2011) [4]. These 

facts lead to a growing need for their sharing 

and utilization worldwide. Amenable for both 

human and computer-based understanding and 
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processing, the EMR contents must be clear and 

unambiguous. Nevertheless, free text in their 

clinical notes, called clinical text, often contains 

spelling errors, acronyms, abbreviations, 

synonyms, unfinished sentences, etc. described 

as explicit noises in Kim et al. (2015) [12]. 

Among these explicit noise types, 

abbreviations are pervasive for writing-time 

saving and record simplification. Unfortunately 

mentioned in Collard and Royal (2015) [5] and 

Shilo and Shilo (2018) [20], they result in 

misinterpretation and confusion of the content 

in the EMRs. They also greatly affect all the 

computer-based processing tasks. Therefore, 

identifying and replacing abbreviations with 

their correct long forms are necessary for 

enhancing the readability and shareability of  

the EMRs. 

Many works have considered different tasks 

and purposes related to abbreviations. The 

Berman's list of 6 nonexclusive abbreviation 

groups in English medical records in Berman 

(2004) [3] has been widely used for clinical text 

processing. The abbreviation normalization and 

enhancing the readability of discharge 

summaries have been studied in Adnan et al. 

(2013) [1] and Wu et al. (2013) [30], 

respectively. Furthermore, Wu et al. (2012) [28] 

has examined three natural language processing 

systems (MetaMap, MedLEE, cTAKES) for 

handling abbreviations in English discharge 

summaries. Especially, the authors have 

confirmed that “accurate identification of 

clinical abbreviations is a challenging task”. 

Indeed, in their most recent CARD framework 

in Wu et al. (2017) [31], abbreviation 

identification results in English clinical texts 

have been achieved with not very high F-

measure: 0.755 on VUMC corpus and 0.291 on 

SHARe/CLEF one. 

Certainly, it is more difficult to handle 

abbreviations in clinical texts than those in 

biomedical literature articles. In clinical texts, 

no long form of an abbreviation exists in the 

same text. In literature articles, however, the 

long form is typically provided next to the 

abbreviation (in parentheses) after which the 

abbreviation is used. In addition, more 

abbreviations with no convention are widely 

used in clinical texts.  

Aware of the aforesaid necessity and 

challenges of abbreviation identification in 

clinical texts, many researchers have 

investigated several methods: word lists and 

heuristic rules in Xu et al. (2007) [32], 

supervised learning in Wu et al. (2017) [31], 

Kreuzthaler and Schulz (2015) [14], Wu et al. 

(2011) [29], and Xu et al. (2007) [32], and 

unsupervised approaches in Kreuzthaler et al. 

(2016) [13] including a statistical approach, a 

dictionary-based approach, and a combined one 

with decision rules. 

Among these methods, the rule-based 

approaches cannot cover the ambiguity between 

abbreviations and non-abbreviations well. They 

also cannot thoroughly capture the surrounding 

context of each abbreviation in clinical texts. 

Machine learning-based approaches become 

advanced solutions to abbreviation 

identification. In Wu et al. (2011) [29] and Xu 

et al. (2007) [32], supervised learning has been 

utilized for abbreviation identification with 

decision trees C4.5, random forest models, 

support vector machines, and their 

combinations. Nevertheless, stated in 

Kreuzthaler et al. (2016) [13], it is not 

convenient for the supervised learning approach 

as this approach required clinical texts to be 

annotated. This requirement is costly in terms 

of effort and time.  

In our view, semi-supervised learning is 

preferred in practice because a semi-supervised 

learning process can start with a smaller labeled 

data set and then iteratively exploit a larger 

unlabeled data set. Nevertheless, a semi-

supervised learning approach has not yet been 

considered for abbreviation identification in any 

existing related works. 

In this paper, we propose a new adaptive 

semi-supervised learning approach as an 

effective and practical solution to automatic 

abbreviation identification in clinical texts of 

EMRs. The proposed solution has the following 

key contributions. 
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The first contribution is level-wise feature 

engineering for a vector representation of each 

abbreviation or non-abbreviation, in a vector 

space. In particular, each token in clinical texts 

is comprehensively characterized at multiple 

levels of detail: token, sentence, and note. 

The second one is the first semi-supervised 

learning method for abbreviation identification 

in clinical texts. Our method includes an 

appropriate semi-random forest algorithm, 

named Semi-RF, and its weighted semi-random 

forest version, named Weighted Semi-RF. 

These algorithms are defined with a parameter-

free self-training mechanism, using random 

forest models in Breiman (2001) [3] and Tri-

training in Zhou and Li (2005) [35]. 

As the third contribution, to the best of our 

knowledge, this is the first abbreviation 

identification work on Vietnamese EMRs. 

From the linguistic perspectives, the support of 

our work to the Vietnamese language of EMRs 

is adaptable and portable to other languages. 
Experimental results on various real clinical 

note types have shown that our solution can 

produce the better Precision and F-measure 

values on average than the existing ones. 

Besides, all the differences in F-measure 

between Weighted Semi-RF and the other 

methods are statistically significant at the  

0.05 level. 

2. Related works 

In this section, we introduce several 

existing works such as the works in Kreuzthaler 

et al. (2016) [13], Kreuzthaler and Schulz 

(2015) [14], Wu et al. (2011) [29], and Xu et al. 

(2007) [32] on abbreviation identification, and 

the works in Moon et al. (2014) [19], Xu et al. 

(2007) [32], and Xu et al. (2009) [33] on sense 

inventory construction for abbreviations.  
Compared to the related works, our work 

aims at a more general solution to abbreviation 

identification. Indeed, Kreuzthaler et al. (2016) 

[13] and Kreuzthaler and Schulz (2015) [14] 

connected their solution to German 

abbreviation writing styles. Henriksson (2014) 

[10] considered the abbreviations with at most 

4-letter lengths. Different from these works, our 

work has no limitation on either abbreviation 

writing styles or various lengths. 

Besides, our work constructs a feature 

vector space from the inherent characteristics of 

each token in all the clinical notes at different 

levels: token, sentence, and note. Such level-

wise feature engineering provides a 

comprehensive vector representation of each 

token. Moreover, a feature vector space is 

defined in our work, while Xu et al. (2007) [32] 

was not based on a vector space model, leading 

to different representations for clinical notes. 

Furthermore, Wu et al. (2011) [29] used a 

local context based on the characteristics of the 

previous/next word of each current word and 

Xu et al. (2009) [33] used word forms of the 

surrounding words in a window size at the 

sentence level. Particularly for abbreviation 

identification, Wu et al. (2011) [29] formed 

several local context features in a single 

sentence. These local context features did not 

reflect the relationship between two consecutive 

words all over the notes. For sense inventory 

construction in Xu et al. (2009) [33], each 

feature word was associated with the modified 

Pointwise Mutual Information, representing a 

co-occurrence-based association between the 

feature word and its target abbreviation. 

Different from the works in Wu et al. 

(2011) [29] and Xu et al. (2009) [33], our work 

handles the global context of each token 

additionally at the note level. The global 

context is represented by our cross-document 

features. The cross-document features are 

captured to represent a word based on its 

context words. Both syntactic relatedness and 

semantic relatedness between a word and its 

context words are achieved in a distributed 

representation of each word, from all the 

sentences in a note set using a continuous bag-

of-words model in Mikolov et al. (2013) [18]. 

Regarding abbreviation identification, the 

work inXu et al. (2007) [32] used word lists and 

heuristic rules. Some works followed a 
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supervised learning approach in Wu et al. 

(2017) [31], Kreuzthaler and Schulz (2015) 

[14], Wu et al. (2011) [29], and Xu et al. (2007) 

[32] using decision trees C4.5, random forest, 

support vector machines, and their combination. 

A more recent work in Kreuzthaler et al. (2016) 

[13] proposed an unsupervised learning 

approach such as a statistical approach, a 

dictionary-based approach, and a combined one 

with decision rules. None of the aforementioned 

works was based on a semi-supervised learning 

approach. By contrast, our work defines a  

semi-supervised learning approach for 

constructing an abbreviation identifier on 

clinical texts. 

Above all, each related work conducted 

evaluation experiments using its own data set. 

Kreuzthaler et al. (2016) [13] and Kreuzthaler 

and Schulz (2015) [14] used German clinical 

texts while Wu et al. (2012) [28], Wu et al. 

(2011) [29], and Xu et al. (2007) [32] used 

English ones. None of them is an available 

benchmark clinical data set for abbreviation 

identification. Therefore, it is difficult for 

empirical comparisons on different clinical 

texts in other languages. 

In summary, our work is the first one that 

proposes a semi-supervised learning approach 

to abbreviation identification in clinical texts 

with two new semi-supervised learning 

algorithms, Semi-RF and Weighted Semi-RF, 

using level-wise feature engineering for a more 

comprehensive representation. 

3. The proposed method for abbreviation 

identification in clinical texts 

In this section, we define an abbreviation 

identification task along with level-wise feature 

engineering for clinical texts. After that, we 

propose an adaptive semi-supervised learning 

approach to abbreviation identification in 

clinical texts with two semi-supervised learning 

algorithms, Semi-RF and Weighted Semi-RF. 

Their discussions are also given. 

3.1. Task definition 

In this work, we formulate the abbreviation 

identification task as a binary classification task 

on free texts in the clinical notes. Given a set of 

labeled clinical texts and another one of 

unlabeled clinical texts, the task first builds an 

abbreviation identifier and then uses this 

identifier to identify each token in the given 

unlabeled set as abbreviation (class = 1) or non-

abbreviation (class = 0). 

For illustration, one sentence from a 

treatment order of a doctor for a patient written 

in a Vietnamese clinical note is given below: 

(Tiêm TM) – TD: M – T – HA – NT 3h/lần. 

The sentence is rewritten in English as follows: 

(Inject into a vein) – Track: Pulse – 

Temperature – Blood Pressure – Breath Speed 

3 hours/time. 

It is realized that in this treatment order, the 

sentence is not a complete standard one and 

includes many abbreviations. Also, there are 

abbreviations of both medical and non-medical 

terms. The abbreviations for medical terms are 

“TM”, “M”, “T”, “HA”, “NT” and those for 

non-medical terms are “TD” and “3h”. 

If this sentence is in a set of labeled clinical 

texts, their tokens are labeled as shown in 

Figure 1. 

If the sentence is in a set of new (unlabeled) 

clinical texts, its tokens need to be identified as 

0 or 1, for non-abbreviation or abbreviation, 

respectively. 

To be processed in the task, each token 

must be represented in a computational form. In 

our work, a vector space model is used. Each 

token is characterized by a vector of p features 

corresponding to p dimensions of the space. 

A vector corresponding to a token in the 

labelled set is used in abbreviation identifier 

construction. 

G 

 

Figure 1. A sample treatment order sentence with tokens and their labels.F
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On the other hand, a vector corresponding 

to a token in the unlabeled set has no class 

value. Its class value needs to be predicted by 

an abbreviation identifier. 

If at the beginning, a labeled set is 

available, the task can be performed in a 

supervised learning or semi-supervised learning 

mechanism. In practice, a semi-supervised 

learning mechanism is preferred in the 

following conditions. An available labeled set is 

small and thus, might not be sufficient for an 

effective supervised learning process. 

Meanwhile, there exists a larger unlabeled set. 

It would be helpful if this unlabeled set can be 

exploited for more effectiveness. 

In our work, we approach this abbreviation 

identification task in a semi-supervised learning 

mechanism with our semi-supervised learning 

algorithms. These algorithms can facilitate the 

task in a parameter-free configuration scheme. 

3.2. Level-wise feature engineering for clinical 

texts in a vector space 

In this subsection, we first design the vector 

structure of each token and then process the 

clinical texts to generate its vector by extracting 

and calculating its feature values. Figure 2 

depicted these consecutive steps as (1). 

Unsupervised Feature Vector Space Building 

and (2). Feature Value Extraction. 
 

 

Figure 2. Representing clinical notes in electronic 

medical records in a vector space. 

In step (1), we consider the features at the 

token, sentence, and note levels because clinical 

notes include sentences each of which contains 

many tokens attained with tokenization. In such 

a multilevel view, level-wise feature 

engineering captures many different aspects of 

each token from the finest token and sentence 

levels to the coarsest note one. 

In step (2), each element of the vector is 

determined according to the characteristics of 

the token at these levels. A vector 

corresponding to a labeled token is annotated 

additionally. 

Formally, a token in a clinical note is 

represented in the form of a vector: 

X = (x
t
1, …, x

t
tp, x

s
1, …, x

s
sp, x

n
1, …, 

x
n
np) 

(1) 

in a vector space of p dimensions where x
t
i 

is a value of the i-th feature at the token level 

for i = 1..tp, x
s
j is a value of the j-th feature at 

the sentence level for j = 1..sp, and x
n

k is a value 

of the k-th feature at the note level for k = 1..np; 

and tp is the number of token-level features, sp 

is the number of sentence-level features, and np 

is the number of note-level features, leading to 

p = tp + sp + np. Details of these level-wise 

features are delineated below. 

At the token level, each token is 

characterized by its own aspects: word form 

with orthographic properties, word length, and 

semantics (e.g. being a medical term or an 

acronym of any medical term). The 

corresponding token-level features include: 

AllAlphabeticChars, AnyAlphabeticChar, 

AnyAlphabeticCharAtBeginning, AllDigits, 

AnyDigit, AnyDigitAtBeginning, 

AnySpecialChar, AnyPunctuation, 

AllConsonants, AnyConsonant, AllVowels, 

AnyVowel, AllUpperCaseChars, 

AnyUpperCaseCharAtBeginning, Length, 

inDictionary, isAcronym.  

At the sentence level, many contextual 

features are defined from the surrounding words 

of each token in its sentence. We also used the 

local contextual features of the previous and 

next tokens in a 3-token window proposed in 

Wu et al. (2011) [29]. 

At the note level, occurrence of each token 

in clinical notes is considered as a note-level 

feature. We use a term frequency 

TermFrequency to capture the number of its 

occurrences. Additionally mentioned in Long 

(2003) [17], many abbreviations have been 

commonly used but many are dependent on 
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context, leading to the importance of capturing 

the surrounding context of each abbreviation. In 

our work, we enrich the context of each token 

by our cross-document features for its global 

context. Consistent with the local context, the 

global context is defined by the cross-document 

features of the previous, current and next tokens 

in a 3-token window. 

To obtain the values for the cross-document 

features, we use a word embedding vector of 

each token. Indeed, their values stem from a 

distributed representation of a token in Mikolov 

et al. (2013) [18] based on their surrounding 

tokens in all the given texts, as a vector using a 

continuous bag-of-words model. 

3.3. The proposed semi-supervised learning 

algorithm 

3.3.1. Algorithm characteristics 

Defined in Breiman (2001) [3], random 

forest is a well-known ensemble algorithm. One 

of its improved versions was defined in 

González et al. (2015) [9] for more 

effectiveness with monotonicity constraints. 

Meanwhile, Tri-training in Zhou and Li (2005) 

[35] is an advanced parameter-free co-training 

style algorithm. Introduced in Yarowsky (1995) 

[34], the self-training approach is one of the 

simplest semi-supervised learning algorithms. 

Nevertheless, the users must set a “correct” 

value to the probability threshold for newly 

labeled instance selection. 

Bringing random forest and Tri-training to 

the self-training approach, our work proposes a 

new adaptive semi-supervised learning 

approach with two algorithms: Semi-RF and 

Weighted Semi-RF. Semi-RF combines Tri-

training and a random forest in a self-training 

style, while Weighted Semi-RF is its adaptive 

version with a weighting scheme for proper 

treatment of the labeled instances in the 

learning process. They inherit the strengths of 

random forest and Tri-training and overcome 

the weaknesses of the self-training approach. 

Different from the existing algorithms such as 

Dong et al. (2016) [6], Joachims (1999) [11], Li 

and Zhou (2007) [16], Tanha et al. (2015) [22], 

and Triguero et al. (2015) [24], our algorithms 

are developed with the following foundations: 

• The resulting algorithms are parameter-

free based on Tri-training, effective based on 

random forest models, but simple in the self-

training style. 

• The final classifier is in fact a random 

forest model with its inherent effective, robust, 

and non-overfitting advantages. 

• For Weighted Semi-RF, differentiating 

between the instances in both labeled and 

unlabeled sets is maintained in the learning 

process by favoring the truly labeled instances 

over those wrongly labeled instances in a 

weighting scheme. 

Specifically, the algorithms are proposed in 

the form of self-training, using the random 

forest model of three random trees with 

(   1)log( p ) random features. This feature 

number is based on the study of Breiman 

(2001) [3]. Three random trees play the role of 

three classifiers in Tri-training so that the 

probability threshold can be automatically 

defined to select the most confidently predicted 

instances from a current unlabeled set. 

Compared to Tri-training, our algorithms 

are different in the following instance selection. 

Each instance is considered to be correctly 

predicted and then selected if the agreement of 

these three random trees is achieved at the 

highest level. It can contribute to the learning 

process of each random tree if included in 

bootstrap sampling. Therefore, bootstrap 

sampling is retained in random forest 

construction in each round and so is the 

diversity of the three random trees. This 

maintained diversity is significant for a 

majority voting scheme in classification by an 

ensemble model. 

Besides, a weighting scheme that favors 

truly labeled instances and easily predicted 

instances is introduced via adaptation on a 

current labeled set including both truly labeled 

and newly labeled instances at the beginning of 

each round. This weighting scheme makes the 

current labeled set adaptive to such truly 

labeled and newly easily predicted instances. 

Further, it will shift the prediction of our final 

classifier towards these instances and constrain 

the hard newly predicted instances that might 

be wrongly labeled.  
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Moreover, the optimization of our 

algorithms is based on the generalization of the 

final random forest model over the original 

labeled set containing true labels that are 

certainly known. This forms the stable 

convergence of our algorithms. 

3.3.2. Algorithm details 

For details, the pseudo-code of our 

Weighted Semi-RF algorithm is given in Figure 

3. Its original Semi-RF algorithm is a simpler 

version without the weighting scheme via 

adaptation on the labeled set. Details of the 

weighting scheme are given in Figure 4 and 

details of the selection scheme of the most 

confidently predicted instances from the current 

unlabeled set are given in Figure 5.  

In Figure 3 in an iterative manner, our 

Weighted Semi-RF algorithm performs below.  

In line (5), the weighting scheme is invoked 

on the current set of labeled instances to 

provide another adaptive set which will be later 

used in constructing a current random forest 

model. This current classifier is then evaluated 

on the original set of labeled data. If its error 

rate is less than the previous error rate set 

previously, i.e. its prediction power is better, 

the previous error rate and the previous 

classifier will be updated with the new current 

ones. Otherwise, the previous classifier has 

been the best so far and thus will be returned as 

a resulting classifier C.  

If improvement is found, exploiting 

unlabeled data is considered from line (11) to 

line (18). If the current set of unlabeled data is 

not empty, we use the current classifier to 

predict the label of each instance in this set. 

After that, the most confidently predicted 

instances are selected from this unlabeled set, 

and added into the current set of labeled 

instances to enlarge the training set in the next 

iteration. The current unlabeled set is also 

updated by removing those chosen instances. If 

the current unlabeled set is empty, the learning 

process will stop and return the current 

classifier as a resulting classifier C.  

As specified in Figure 3, a resulting 

classifier C is obtained with two termination 

conditions: no element in the current set of 

unlabeled data in line (17) or no improvement 

on the prediction power of the resulting 

classifier on the original set of labeled data in 

line (20). The first termination condition is 

based on the general rationale behind the semi-

supervised learning approach which aims to 

exploit unlabeled instances in the learning 

process to enhance the learnt classifier when 

there are a few labeled instances. If there is no 

unlabeled instance for the exploitation, the 

learning process will end. As for the second 

one, if the exploitation is not positive for 

enhancing the current classifier which has been 

the best one so far, the learning process will end 

so that the current prediction power of this 

classifier can be kept for use. These two 

termination conditions ensure the convergence 

of our proposed algorithms. 

Shown in Figure 3, the entire learning 

process of our algorithms is in a self-training 

mechanism, but the use of the random forest 

model of three random trees and the selection of 

the most confidently predicted instances have 

turned our algorithms in a tri-training 

mechanism. On the other hand, the learning 

process is enhanced with the aforementioned 

weighting scheme via adaptation on the current 

labeled data set. As two main advantages, our 

weighting and selection schemes are discussed. 

(i). Weighting Scheme 

First, our weighting scheme makes 

adaptation on the current labeled set in the k-

fold cross validation style by weighting each 

instance in favor of its being truly labeled. For 

example, to make adaptation on the current set 

of labeled instances into 5 similarly-sized folds 

(k=5), in a 5-iteration loop of the k-fold cross 

validation style, four out of 5 folds form a 

training set to build a random forest model of 

three random trees with (   1)log( p ) random 

features, which will be then used to predict the 

remaining fold. The correctly predicted 

instances of the remaining fold are added into 

the adapted current set of labeled instances, 

returned as a result of the weighting scheme. 

Weighting is different for an instance that 

has a true label given in the original labeled set 

and another one that has a predicted label given 

in the semi-supervised learning process. It is 
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also different for an instance that has a truly 

predicted label and another one that has a 

wrongly predicted label, both given and 

selected in the semi-supervised  

learning process.  

As the weighting scheme considers truly 

labeled instances, it is questionable that 

overfitting occurs in our learning process. This 

is not a fact in Weighted Semi-RF due to the 

characteristics of random forest models. 

Mentioned in Li and Zhou (2007) [16], the 

diversity of the random trees in the random 

forest is maintained even if their training data 

sets are similar. As a result, only truly labeled 

instances have mainly contributed to our 

learning process, while probably wrongly 

labeled instances that have been added into the 

training data set would have had less. 

(ii). Selection scheme 

Second, the most confidently predicted 

instance selection scheme is described. 

Let us denote m be the number of classes 

and t be the number of random trees in the 

random forest model. The prediction score of a 

current instance X
*
 is calculated below: 

G 

 
 

Figure 3. Weighted Semi-RF - the proposed adaptive semi-supervised learning algorithm. 

Weighted Semi-RF: The proposed adaptive semi-supervised learning algorithm on both labeled and 

unlabeled data in the p-dimension vector space 

Input: 

lSet: a labeled set which is originally given in the p-dimension vector space 

uSet: an unlabeled set which is originally given in the p-dimension vector space 

Output: 

C: a resulting classifier 

Process: 

(1). Set a previous error rate Previous_error_rate to 0.5 

(2). Assign lSet as a current set clSet which contains all instances with known labels 

(3). Assign uSet as a current set cuSet which contains all instances with unknown labels  

(4). Repeat until the termination conditions are met: 

(5). Weighting the labeled instances via adaptation on the labeled set clSet to obtain an 

adaptive labeled set clSet_a 

(6). Build a current random forest Current_RF of three random trees with (   1)log( p ) random 

features on clSet_a 

(7). Compute a current error rate Current_error_rate by evaluating Current_RF on lSet 

(8). If Previous_error_rate > Current_error_rate then 

(9).    Previous_error_rate = Current_error_rate 

(10). Save the current random forest Current_RF as a previous random forest Previous_RF 

(11). If cuSet is not empty then 

(12). Predict a label of each instance in cuSet using Current_RF 

(13). Select a set sSet of the most confidently predicted instances from cuSet 

(14). Update clSet_a to clSet by including sSet 

(15). Update cuSet by excluding sSet 

(16). Else  

(17). Return the current random forest Current_RF as a resulting classifier C 

(18). End If  

(19). Else 

(20). Return the previous random forest Previous_RF as a resulting classifier C 

(21). End If 

(22). End Repeat 
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• Each random tree j performs a prediction 

on X
*
 and provides a class distribution score of 

each class Ci for i=1..m for X
*
 which is: 

Pj(Ci|X
*
) = N

k

 
(2) 

where k is the number of instances in class 

Ci out of N instances in the training set of the 

tree j at the leaf node. 

• Based on the majority voting scheme, the 

final prediction score of X
*
, Score(X

*
), is 

determined as the maximum class distribution 

score P(Ci|X
*
) for i=1..m and its predicted class, 

Class(X
*
), is Ci corresponding to the maximum 

class distribution score P(Ci|X
*
): 

Score(X
*
) = max {P(Ci|X

*
) for i=1..m} (3) 

Class(X
*
) = argmaxCi { P(Ci|X

*
) for 

i=1..m } 
(4) 

Where a class distribution score of a class 

Ci for X
*
 by the random forest model is 

calculated as P(Ci|X
*
) = Σj=1..tPj(Ci|X

*
) and 

normalized as:  

i=1..m, 0 P(Ci|X
*
)1 and Σi=1..mP(Ci|X

*
) = 1. 

In the selection scheme, if the prediction 

score of the instance X
*
 is 1, then X

*
 is selected. 

  

 

Figure 4. Weighting Scheme - weighting the labeled instances via adaption  

on a current set clSet of labeled instances 

 

Figure 5. Selection Scheme - selecting a set sSet of the most confidently predicted instances  

from the current set cuSet of unlabeled instances. 

Weighting Scheme: Weighting the labeled instances via adaptation on a current set clSet of labeled instances 

in the 5-fold cross validation scheme 

Input: 

clSet: a current set which contains all instances with known labels in the p-dimension vector space 

Output: 

clSet_a: a current set which contains all instances with known labels after adaptation in the p-dimension 

vector space 

Process: 

(1). clSet_a = clSet 

(2). Do stratified random sampling without replacement on clSet into 5 folds that have similar size 

(almost the same size) 

(3). For each fold f do 

(4). Build a random forest aRF of three random trees with (   1)log( p ) random features on a set 

which is clSet excluded the current fold f 

(5). Evaluate aRF on the current fold f 

(6). Update clSet_a with the instances of the current fold f correctly recognized by aRF 

(7). End For 

(8). Return clSet_a 

Selection Scheme: Selecting a set sSet of the most confidently predicted instances from the current set cuSet of 

unlabeled instances 

Input: 

cuSet: a current set which contains all instances with unknown labels in the p-dimension vector space 

Output: 

sSet: a selected set of the most confidently predicted instances in the p-dimension vector space 

Process: 

(1). For each instance X
*
 in cuSet do 

(2). Calculate a prediction score for the current instance X
*
 

(3). If its prediction score = 1 then  

(4).   Add this current instance X
*
 into sSet 

(5). End If 

(6). End For 

(7). Return sSet 
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Its predicted label is now considered true. 

The reason for the threshold value of 1 is 

reducing a chance of selecting a wrongly 

predicted instance. Indeed, a wrong prediction 

occurs only if at least one of the random trees 

misclassifies the instance. 

3.3.3. Discussions 

In short, Semi-RF is our semi-supervised 

learning algorithm using random forest models 

as its base model in a combined self-training 

and Tri-training manner. Weighted Semi-RF is 

its adaptive version, which enhances the 

training set with the weighting scheme. 

Compared to Semi-RF, Weighted Semi-RF has 

reduced the influence of the selected wrongly 

predicted instances in the learning process. 

Besides, these algorithms are applicable to 

classifier construction from a small labeled set 

in practice. Above all, they are parameter-free 

with no restriction on parameter configurations. 

4. Empirical evaluation 

4.1. Data sets 

In our work, all the experiments were 

conducted on three clinical note sets including 

Care and Treatment clinical notes in Table 1. 

Thanks to Hospital in Vietnam (Hospital (2016) 

[25]), these clinical notes are provided from real 

EMRs written in Vietnamese with some 

English medical terms. 

After a tokenization process is performed 

with the separators such as space and tab, these 

clinical notes are manually annotated. 

Furthermore, we randomly select only 565 

distinct sentences for each type in one 

processing batch. Besides, we made 30 random 

selections to avoid randomness. Thus, every 

measure value in our results is an average of the 

corresponding results from 30 executions.  

Their information is described in Table 2.  

4.2. Experiment settings 

The program is written in Java using Weka 

3 (Weka3 (2016) [26]). For feature extraction, 

the word embedding library in Word2VecJava 

(Word2VecJava (2016) [27]) is used. In 

addition, a hand-coded dictionary including 

1995 English/Vietnamese medical terms is 

prepared and used. From the linguistic 

perspectives, the support of our work to 

Vietnamese can be adaptable and portable to 

other languages with their own dictionaries. 

For evaluation, a full set of features at all 

the three levels of details was used. Random 

Forest in Breiman (2001) [3], C4.5, Self-

training in Yarowsky (1995) [34], Tri-training 

in Zhou and Li (2005) [35], Co-Forest in Li and 

Zhou (2007) [16], Semi-RF_2/3, Semi-RF, and 

Weighted Semi-RF are examined. 

Among these algorithms, Random Forest 

and C4.5 are included because they are base 

models in the semi-supervised learning 

algorithms in our experiments. Tri-training with 

C4.5, Self-Training with C4.5, and Co-Forest 

are selected according to the empirical study of 

Triguero et al. (2015) [23]. We also record the 

performance of Semi-RF_2/3 which is Semi-RF 

using the threshold of 2/3 to check how 

effective our most confidently predicted 

instance selection scheme is. 

Regarding performance measures, 

Precision, Recall, and F-measure are used to 

record the effectiveness of each method and 

show how well abbreviations can be identified. 

The higher measure value implies the better 

method. Besides, One-Way ANOVA in Fisher 

(1934) [8] has been done to determine if there 

exist significant differences in F-measure 

among compared groups at the 0.05 level of 

significance. In addition, Bonferroni post-hoc 

test in Dunn (1961) [7] with Levene's test in 

Levene (1960) [15] for equal variances at the 

0.05 level of significance has been used for 

specific significant differences. In the following 

Tables 3, 4, and 5, the averaged results were 

reported. A summary of statistical test results is 

given in Table 6 to compare the averaged F-

measure values of Weighted Semi-RF and those 

of the others. In Table 6, we used “Weighted 

Semi-RF>Y” to denote that Weighted Semi-RF 

outperformed the “Y” methods with 

significantly better F-measure values. 

For reliable accuracy estimation, we use the 

k-fold cross validation scheme in the context of 

semi-supervised learning. In particular, k is 2, 4, 

5, 10, or 20 corresponding to 50%, 75%, 80%, 

90%, or 95% unlabeled data. 
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Table 1. Details about all the clinical note sets and abbreviations. 

Note Type Care Treatment Order Treatment Progress 

Number of patients 2,000 2,000 2,000 

Number of records 12,100 4,175 4,175 

Number of sentences 8,978 39,206 13,852 

Number of tokens 52,109 325,496 138,602 

Number of abbreviations 3,031 24,693 7,641 

Percentage of abbreviations (%) 5.82 7.59 5.51 

Table 2. Details about the selected clinical note sets. 

Note type Care Treatment Order Treatment Progress 

Averaged number of sentences 565 565 565 

Averaged number of tokens 4119 6954 8002 

Averaged number of tokens per sentence 7.29 12.31 14.16 

Averaged number of abbreviations per sentence 1.11 2.70 2.16 

Number of distinct abbreviations 49 117 199 

Averaged percentage of non-abbreviations 83.74 % 78.08 % 84.71 % 

Averaged percentage of abbreviations 16.26 % 21.92 % 15.29 % 

gh 

4.3. Experimental results and an evaluation for 

the proposed method 

Via the experimental results, our methods 

always outperform the others with the best 

Precision and F-measure values for all the 

clinical texts. Nevertheless, our methods 

produced the best Recall values for the Care 

and Order clinical texts and just the second best 

Recall values for the Progress clinical texts 

when there is about less than 90% unlabeled 

data. In those cases, Tri-training or Self-training 

got the best Recall values for the Progress 

clinical texts. As there are 90% and 95% 

unlabeled data, our methods can obtain the best 

Precision and F-measure values and almost the 

second best Recall values consistently for all 

the clinical texts while the best Recall values 

come from Tri-training. This is understandable 

as Tri-training handled the number of the 

instances added into the training set nicely 

based on the learning from noisy examples. In 

contrast, our methods selected all the instances 

based on the probability threshold, leading to an 

imbalance in the added instance set including 

more non-abbreviations and fewer 

abbreviations. 

Indeed, Weighted Semi-RF can produce 

from 0.26% to 1.52% better Precision values 

than the highest ones by the others and from 

2.37% to 9.06% better Precision values than the 

lowest ones by the others. As for Recall, they 

are from -2.12% to 0.99% compared to the 

highest ones by the others and from 0.4% to 

4.68% compared to the lowest ones by the 

others. For F-measure, they are from 0.33% to 

1.36% compared to the highest ones by the 

others and from 1.51% to 6.53% compared to 

the lowest ones by the others. On balance, our 

methods outperform the others with the better 

F-measure values in all the cases. 

In Table 6, almost all the differences in  

F-measure between Weighted Semi-RF and the 

others are significant at the level of 0.05. It 

 is confirmed that Weighted Semi-RF is 

effective for abbreviation identification in the 

clinical texts. 

Among our methods, Weighted Semi-RF 

outperforms Semi-RF and Semi-RF 

outperforms Semi-RF-2/3 in almost all the 
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cases. In Table 6, statistical test results 

confirmed the effectiveness of Weighted Semi-

RF compared to Semi-RF_2/3 with better  

F-measure values in almost all the cases. These 

facts imply appropriate design of our 

algorithms. In particular, the probability 

threshold setting based on the agreement of all 

the base learners is more stable than the one 

with the agreement in Tri-training or user-

specified in Self-training. In addition, 

consideration on the influences of each instance 

in the training set is important and our 

weighting scheme is effective in that regard. 

In short, our work has provided an effective 

solution to automatic abbreviation identification 

with Semi-RF and Weighted Semi-RF. It has 

been examined on the various real clinical texts 

and produced promising results to lay the 

foundations for determining the appropriate long 

forms of each correctly identified abbreviation. 

Table 3. Averaged results for method evaluation on care notes 

Note Type Unlabeled Data Method Precision Recall F-measure 

Care 

50% 

C4.5 98.48 96.6 97.53 

Random Forest 98.8 96.97 97.88 

Self-training 98.6 96.66 97.61 

Co-Forest 97.15 96.51 96.82 

Tri-training 98.3 97.13 97.71 

Semi-RF_2/3 98.91 96.96 97.92 

Semi-RF 99.14 97.33 98.23 

Weighted Semi-RF 99.24 97.49 98.36 

75% 

C4.5 97.78 95.59 96.67 

Random Forest 97.86 95.89 96.86 

Self-training 97.73 95.64 96.68 

Co-Forest 95.23 94.22 94.72 

Tri-training 96.97 96.43 96.7 

Semi-RF_2/3 97.94 95.92 96.92 

Semi-RF 98.62 96.33 97.46 

Weighted Semi-RF 98.71 96.48 97.58 

80% 

C4.5 97.46 95.23 96.33 

Random Forest 97.58 95.26 96.4 

Self-training 97.49 95.33 96.4 

Co-Forest 94.37 94.31 94.34 

Tri-training 96.44 96.24 96.34 

Semi-RF_2/3 97.67 95.33 96.48 

Semi-RF 98.38 96.1 97.23 

Weighted Semi-RF 98.43 96.34 97.37 

90% 

C4.5 95.81 94.06 94.92 

Random Forest 96.17 93.32 94.72 

Self-training 95.62 94.49 95.05 

Co-Forest 91.98 91.28 91.62 

Tri-training 94.83 94.8 94.81 

Semi-RF_2/3 96.26 93.38 94.79 

Semi-RF 97.21 94.6 95.89 

Weighted Semi-RF 97.33 95.01 96.15 

95% 

C4.5 94.29 91.62 92.93 

Random Forest 94.39 90 92.13 

Self-training 94.35 91.61 92.95 

Co-Forest 88 87.98 87.98 

Tri-training 93.41 92.71 93.05 

Semi-RF_2/3 94.5 90.03 92.2 
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Note Type Unlabeled Data Method Precision Recall F-measure 

Semi-RF 96.38 91.75 94 

Weighted Semi-RF 96.43 92.66 94.51 

Average 

C4.5 96.36 94.25 95.29 

Random Forest 96.72 93.75 95.21 

Self-training 96.33 94.5 95.4 

Co-Forest 92.67 92.21 92.43 

Tri-training 95.54 95.08 95.3 

Semi-RF_2/3 96.8 93.79 95.27 

Semi-RF 97.7 94.88 96.27 

Weighted Semi-RF 97.75 95.27 96.49 

Table 4. Averaged results for method evaluation on treatment order notes 

Note Type Unlabeled Data Method Precision Recall F-measure 

Treatment 

Order 

50% 

C4.5 98.17 98.24 98.2 

Random Forest 98.42 98.06 98.24 

Self-training 98.14 98.32 98.23 

Co-Forest 97.22 97.33 97.27 

Tri-training 98.08 98.31 98.2 

Semi-RF_2/3 98.49 98.1 98.29 

Semi-RF 98.79 98.5 98.64 

Weighted Semi-RF 98.74 98.54 98.64 

75% 

C4.5 97.12 96.98 97.05 

Random Forest 97.21 96.8 97 

Self-training 97.12 97.06 97.09 

Co-Forest 95.4 95.71 95.55 

Tri-training 97.03 97.3 97.16 

Semi-RF_2/3 97.28 96.87 97.07 

Semi-RF 97.96 97.45 97.7 

Weighted Semi-RF 98.1 97.63 97.86 

80% 

C4.5 96.85 96.55 96.7 

Random Forest 97.12 96.3 96.7 

Self-training 96.84 96.63 96.74 

Co-Forest 94.71 95.35 95.03 

Tri-training 96.61 96.86 96.73 

Semi-RF_2/3 97.19 96.34 96.76 

Semi-RF 97.75 96.92 97.33 

Weighted Semi-RF 97.88 97.26 97.57 

90% 

C4.5 95.17 95.12 95.14 

Random Forest 95.74 94.14 94.93 

Self-training 95.28 95.03 95.15 

Co-Forest 92.23 93.09 92.65 

Tri-training 94.94 95.42 95.18 

Semi-RF_2/3 95.83 94.18 95 

Semi-RF 96.94 94.82 95.87 

Weighted Semi-RF 96.99 95.28 96.13 

95% 

C4.5 92.79 92.76 92.77 

Random Forest 94.07 91.42 92.72 

Self-training 92.7 93.12 92.91 

Co-Forest 88.51 89.64 89.07 

Tri-training 92.56 93.39 92.97 

Semi-RF_2/3 94.16 91.45 92.78 
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Note Type Unlabeled Data Method Precision Recall F-measure 

Semi-RF 96 92.14 94.03 

Weighted Semi-RF 96.15 92.87 94.48 

Average 

C4.5 96.02 95.93 95.97 

Random Forest 96.51 95.34 95.92 

Self-training 96.02 96.03 96.02 

Co-Forest 93.61 94.22 93.91 

Tri-training 95.84 96.26 96.05 

Semi-RF_2/3 96.59 95.39 95.98 

Semi-RF 97.49 95.97 96.72 

Weighted Semi-RF 97.57 96.31 96.94 

Table 5. Averaged results for method evaluation on treatment progress notes 

Note Type Unlabeled Data Method Precision Recall F-measure 

Treatment 

Progress 

50% 

C4.5 98.35 98.25 98.3 

Random Forest 98.52 97.73 98.12 

Self-training 98.33 98.31 98.32 

Co-Forest 96.72 96.86 96.79 

Tri-training 98.35 98.28 98.31 

Semi-RF_2/3 98.6 97.83 98.21 

Semi-RF 98.95 98.1 98.53 

Weighted Semi-RF 99.06 98.25 98.65 

75% 

C4.5 97.49 97.19 97.34 

Random Forest 97.69 96.5 97.09 

Self-training 97.53 97.24 97.39 

Co-Forest 95.05 95.23 95.14 

Tri-training 97.24 97.43 97.33 

Semi-RF_2/3 97.8 96.56 97.17 

Semi-RF 98.48 97.05 97.76 

Weighted Semi-RF 98.48 97.39 97.93 

80% 

C4.5 97.25 96.72 96.98 

Random Forest 97.54 96.01 96.77 

Self-training 97.17 96.84 97 

Co-Forest 94.77 94.72 94.74 

Tri-training 97.09 97.03 97.06 

Semi-RF_2/3 97.67 96.05 96.85 

Semi-RF 98.41 96.71 97.55 

Weighted Semi-RF 98.46 96.96 97.7 

90% 

C4.5 95.66 95.69 95.68 

Random Forest 96.41 93.42 94.89 

Self-training 95.61 95.86 95.74 

Co-Forest 91.87 91.73 91.8 

Tri-training 95.25 95.91 95.57 

Semi-RF_2/3 96.54 93.48 94.98 

Semi-RF 97.63 94.27 95.92 

Weighted Semi-RF 97.75 94.68 96.19 

95% 

C4.5 93.42 91.64 92.52 

Random Forest 94.34 89.13 91.66 

Self-training 93.46 92.06 92.75 

Co-Forest 87.83 87.76 87.79 

Tri-training 92.87 92.74 92.8 

Semi-RF_2/3 94.52 89.15 91.75 
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Note Type Unlabeled Data Method Precision Recall F-measure 

Semi-RF 96.75 89.82 93.15 

Weighted Semi-RF 96.89 90.62 93.65 

Average 

C4.5 96.43 95.9 96.16 

Random Forest 96.9 94.56 95.71 

Self-training 96.42 96.06 96.24 

Co-Forest 93.25 93.26 93.25 

Tri-training 96.16 96.28 96.22 

Semi-RF_2/3 97.03 94.61 95.79 

Semi-RF 98.04 95.19 96.58 

Weighted Semi-RF 98.13 95.58 96.83 

Table 6. Statistical test results for method evaluation at the 0.05 significance level with respect to F-measure 

Note Type Unlabeled Data Weighted Semi-RF Semi-RF The Others 

Care 

50% > The Others No No 

75% > The Others No No 

80% > The Others No No 

90% > The Others No No 

95% > The Others No No 

Treatment 

Order 

50% > The Others No No 

75% > The Others No No 

80% > The Others No No 

90% > The Others No No 

95% > Semi-RF 

> The Others 

No No 

Treatment 

Progress 

50% > The Others No No 

75% > The Others No No 

80% > The Others No No 

90% > The Others No No 

95% > Semi-RF 

> The Others 

No No 

 l 

5. Conclusions 

In this paper, we consider the abbreviation 

identification task on free texts of the clinical 

notes in EMRs. The task is formulated as a 

binary classification task in a semi-supervised 

learning mechanism. In order to perform this 

task, we do level-wise feature engineering to 

represent each token in clinical notes in a vector 

space by examining the different aspects at 

token, sentence, and note levels. Using this 

feature vector representation, a novel adaptive 

semi-supervised learning approach is proposed. 

A new adaptive semi-supervised learning 

algorithm, Weighted Semi-RF, and its 

traditional semi-supervised learning algorithm, 

Semi-RF, are defined by combining the random 

forest model and Tri-training in a self-training 

manner along with a new weighting scheme via 

adaptation.  

These algorithms are simple, parameter-

free, and practical by utilizing a current larger 

set of unlabeled data in constructing a classifier. 

The experimental results have confirmed that 

our solution is effective with the better 

Precision and F-measure values on average 

compared to some existing ones. This shows 

that abbreviation identification can be tackled 

well in our approach. 

In practice, the proposed solution is the first 

attempt to deal with abbreviation identification 

for real Vietnamese EMRs. Our method has 

processed the clinical texts of three different 

structure kinds in those records. The outcome 

of our method is very promising with  

high accuracy.  
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In the future, determining long forms of the 

identified abbreviations is our next step to 

prepare EMRs for further data processes. 

Besides, we plan for a new optimized stratified 

sampling scheme to maintain and enhance the 

prediction power of the final classifier. 
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