
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55

46

Original Article

Adaptive Large Neighborhood Search Enhances Global

Protein-Protein Network Alignment

Vu Thi Ngoc Anh1, 2, Nguyen Trong Dong2,

Nguyen Vu Hoang Vuong2, Dang Thanh Hai3, *, Do Duc Dong3, *

1
The Hanoi college of Industrial Economics,

2VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam,
3Bingo Biomedical Informatics Laboratory (Bingo Lab), Faculty of Information Technology, VNU

University of Engineering and Technology

Received 05 March 2018
Revised 19 May 2019; Accepted 27 May 2019

Abstract: Aligning protein-protein interaction networks from different species is a useful

mechanism for figuring out orthologous proteins, predicting/verifying protein unknown functions

or constructing evolutionary relationships. The network alignment problem is proved to be

NP-hard, requiring exponential-time algorithms, which is not feasible for the fast growth of

biological data. In this paper, we present a novel global protein-protein interaction network

alignment algorithm, which is enhanced with an extended large neighborhood search heuristics.

Evaluated on benchmark datasets of yeast, fly, human and worm, the proposed algorithm

outperforms state-of-the-art algorithms. Furthermore, the complexity of ours is polynomial, thus

being scalable to large biological networks in practice.

Keywords: Heuristic, Protein-protein interaction networks, network alignment, neighborhood search.

1. Introduction*

Advanced high-throughput biotechnologies

have been revealing numerous interactions

between proteins at large-scales, for various

species. Analyzing those networks is, thus,

becoming emerged, such as network topology

analyses [1], network module detection [2],

evolutionary network pattern discovery [3] and

network alignment [4], etc.

* Corresponding author.

 E-mail address: {hai.dang, dongdoduc}@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.228

From biological perspectives, a good

alignment between protein-protein networks

(PPI) in different species could provide a strong

evidence for (i) predicting unknown functions

of orthologous proteins in a less-well studied

species, or (ii) verifying those with known

functions [5], or (iii) detecting common

orthologous pathways between species [6] or

(iv) reconstructing the evolutionary dynamics

of various species [4].

PPI network alignment methods fall into two

categories: local alignment and global alignment.

The former aims identifying

sub-networks that are conserved across networks

in terms of topology and/or sequence similarity

mailto:hai.dang@vnu.edu.vn

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55 47

[7-11]. Sub-networks within a single PPI network

are very often returned as parts of local alignment,

giving rise to ambiguity, as a protein may be

matched with many proteins from another target

network [12]. The latter, on the other hand, aims

to align the whole networks, providing

unambiguous one-to-one mappings between

proteins of different networks [4, 12, 13-16].

The major challenging of network

alignment is computational complexity. It

becomes even more apparent as PPI networks

are becoming larger (Network may be of up to

104 or even 105 interactions). Nevertheless,

existing approaches are optimized only for

either the performance accuracy or the

run-time, but not for both as expected, for

networks of medium sizes. In this paper, we

introduce a new global PPI network (GPN)

algorithms that exploit the adaptive large

neighborhood search. Thorough experimental

results indicate that our proposed algorithm

could attain better performance of high

accuracy in polynomial run-time when

compared to other state-of-the-art algorithms.

2. Problem statement

Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be

PPI networks where 𝑉1, 𝑉2 denotes the sets of

nodes corresponding to the proteins. 𝐸1, 𝐸2

denotes the sets of edges corresponding to the

interactions between proteins. An alignment

network 𝐴12= (𝑉12, 𝐸12), in which each node in

𝑉12 can be presented as a pair < 𝑢𝑖, 𝑣𝑗 >

where 𝑢𝑖 ∈ 𝑉1, 𝑣𝑗 ∈ 𝑉2. Every two nodes <

𝑢𝑖, 𝑣𝑗 > and < 𝑢′𝑖, 𝑣′𝑗 > in 𝑉12 are distinct in

case of 𝑢𝑖 ≠ 𝑢′𝑖 and 𝑣𝑗 ≠ 𝑣′𝑗. The edge set of

alignment network are the so-called conserved

edge, that is, for edge between two nodes <
𝑢𝑖, 𝑣𝑗 > and < 𝑢′𝑖, 𝑣′𝑗 > if and only if <

𝑢𝑖, 𝑢′𝑖> ∈ 𝐸1 and < 𝑣𝑗, 𝑣′𝑗> ∈ 𝐸2.

Figure 1. An example of an alignment of two networks [17].

Although an official definition of successful

alignment network is not proposed, informally

the common goal of recent approaches is to

provide an alignment so that the edge set 𝐸12 is

large and each pair of node mappings in the set

𝑉12 contains proteins with high sequence

similarity [4, 18, 13, 14]. Formally, the

definition of pairwise global PPI network

alignment problem of 𝐴12 = (𝑉12, 𝐸12) is to

maximize the global network alignment score,

defined as follows [12]:

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55

48

𝐺𝑁𝐴𝑆(𝐴12) = 𝛼 × |𝐸12| + (1 − 𝛼)

× ∑ 𝑠𝑒𝑞(𝑢𝑖, 𝑣𝑗)

∀ <𝑢𝑖,𝑣𝑗>

The constant 𝛼 ∈ [0, 1] in this equation is a

balancing parameter intended to vary the relative

importance of the network-topological similarity

(conserved edges) and the sequence similarities

reflected in the second term of sum. Each

𝑠𝑒𝑞(𝑢𝑖, 𝑣𝑗) can be an approximately defined

sequence similarity score based on measures such

as BLAST bit-scores or E-values.

3. Related state-of-the-art work

By far there have been various

computational models proposed for global

alignment of PPI networks (e.g. [4, 12, 13, 14,

15, 16], as alluded in the introduction section).

Among them, to the best of our knowledge,

Spinal and FastAN are recently state-of-the-art.

3.1. SPINAL

SPINAL, proposed by Ahmet E. Aladağ

[12], is a polynomial runtime heuristic

algorithm, consisting of two phases: Coarse-

grained phase alignment phase and fine-grained

alignment phase. The first phase constructs all

pairwise initial similarity scores based on

pairwise local neighborhood matching. Using

the given similarity scores, the second phase

builds one-to-one mapping bfy iteratively

growing a local improvement subset. Both

phases make use of the construction of

neighborhood bipartite graphs and the

contributors as a common primitive. SPINAL is

tested on PPI networks of yeast, fly, human and

worm, demonstrating that SPINAL yields better

results than IsoRank of Singh et al. (2008) [13]

in terms of common objectives and runtime.

3.2. FastAN

FastAN, proposed by Dong et al. (2016)

[16], includes two phases, called Build and

Rebuild. They both employ the same strategy

similar to neighborhood search algorithms (see

Section 4.1) that repeatedly destroy and repair

the current found solution. The first phase is to

build an initial global alignment solution by

selecting iteratively an unaligned node from one

network, which has the most connections to

aligned nodes in the network, to pair with the

best-matched node from the other network (See

the Build phase, the first For loop, in Algorithm

1). The second phase follows the worst removal

strategy to destroy the worst parts (99%) of the

current solution based on their scores

independently calculated. FastAN keeps 1%

best pairs remained as a seeding set for

reconstructing the solution. The reconstructing

procedure is the same as the first phase. It

reconstructs the destroyed solution by

repeatedly adding best parts at the moment.

FastAN accept every newly created solution

from which it randomly choose one to follow.

Using the same objective function and the

dataset as SPINAL, FastAN yields much better

result than SPINAL [12].

4. Materials

4.1. Neighborhood search

Given 𝑆 the set of feasible solutions for

globally aligning two networks and I being an

instance (or input dataset) for the problem, we

denote 𝑆(𝐼) when we need to emphasise the

connection between the instance and solution

set. Function 𝑐: 𝑆 → ℝ maps from a solution to

its cost. 𝑆 is assumed to be finite, but is usually

an extremely large set. We assume that the

combinatorial optimization problem is a

maximization problem, that is, we want to find

a solution 𝑠∗ such that 𝑐(𝑠∗) >= 𝑐(𝑠) ∀𝑠 ∈ 𝑆.

We define a neighborhood of a solution 𝑠 ∈
 𝑆 as 𝑁(𝑠) ⊆ 𝑆. That is, 𝑁 is a function that

maps a solution to a set of solutions. A solution

s is considered as locally optimal or a local

optimum with respect to a neighborhood 𝑁 if

𝑐(𝑠) >= 𝑐(𝑠’) ∀𝑠’ ∈ 𝑁(𝑠). With these

definitions it is possible to define a

neighborhood search algorithm. The algorithm

takes an initial solution 𝑠 as input. Then, it

computes 𝑠’ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑠′′∈𝑁(𝑠) {𝑐(𝑠′′)}, that

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55 49

is, it searches the best solution 𝑠’ in the

neighborhood of s. If c(s’) > c(s) is found, the

algorithm performs an update 𝑠 = 𝑠’. The

neighborhood of the new solution s is

continuously searched until it is converged in a

region where local optimum 𝑠 is reached. The

local search algorithm stops when no improved

solution is found (see Algorithm 1). This

neighborhood search (NS), which always

accepts a better solution to be expanded, is

denoted a steepest descent (Pisinger) [19].

Algorithm 1. Neighborhood search in pseudo codes

𝑰𝑵𝑷𝑼𝑻: 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐼

𝐶𝑟𝑒𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑚𝑖𝑛 ∈ 𝑆(𝐼);

𝑾𝑯𝑰𝑳𝑬 (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑛𝑜𝑡 𝑚𝑒𝑡) {

 𝑠′ = 𝑟(𝑑(𝑠));

 𝑰𝑭 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠, 𝑠′) {

 𝑠 = 𝑠’;

 𝑰𝑭 𝑐(𝑠′) > 𝑐(𝑠𝑚𝑖𝑛)

 𝑠𝑚𝑖𝑛 = 𝑠′;

 }

}

𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑚𝑖𝑛

4.2. Large neighborhood search

Large neighborhood search (LNS) was

originally introduced by Shaw [20]. It is a meta-

heuristic that neighborhood is defined implicitly

by a destroy-and-repair function. A destroy

function destructs part of the current solution 𝑠

while repair function rebuilds the destroyed

solution. The destroy function should pre-

define a parameter, which controls the degree of

destruction. The neighborhood 𝑁(𝑠) of a

solution 𝑠 is calculated by applying the destroy-

and-repair function.

4.3. Adaptive Large Neighborhood search

Adaptive Large Neighborhood Search

(ALNS) is an extension of Large Neighborhood

Search and was proposed by Ropke and

Prisinger [19]. Naturally, different instances of

an optimization problem are handled by

different destroy and repair functions with

varying level of success. It may difficult to

decide which heuristics are used to yield the

best result in each instance. Therefore, ALNS

enables user to select as many heuristics as he

wants. The algorithm firstly assigns for each

heuristic a weight which reflects the probability

of success. The idea, that passing success is

also a future success, is applied. During the

runtime, these weights are adjusted periodically

every 𝑃𝑢 iterations. The selection of heuristics

based on its weights. Let 𝐷 = {𝑑𝑖 |𝑖 = 1. . 𝑘}

and 𝑅 = {𝑟𝑖 |𝑖 = 1. . 𝑙} are sets of destroy

heuristics and repair heuristics. The weights of

heuristics are 𝑤(𝑟𝑖) and 𝑤(𝑑𝑖). 𝑤(𝑟𝑖) and

𝑤(𝑑𝑖) are initially set as 1, so the probability of

selection of heuristics are:

𝑝(𝑟𝑖) =
𝑤(𝑟𝑖)

∑ 𝑤(𝑟𝑗)𝑙
𝑗=1

 and 𝑝(𝑑𝑖) =
𝑤(𝑑𝑖)

∑ 𝑤(𝑑𝑗)𝑘
𝑗=1

Apart from the choice of the destroy-and-

repair heuristics and weight adjustment every

update period, the basic structure of ALNS is

similar LNS (see Algorithm 2).

Algorithm 2: Adaptive Large Neighborhood

Search algorithm

𝑰𝑵𝑷𝑼𝑻: 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐼

𝐶𝑟𝑒𝑎𝑡𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑚𝑖𝑛 ∈ 𝑆(𝐼);

𝑾𝑯𝑰𝑳𝑬 (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑛𝑜𝑡 𝑚𝑒𝑡) {

 FOR i = 1 TO 𝑝𝑢 DO {

 select 𝑟 ∈ 𝑅, 𝑑 ∈ 𝐷 according to

probability;

 𝑠′ = 𝑟(𝑑(𝑠));

 𝑰𝑭 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠, 𝑠′) {

 𝑠 = 𝑠’;

 𝑰𝑭 𝑐(𝑠′) > 𝑐(𝑠𝑚𝑖𝑛)

 𝑠𝑚𝑖𝑛 = 𝑠′;

 }

 update weight 𝑤, and probability 𝑝;

}𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑚𝑖𝑛

5. Proposed model

We note that FastAN still has some

limitations, including: (i) randomly choosing a

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55

50

newly constructed solution to follow may yield

the unexpected results, gearing to the local

optimum by chance. (ii) The fixed degree of

destruction at 99% may reduce the flexibility of

neighborhood searching process. Setting this

degree too large can be used to diverse the

search space, however, would cause the best

results hardly to be reached. Newly constructed

solutions are not real neighbors of the current

solution, thus being totally irrelevant solutions).

(iii) The heuristic worst part removal of the

current solution may get FastAN stuck in a

local optimum because of the absence of

diversity. Moreover, using only one heuristic

does not guarantee the best result found for

different instances of problem. (iv) The basic

greedy heuristic in ALNS is employed to repair

destroyed solutions. Although it always

guarantees better solutions to be yielded, but it

is not the optimal way to construct the best

solution. There is another better heuristic called

n-regret could be employed. (v) Using only one

destroy heuristic and one repair (construction)

heuristic does not provide the weight

adjustment. Two heuristics are always chosen

with 100% of probability.

 To this end, in this paper, we aim at

eliminating those limitations by proposing a

novel global protein-protein network alignment

model that is mainly based on FastAN. Unlike

FastAN, which employs a neighborhood search

algorithm, the proposed model improves

FastAN by adopting a rigorous adaptive large

neighborhood search (ALNS) strategy for the

second phase (namely Rebuild) of FastAN. The

Build phase is similar to that of FastAN (See

Alogrithm 3).

Alogrithm 3: Pseudo code for our proposed PPI

alignment algorithm

𝑰𝑵𝑷𝑼𝑻: 𝐺1 = (𝑉1, 𝐸1), 𝐺2 = (𝑉2, 𝐸2),

 Similarity Score Seq[i][j], balance factor α

𝑶𝑼𝑻𝑷𝑼𝑻: An alignment 𝐴12

//Build Phase, similar to that of FastAN [21]

𝑉12 = < 𝑖, 𝑗 > //with seq[i][j] is maximum

𝑭𝑶𝑹 𝑘 = 2 𝑻𝑶 | 𝑉1| 𝑫𝑶 {
 𝑖 = 𝑓𝑖𝑛𝑑_𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒(𝐺1);
 𝑗 = 𝑓𝑖𝑛𝑑_𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ(𝑖, 𝐺1, 𝐺2);
 𝑉12 = 𝑉12 ∩ < 𝑖, 𝑗 >;

}
//Rebuild phase

𝑭𝑶𝑹 𝑖𝑡𝑒𝑟 = 1 𝑻𝑶 𝑛_𝑖𝑡𝑒𝑟 𝑫𝑶 {
 𝑑 = 𝑔𝑒𝑡_𝑑(𝑑𝑚𝑖𝑛 , 𝑑𝑚𝑎𝑥);
 de𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =
 𝑠𝑒𝑙𝑒𝑐𝑡_𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐();

 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 =
 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐();
 𝑛𝑒𝑤_𝑠𝑜𝑙 =
𝑑𝑒𝑠𝑡𝑟𝑜𝑦(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑉12, 𝑑);

 𝑛𝑒𝑤_𝑠𝑜𝑙 =
𝑟𝑒𝑝𝑎𝑖𝑟(𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑛𝑒𝑤_𝑠𝑜𝑙);

 //reward for successful heuristics

 𝑰𝑭 (𝐺_𝐵𝐸𝑆𝑇 < 𝑠𝑐𝑜𝑟𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙)) {

 𝐺_𝐵𝐸𝑆𝑇 = 𝑠𝑐𝑜𝑟𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙);

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝛿1);

 }

 𝑰𝑭 (𝑠𝑐𝑜𝑟𝑒(𝑉12) < 𝑠𝑐𝑜𝑟𝑒(𝑛𝑒𝑤_𝑠𝑜𝑙))

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝛿2);

 𝑰𝑭 (𝑎𝑐𝑐𝑒𝑝𝑡(𝑉12, 𝑛𝑒𝑤_𝑠𝑜𝑙)) {

 𝑉12 = 𝑛𝑒𝑤_𝑠𝑜𝑙;

𝑟𝑒𝑤𝑎𝑟𝑑(𝑑𝑒𝑠𝑡𝑟𝑜𝑦_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝑟𝑒𝑝𝑎𝑖𝑟_ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐, 𝛿3);
 }

 𝑰𝑭 (𝑖𝑡𝑒𝑟 % 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑒𝑟𝑖𝑜𝑑 == 0)

 weight_𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡();

}

𝒓𝒆𝒕𝒖𝒓𝒏 𝑉12;

The proposed algorithm uses a simple

Threshold Acceptance (TA) heuristic for

adaptive large neighborhood search. TA accepts

any solutions of which its difference from the

best so far (G-BEST) is not greater than T, a

manually given parameter in range

[0, positive inf) (see Procedure 1).

Procedure 1. Accept function used for adaptive large

neighborhood search

Boolean accept_function (sol, new_sol) {

 IF (𝑐𝑜𝑠𝑡𝑠𝑜𝑙 − 𝑐𝑜𝑠𝑡𝑛𝑒𝑤_𝑠𝑜𝑙 ≤ 𝑇)

 𝒓𝒆𝒕𝒖𝒓𝒏 𝑇𝑟𝑢𝑒;

 𝒓𝒆𝒕𝒖𝒓𝒏 𝐹𝑎𝑙𝑠𝑒;
}

Note that the threshold T is set as a constant

rather than increasing or decreasing due to the

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55 51

success of heuristic. The algorithm is supposed

to search around the G_BEST solution at a

constant radius. Decreasing the radius may limit

the search space due to the fact that there are

still many other heuristics, which have a chance

to find better results.

The degree of destruction used in our

ALNS of the proposed algorithm has the

opposite meaning: in particular, d is the size of

seeding set, not the destruction degree (see the

second For loop in Algorithm 3). 𝑑 is randomly

selected from the range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥], two

given parameters of the algorithm. The

suggested range is from 0.01 to 0.1; meaning

that the algorithm should destroy 90% to 99%

the solution.

There are two destroy heuristics for ALNS

in our proposed algorithm, namely Random

Removal and Worst Removal. The former

destroys the current solution at some randomly

chosen part of the solution while the latter at the

worst part. It is argued that Worst Removal is

better than Random removal in term of yielding

better local result, but lack of randomization.

The combination of Random Walk and Worst

Removal is suggested to deal with this problem.

It raises a concern that Random Removal may

not yield the best result; however, it does not

happen due to the observation that the

probability of choice Random Walk always

decreases after a few iterations. As a result, this

heuristic is not often selected and does not

touch the solution quality rebuild process.

Nevertheless, Random Walk contributes to

diverse search space, which solves the

drawback of Worst Removal.

Regarding the repair heuristic in ALNS of

the proposed algorithm, we proposed two

heuristics, i.e. Basic Greedy and n-regret. Basic

Greedy heuristic is same as that in FastAN. The

difference is the n-regret heuristic (see

Procedure 2), in which we selected the top 3 best

candidates from 𝑉1 that have the most

connections to the seeding set. Of course, these

candidates have had to not appear in the seeding

set yet. The next steps is that we loop every

candidate from 𝑉2 calculate the best and

second-best score of each pairs. Candidate from

𝑉2 should not appear in seeding set also. The

candidate, from 𝑉1 that has biggest gap from its

best and second best, is selected. The

corresponding candidate 𝑉2 is also selected.

Procedure 2: n_regret heuristic in pseudo codes

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑛_𝑟𝑒𝑔𝑟𝑒𝑡(𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡) {

 𝑾𝑯𝑰𝑳𝑬 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑢𝑙𝑙 {
 𝑡𝑜𝑝_3 = {};

𝑭𝑶𝑹 𝑒𝑣𝑒𝑟𝑦 𝑢 𝑖𝑛 𝑉1 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡 {

𝑰𝑭 (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡(𝑢, 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡) 𝑖𝑛 𝑡𝑜𝑝_3)

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡𝑜𝑝_3;

 }

 𝑑𝑖𝑓𝑓_1 = 𝑑𝑖𝑓𝑓_2 = 𝑑𝑖𝑓𝑓_3 = 0;

𝑭𝑶𝑹 𝑒𝑣𝑒𝑟𝑦 𝑣 𝑖𝑛 𝑉2 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡 {

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑏𝑒𝑠𝑡_𝑢1, 𝑏𝑒𝑠𝑡_𝑢2, 𝑏𝑒𝑠𝑡_𝑢3;

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡𝑢1
, 𝑠𝑒𝑐𝑜𝑛𝑑𝑏𝑒𝑠𝑡𝑢2

,

 𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢3;

 𝑑𝑖𝑓𝑓_1 = |𝑏𝑒𝑠𝑡_𝑢1 – 𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢1|;

 𝑑𝑖𝑓𝑓_2 = |𝑏𝑒𝑠𝑡_𝑢2 – 𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢3|;

 𝑑𝑖𝑓𝑓_3 = |𝑏𝑒𝑠𝑡_𝑢3 – 𝑠𝑒𝑐𝑜𝑛𝑑_𝑏𝑒𝑠𝑡_𝑢3|;

 }

𝑠𝑒𝑙𝑒𝑐𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑑𝑖𝑓𝑓 𝑑𝑒𝑛𝑜𝑡𝑒

𝑎𝑠 (𝑐𝑎𝑛𝑑𝑉1, 𝑐𝑎𝑛𝑑𝑉2);

𝑎𝑑𝑑 (𝑐𝑎𝑛𝑑𝑉1, 𝑐𝑎𝑛𝑑𝑉2) 𝑝𝑎𝑖𝑟 𝑡𝑜 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡;

 }

 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑒𝑒𝑑𝑖𝑛𝑔_𝑠𝑒𝑡;
}

It can be seen that, 1_regret is Basic Greedy

which always select the candidate from 𝑉1

which has the most connections and the best

score from the candidate from 𝑉2. An obvious

problem of Basic Greedy is that it often

postpones the placement of difficult choice to

the last iterations where we do not have much

freedom of action. The regret heuristic tries to

circumvent the problem by incorporating a kind

of look-ahead information when selecting the

request to insert. The Regret heuristic had been

used by Potvin and Rousseau [21] for the

VRPTW and in the context of the generalized

assignment problem Trick [22].

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55

52

Let ∆𝑓𝑢
𝑞
 be the change in the objective

value incurred by adding pair 𝑢, 𝑣, which v is

the 𝑞𝑡ℎ candidate from 𝑉2 corresponding to u,

to the seeding-set. For example ∆𝑓𝑢
2 denote the

change when adding pair u, and its second-best

v. Each selection, the regret heuristic chooses to

insert u according to:

𝑢 = arg 𝑚𝑎𝑥𝑢 𝑖𝑛 𝑉1
(∑ ∆𝑓𝑢

1

𝑛

ℎ=2

− ∆𝑓𝑢
ℎ)

The candidate u is selected with a

maximum the cost of v. It means that we

maximize the difference of cost of selecting

candidate u in its best way and its second best

way. Ties can be broken by randomly choosing

among them. The proposed algorithm repeats

until seeding_set is full. Clearly, higher n,

longer the run time, so that the regret heuristic

is used in the new algorithm is 2-regret

heuristic. Also, the set 𝑉1 and 𝑉2 are up to 1𝑒4,

so that we can not consider all candidate from

𝑉1, that explains why top 3 candidate u from 𝑉1

are chosen to applying regret strategy.

The proposed algorithm uses the weight

adjustment strategy for ALNS, which is as the

same as that in [22]. As we mentioned above,

the weight of Random Walk are always much

lower than that of Worst Removal, and quickly

decreases to 0. All weights are set at 1 initially.

Interestingly, the weights of n_regret always

outperform those of Basic Greedy, so that the

properties of n_regret are strongly convinced.

The Worst Removal heuristic, however, is not

too low at all. It means that Worst Removal is

still a good heuristic in network

alignment problem.

6. Experimental results

6.1. Implementation and datasets

Our proposed algorithm is implemented in

C++11; source code is freely available at

https://github.com/meodorewan/thesis. We do

experiments on benchmark data sets from four

species: Saccharomyces cerevisiae, Drosophila

melanogaster, Caenorhabditis elegans and

Homo sapiens. All datasets are used in all state-

of-the-art models, i.e. IsoRank, SPINAL,

FastAN, etc. The PPI network sizes are as

follows: 5499 proteins and 31 261 interactions

in the S. cerevisiae network, (7518, 25 635) in

D. melanogaster, (2805, 4495) in C. elegans

and (9633, 34327) in H. sapiens (Table 1).

Table 1. Number of proteins and interactions

between them in experimental datasets

Dataset
Number of

Proteins

Number of

Interactions

Saccharomyces

cerevisiae
5499 31261

Drosophila

melanogaster
7518 25635

Caenorhabditis

elegans
2805 4495

Homo sapiens 9633 34327

6.2. Experimental results in comparison

with FastAN

We first examine the efficiency of each

improvement in the proposed algorithm

including strategy of choosing a degree of

destruction, different destroy and repair

functions. The objective function is described in

section 1.2. Results for each improvement are

compared with those of FastAN.

6.3. Improvement with randomization of

destruction degree

Here is the first improvement, we keep all

settings as same as the original FastAN

algorithm except for only the strategy of

choosing 𝑑. FastAN is using destroy heuristic

Worst Removal, and repair heuristic is Basic

Greedy. It fixed 𝑑 = 99%, while we randomize

parameter 𝑑 in range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥].

Table 2. Experimental results of FastAN + d.

Dataset 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

FastAN FastAN

+ d

FastAN FastAN

+ d

FastAN FastAN

+ d

ce-dm 778.46 823.19 1290.11 1363.42 1801.24 1915.25

ce-hs 863.46 878.79 1429.89 1445.54 1994.87 2035.78

ce-sc 834.79 867.58 1389.21 1434.13 1936.83 2016.16

dm-hs 2260.31 2318.82 3755.36 3857.11 5242.32 5402.33

dm-sc 1977.82 2020.35 3290.03 3361.21 4603.41 4688.87

https://github.com/meodorewan/thesis

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55 53

hs-sc 2268.21 2342.29 3772.96 3911.03 5279.88 5444.05

Through the experimental results shown in

Table 2, we can conclude that the strategy of

choosing destruction degree is advantaged. The

results are much better than that of original

FastAN with fixed 𝑑 at 99%. The reason is that

fixed parameter 𝑑 may limit the search space

and be difficult to find a new local optimum.

By randomizing 𝑑 in range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥], we

can diverse the neighborhoods and be able to

find better optimum.

6.4. Improvement with destroy heuristic

Random Removal

Setting of this improvement is that we use

one destroy heuristic (i.e. Random Removal)

instead of the Worst Removal in FastAN. Other

settings are kept, including destruction degree

at 99% for the repair heuristic (Basic Greedy).

Experiment shown in Table 3 demonstrates that

destroy heuristic Random Removal is

disoriented searching strategy, it can be useful

when local minimum reached, but

disadvantaged during searching process. This

explains why we should set the weight of this

heuristic much lower than other oriented

searching strategies.

Table 3. Experimental results of FastAN +

random removal.

Datas

et

𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

FastAN FastAN

+ RR

FastAN FastAN

+ RR

FastAN FastAN

+ RR

ce-dm 778.46 733.57 1290.11 1211.63 1801.24 1680.53

ce-hs 863.46 816.59 1429.89 1351.99 1994.87 1889.16

ce-sc 834.79 790.07 1389.21 1307.96 1936.83 1831.65

dm-hs 2260.31 2109.93 3755.36 3498.53 5242.32 4886.54

dm-sc 1977.82 1837.01 3290.03 3056.96 4603.41 4272.97

hs-sc 2268.21 2092.27 3772.96 3476.05 5279.88 4890.21

6.5. Improvement with repair heuristic 2-regret

Setting of this improvement is about repair

heuristic. We examine the efficiency of the 2-

regret heuristic comparing to Basic Greedy one.

All other settings are kept originally. The result

shows that the 2-regret heuristic outperformed

most of the tests except ce-hs one (Table 4). It

can be concluded that the heuristic 2-regret is

better than Greedy heuristic in most of

the cases.

Table 4. Experimental results of FastAN + 2-

regret repair heuristic.

Dataset

𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

FastAN FastAN

+

regret-2

FastAN FastAN

+

regret-2

FastAN FastAN

+

regret-2

Ce-dm 778.46 815.99 1290.11 1352.25 1801.24 1881.70

ce-hs 863.46 860.24 1429.89 1413.04 1994.87 1965.16

ce-sc 834.79 864.33 1389.21 1429.55 1936.83 2007.28

dm-hs 226031 2281.21 3755.36 3788.08 5242.32 5290.47

dm-sc 1977.82 1983.21 3290.03 3297.65 4603.41 4603.61

hs-sc 2268.21 2274.16 3772.96 3784.53 5279.88 5283.64

6.6. Improvement with the adaptive framework

In this version, we applied the adaptive

strategy without modification of destruction

degree. In other words, this version is similar to

the new algorithm except for fixed destruction

degree at 99%. This version is to compare the

efficiency of an adaptive framework with

original FastAN algorithm. The experiment

results reveal that adaptive framework works

better in three smaller tests, but not effective in

three large ones (Table 5). It can be explained

that local optimum is not reached, we should

increase the number of iterations to get better

results than those of FastAN.

Table 5: Experimental results of FastAN +

adaptive framework.

Dataset 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

FastAN FastAN

+

adaptive

FastAN FastAN

+

adaptive

FastAN FastAN

+

adaptive

ce-dm 778.46 783.815 1290.11 1310.45 1801.24 1812.91

ce-hs 863.46 875.09 1429.89 1453.00 1994.87 2018.28

ce-sc 834.79 841.13 1389.21 1408.47 1936.83 1950.30

dm-hs 2260.31 2208.78 3755.36 3646.98 5242.32 5099.03

dm-sc 1977.82 1920.44 3290.03 3195.56 4603.41 4467.44

hs-sc 2268.21 2231.89 3772.96 3691.48 5279.88 5177.50

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55

54

Table 6. Parameters settings of the proposed

algorithm

Parameter Describe Setting

𝑑𝑚𝑖𝑛 The lower bound of degree of

destruction

0.01

𝑑𝑚𝑎𝑥 The upper bound of degee of

destruction

0.1

N_RUN The number of iteration 100

PERIOD The update period for weight

adjustment

5

ρ The degenerative factor 0.1

𝛿1 Reward for solution which

has best cost so far

0.8

𝛿2 Reward for solution which

has better cost

0.3

𝛿3 Reward for solution which is

accepted

0

N_TEST Number of execution to test

the stability of algorithm

10

T Threshold 5

6.7. Results in terms of alignment objectives

 We measure the accuracy of the proposed

algorithms in terms of the maximization

objective formulated in section 1.2. The number

of conserved interactions, that is, the edge set

size of the alignment network, denoted with 𝐸12

in the equation is a common performance

indicator used in almost all the global network

alignment studies [4, 18, 13, 14]. Because the

optimization goal is also commonly defined as

in section 1.2, we include the score obtained

from 𝐺𝑁𝐴𝑆(𝐴12) as well as |𝐸12| in our

evaluations of an alignment 𝐴12. The studied

algorithms are examined under a specific

setting of input parameters. Parameter setting

for the proposed algorithm consists of varying

the constant 𝛼 from 0.3 to 0.7 in the increments

of 0.2 (see Table 6 for other settings). Table 7

summarizes the performance in terms of such

two objectives of the proposed algorithms in

comparison with SPINAL and FastAN.

Obviously, the new algorithm yields the highest

scores for all datasets examined.

6.8. Complexity and runtime

The complexity of the proposed algorithm

is same as FastAN 𝑂(|𝑉1| ∗ |𝐸1| + |𝑉1| ∗ |𝐸2|)

for each iteration. The number of iteration is

constant. All additional heuristics used have the

Table 7. Performance in terms of two objectives (i.e. the size of conserved interactions set E12 and the

bottom indicates the score obtained from 𝐺𝑁𝐴𝑆(𝐴12)) of the proposed algorithms (indicated by “Ours”) in

comparison with SPINAL and FastAN.

Dataset 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

SPINAL FastAN Ours SPINAL FastAN Ours SPINAL FastAN Ours

ce-dm 717.99

2343

778.46

2560.7

821.98

2710.8

1159.93

2300.0

1290.11

2567.2

1348.1

2684.9

1586.87

2258.0

1801.24

2567.6

1885.1

2688.4

ce-hs 728.26

2370

863.46

2842.8

913.59

3016.1

1229.95

2437.0

1429.89

2844.9

1482.3

2952.8

1764.93

2512.0

1994.87

2843.4

2061.8

2940.3

ce-sc 709.12

2326

834.79

2761.1

884.48

2930.9

1168.95

2323.0

1389.21

2769.7

1454.9

2902.6

1683.13

2398.0

1936.83

2763.1

2023.4

2887.6

dm-hs 1883.22

6189

2260.31

6569.7

2305.2

7633.7

3160.48

6282.0

3755.36

7429.0

3785.5

7549.6

4451.6

6344.0

5242.32

7478.8

5285.9

7542.2

dm-sc 1579.06

5203

1977.82

6569.7

2017.5

6702.6

2668.65

5311.0

3290.03

6570.7

3346.0

6682.7

3759.07

5360.0

4603.41

6572.3

4657.6

6649.7

hs-sc 1731.81

5703

2268.21

7531.8

2302.4

7648.7

2839.00

5651.0

3772.96

7535.2

3869.0

7728.4

4066.22

5798.0

5279.88

7538.1

5383.5

7686.6

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55 55

same complexity as it is in Rebuild phase. The

proposed algorithm’s runtime is also same as

FastAN’s runtime.

The hardware used to run the experiment is

an Intel(R) Xeon(R) CPU E5-2697 v4 @

2.30GHz 16GB of RAM. Comparison runtime

is shown below. The runtime of the new

algorithms is likely to be as three times as that

of FastAN and approximately equal to

SPINAL’s runtime with all size of datasets (see

Table 8). This can be explained that the

complexity of constant multiply depends on

which heuristic is selected. For example, the

complexity constant multiply for 2-regret repair

heuristic is 3. However, it has no meaning for

complexity analysis.

Table 8. Runtime of the proposed algorithm in

comparison with SPINAL and FastAN.

Dataset SPINAL FastAN New algorithm

ce-dm 540.2 221.5 697.9

ce-hs 664.3 327.9 846.6

ce-sc 638.2 142.2 588.4

dm-hs 1736.8 1395.9 3924.4

dm-sc 1912.1 1064.5 2238.8

hs-sc 2630.6 1507.8 2497.6

7. Discussion and future work

In this paper we proposed a novel global

protein-protein network alignment algorithm,

which is mainly based on FastAN algorithm

[16]. Ours improves FastAN by applying the

Adaptive Large Neighborhood Search. We have

solved several limitations of FastAN by

proposing two destroy/repair heuristics, and a

new accept a function as well. Thorough

experiments demonstrate out-performance of

the proposed algorithm when compared to

FastAN. We note that the parameters used in

the proposed algorithm have not been tuned yet.

Tuning them can be a potential for further

perspective work.

Acknowledgments

This work has been supported by VNU

University of Engineering and Technology

under project number CN18.19.

References

[1] J.D. Han et al, Evidence for dynamically

organized modularity in the yeast proteinprotein

interaction network, Nature. 430 (2004) 88-93.

[2] G.D. Bader, C.W. Hogue, Analyzing yeast

protein-protein interaction data obtained from

different sources, Nat. Biotechnol. 20 (2002)

991-997.

[3] H.B. Hunter et al, Evolutionary rate in the protein

interaction network, Science. 296 (2002)

750-752.

[4] O. Kuchaiev, N. Przˇ ulj, Integrative network

alignment reveals large regions of global network

similarity in yeast and human, Bioinformatics. 27

(2011) 1390-1396.

[5] J. Dutkowski, J. Tiuryn, Identification of

functional modules from conserved ancestral

protein-protein interactions, Bioinformatics. 23

(2007) i149-i158.

[6] B.P. Kelley et al, Conserved pathways within

bacteria and yeast as revealed by global protein

network alignment, Proc. Natl Acad. Sci. USA.

100 (2003) 11394-11399.

[7] B.P. Kelley et al, Pathblast: a tool for alignment

of protein interaction networks, Nucleic Acids

Res. 32 (2004) 83-88.

[8] R. Sharan et al, Conserved patterns of protein

interaction in multiple species, Proc. Natl Acad.

Sci. USA. 102 (2005) 1974-1979.

[9] M. Koyuturk et al, Pairwise alignment of protein

interaction networks, J. Comput. Biol. 13 (2006)

182-199.

[10] M. Narayanan, R.M. Karp, Comparing protein

interaction networks via a graph match-and-split

algorithm, J. Comput. Biol. 14 (2007) 892-907.

[11] J. Flannick et al, Graemlin: general and robust

alignment of multiple large interaction networks,

Genome Res. 16 (2006) 1169-1181.

[12] E. hmet, Aladağ, Cesim Erten, SPINAL: scalable

protein interaction network alignment,

Bioinformatics. Volume 29(7) (2013) 917-924.

https://doi.org/10.1093/bioinformatics/btt071.

[13] R. Singh et al, Global alignment of multiple protein

interaction networks. In: Pacific Symposium on

Biocomputing, 2008, pp. 303-314.

https://doi.org/10.1093/bioinformatics/btt071

V.T.N. Anh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 1 (2019) 46-55

56

[14] M. Zaslavskiy et al, Global alignment of protein-

protein interaction networks by graph matching

methods, Bioinformatics. 25 (2009) 259-267.

[15] L. Chindelevitch, Extracting information from

biological networks. PhD Thesis, Department of

Mathematics, Massachusetts Institute of

Technology, Cambridge, 2010.

[16] Do Duc Dong et al, An efficient algorithm for

global alignment of protein-protein interaction

networks, Proceeding of ATC15, 2015, pp. 332-

336.

[17] G.W. Klau et al, A new graph-based method for

pair wise global network alignment, BMC

Bioinformatics, (APBC 2009), 10(1), S59.

[18] L. Chindelevitch et al, Local optimization for

global alignment of protein interaction networks,

In: Pacific Symposium on Biocomputing,

Hawaii, USA, 2010, pp. 123-132.

[19] S. Ropke, D. Pisinger, An Adaptive Large

Neighborhood Search Heuristic for the Pickup

and Delivery Problem with Time Windows.

Transportation Science. 40 (2006) 455-472.

https:// doi.org/10.1287/trsc.1050.0135.

[20] P. Shaw, A new local search algorithm

providing high quality solutions to vehicle

routing problems, Technical report,

Department of Computer Science, University

of Strathclyde, Scotland, 1997.

[21] J.Y. Potvin, M. Rousseau, Parallel Route

Building Algorithm for the Vehicle Routing

and Scheduling Problem with Time Windows,

European Journal of Operational Research.

66(3) (1993) pp. 331-340.

[22] M.A. Trick, A linear relaxation heuristic for the

generalized assignment problem, Naval Research

Logistics. 39 (1992) 137-151.

