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Abstract 

Chemical compounds (drugs) and diseases are among top searched keywords on the PubMed database of 
biomedical literature by biomedical researchers all over the world (according to a study in 2009). Working with 
PubMed is essential for researchers to get insights into drugs’ side effects (chemical-induced disease relations 
(CDR)), which is essential for drug safety and toxicity.  It is, however, a catastrophic burden for them as PubMed 
is a huge database of unstructured texts, growing steadily very fast (~28 millions scientific articles currently, 
approximately two deposited per minute). As a result, biomedical text mining has been empirically demonstrated 
its great implications in biomedical research communities. Biomedical text has its own distinct challenging 
properties, attracting much attetion from natural language processing communities. A large-scale study recently 
in 2018 showed that incorporating information into indenpendent multiple-input layers outperforms 
concatenating them into a single input layer (for biLSTM), producing better performance when compared to 
state-of-the-art CDR classifying models. This paper demonstrates that for a CNN it is vice-versa, in which 
concatenation is better for CDR classification. To this end, we develop a CNN based model with multiple input 
concatenated for CDR classification. Experimental results on the benchmark dataset demonstrate its 
outperformance over other recent state-of-the-art CDR classification models.  
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1. Introduction* 

Drug manufacturing is an extremely 
expensive and time-consuming process [1]. It 
requires approximated 14 years, with a total 
cost of about $1 billion, for a specific drug to 
be available in the pharmaceutical market [2].  
Nevertheless, even when being in clinical uses 
for a while, side effects of many drugs are still 
unknown to scientists and/or clinical doctors 
[3]. Understanding drugs’ side effects is 

________ 
* Corresponding author. E-mail.: hai.dang@vnu.edu.vn 

essential for drug safety and toxicity. All these 
facts explain why chemical compounds (drugs) 
and diseases are among top searched keywords 
on PubMed by biomedical researchers all over 
the world (according to [4]). PubMed is a huge 
database of biomedical literature, currently 
with ~28 millions scientific articles, and is 
growing steadily very fast (approximate two 
ones added per minute).  

Working with such a huge amount of 
unstructured textual documents in PubMed is a 
catastrophic burden for biomedical researchers. 
It can be, however, accelerated with the 
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application of biomedical text mining, hereby 
for drug (chemical) - disease relation 
prediction, in particular. Biomedical text 
mining has been empirically demonstrated its 
great implications in biomedical research 
communities [5-7].     

Biomedical text has its own distinct 
challenging properties, attracting much attetion 
from natural language processing communities 
[8, 9]. In 2004, an annual challenge, called 
BioCreative (Critical Assessment of 
Information Extraction systems in Biology) 
was launched for biomedical text mining 
researchers. In 2016, researchers from NCBI 
organized the chemical disease relationship 
extraction task for the challenge [10]. 

To date, almost all proposed models are 
only for prediction of relationships between 
chemicals and diseases that appear within a 
sentence (intra-sentence relationships) [11]. 
We note that those models that produce the 
state-of-the-art performance are mainly based 
on deep neural architechtures [12-14], such as 
recurrent neural networks (RNN) like bi-
directional long short-term memory (biLSTM) 
in [15] and convolutional neural networks 
(CNN) in [16-18].  

Recently, Le et al. developed a biLSTM 
based intra-sentence biomedical relation 
prediction model that incorporates various 
informative linguistic properties in an 
independent multiple-layer manner [19]. Their 
experimental results demonstrate that 
incorporating information into indenpendent 
multiple-input layers outperforms 
concatenating them into a single input layer 
(for biLSTM), producing better performance 
when compared to relevant state-of-the-art 
models. To the best of our knowledge, there is 
currently no study confirming whether it is still 
hold true for a CNN-based intra-sentence 
chemical disease relationship prediction model 
by far. To this end, this paper proposes a model 
for prediction of intra-sentence chemical 

disease relations in biomedical text using CNN 
with concatenation of multiple layers for 
encoding different linguistic properties as 
input. 

The rest of this paper is organized as 
follows. Section 2 describes the proposed 
method in detail. Experimental results are 
discussed in section 3. Finally, section 4 
concludes this paper. 

2. Method 

Given a preprocessed and tokenized 
sentence containing two entity types of interest 
(i.e. chemical and disease), our model first 
extracts the shortest dependency path (SDP) 
(on the dependency tree) between such two 
entities. The SDP contains tokens (together with 
dependency relations between them) that are 
important for understanding the semantic 
connection between two entities (see Figure 1 for 
an example of the SDP). 

Figure 1. Dependency tree for an example 
sentence. The shortest dependency path between 
two entities (i.e. depression and methyldopa) goes 

through the tokens “occurring” and “patients”.  
 
Each token t on a SDP is encoded with the 

embedding et by concatenating three 
embeddings of equal dimension d (i.e. 
ew+ept+eps), which represent important 
linguistic information, including its token itself 
(ew), part of speech (POS) (ept) and its position 
(eps). Two former partial embeddings are fine-
tuned during the model training. Position 
embeddings are indexed by distance pairs 
[dl%5, dr%5], where dl and dr are distances 
from a token to the left and the right entity, 
respectively.  

For each dependency relation (r) on the 
SDP, its embedding has the dimension of 3*d, 
and is randomly initialized and fine-tuned as 
the model’s parameters during training. 
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To this end, each SDP is embedded into the 
RNxD space (see Figure 2), where N is the 
number of all tokens and dependency relations 
on the SDP and D=3*d. The embedded SDP 
will be fed as input into a conventional 
convolutional neural network (CNN [20]) for 
being classified if there is or not a predefined 
relation (i.e. chemical-induced disease 
relation) between two entities.  

Figure 2. Embedding by concatenation 
mechanism of the Shortest Dependency Path (SDP) 
from the example in Figure 1. 

 
2.1. Multiple-channel embedding 

For multi-channel embedding, instead of 
concatenating three partial embeddings of each 
token on a SDP we maintain three independent 
embedding channels for them. Channels for 
relations on the SDP are identical embeddings. 
As a result, SDPs are embedded into Rnxdxc, 
where n is the number of all tokens and 

dependency relations between them, d is the 
dimension number of embeddings, and c=3 is 
the number of embedding channels. 

To calculate feature maps for CNN we 
follow the scheme in the work of Kim 2014 
[21]. Each CNN’s filter f_i is slided along each 
embedding channel (c) independently, creating 
a corresponding feature map fm_i_c. The max 
pooling operator is then applied on those 
created feature maps on all channels (three in 
our case) to create a feature value for filter f_i 
(Figure 3). 

2.2. Hyper-parameters 

The model’s hyper-parameters are 
empirically set as follows: 

• Filter size: n x d, where d is the 
embedding dimension (300 in our 
experiments), n is a number of 
consecutive elements (tokens/POS 
tags, relations) on SDPs. 

• Number of filters: 32 filters of the size 
2 x 300, 128 of 3 x 300, 32 of 4 x 300, 
96 of 5 x 300. 

• Number of hidden layers: 2. 
• Number of units at each layer: 128. 
- The number of training epochs: 100 
- Patience for early stopping: 10 
- Optimizer: Adam 

 
Figure 3. Model architecture with three-channel embedding as an input for an SDP.
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3. Experimental results 

3.1. Dataset 

Our experiments are conducted on the Bio 
Creative V data [10]. It’s an annotated text 
corpus that consists of human annotations for 
chemicals, diseases and their chemical-induced-
disease (CID) relation at the abstract level. The 
dataset contains 1500 PubMed articles divided 

into three subsets for training, development and 
testing. In 1500 articles, most were selected 
from the CTD data set (accounting for 
1400/1500 articles). The remaining 100 articles 
in the test set are completely different articles, 
which are carefully selected. All these data is 
manually curated. The detail information is 
shown in Table 1. 

Table 1. Statistics on BioCreative V CDR dataset [10]. 

Dataset Articles 
Chemical Disease 

CID 
Mention ID Mention ID 

Training 500 5203 1467 4182 1965 1038 

Development 500 5347 1507 4244 1865 1012 

Test 500 5385 1435 4424 1988 1066 

 
3.2. Model evaluation 

We merge the training and development 
subsets of the BioCreative V CDR into a single 
training dataset, which is then divided into the 
new training and validation/development data 
with a ratio 85%:15%. To stop training process 
at the right time, we use the early stop 
technique on F1-score on the new validation 
data.  

The entire text will be passed through a 
sentence splitter. Then based on the name of the 
disease, the name of the chemical has been 
marked from the previous step, we filter out all 
the sentences containing at least one pair of 
chemical-disease entities. With all the sentences 
found, we can classify the relation for each pair 
of chemical-disease entities. We perform model 
training and evaluating 15 times on the new 
training and development set, the averaged F1 
on the test set is chosen as the final evaluation 
result across the entire dataset to make sure that 
the model can work well with strange samples. 

Finally, the models that achieve the best 
results based on the sentence level will be 
applied to the problem on the abstract level to 
compare with other very recent state-of-the-art 
methods. 

 

3.3. Results and Comparison 

Experiment results show that the model 
achieves the averaged F1 of 57.1% (Precision 
of 55.6% and Recall of 58.6%) at the abstract 
level. Compared with its variant that does not 
use dependency relations, we observe a big 
outperformance of about 2.6% at F1, which is 
very significant (see Table 2). It indicates that 
dependency relations contain much information 
for relation extraction. In the meanwhile, POS 
tag and position information are also very 
useful when contributing 0.9% of the F1 
improvement to the final performance of the 
model. 

Table 2. Performance of our model with different 
linguistic information used as input. 

Information used Precision Recall F1 
Tokens only 53.7 55.4 54.5 
Token, Dependency 
(depRE) 55.7 56.8 56.2 
Tokens, DepRE and 
POS tags 55.7 57.5 56.6 
Tokens, depRE, 
POS and Position 55.6 58.6 57.0 

 
Compared with recent state-of-the-art 

models such as MASS [19], ASM [22], and the 
tree kernel based model [23], our model 
performs better (Table 3). Ours and MASS only 



P.T. Nam et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2015) 1-9 5 

exploit intra-sentence information (namely 
SDPs, POS and positions), ignoring prediction 
for cross-sentence relations, while the other two 
incorporate cross-sentence information. We 
note that cross-sentence relations account for 
30% of all relations in the CDR dataset. This 
probably explains why ASM could achieve 
better recall (67.4%) than our model (58.6%). 

Table 3. Performance of our model in comparison 
with other state-of-the-art models. 

Model Relations Precision Recall F1 

Zhou et 
al., 

2016 

Intra- and 
inter-

sentence 
64.9 49.2 56.0 

Panyam 
et al., 
2018 

Intra- and 
inter-

sentence 
49.0 67.4 56.8 

Le et 
al., 

2018 

Intra-
sentence 58.9 54.9 56.9 

Our 
model 

Intra-
sentence 55.6 58.6 57.0 

 

4. Conclusion 

This paper experimentally demonstrates 
that CNNs perform better prediction of abstract-
level chemical-induced disease relations in 
biomedical literature when using concatenated 
input embedding channels rather than 
independent multiple channels. It is vice versa 
for BiLSTM when multiple independent 
channels give better performance, as shown in a 
recent large-scale related study [Le et al., 2018]. 
To this end, this paper present a model for 
prediction of chemical-induced disease relations 
in biomedical text based on a CNN with 
concatenated input embeddings. Experimental 
results on the benchmark dataset show that our 
model outperforms three recent state-of-the-art 
related models. 
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