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Abstract: Chemical compounds (drugs) and diseases are among top searched keywords on the 

PubMed database of biomedical literature by biomedical researchers all over the world (according 

to a study in 2009). Working with PubMed is essential for researchers to get insights into drugs’ 

side effects (chemical-induced disease relations (CDR), which is essential for drug safety and 

toxicity. It is, however, a catastrophic burden for them as PubMed is a huge database of 

unstructured texts, growing very fast (~28 million scientific articles currently, approximately two 

new deposits per minute). As a result, biomedical text mining has been empirically demonstrating 

its great implications in biomedical research communities. Biomedical text has its own distinct 

challenging properties, attracting much attention from natural language processing communities.  

A large-scale study in 2018 showed that incorporating information into indenpendent multiple-

input layers outperforms concatenating them into a single input layer (for biLSTM), producing 

better performance when compared to the state-of-the-art CDR classifying models. This paper 

demonstrates that the opposite is right for a convolutional neural network (CNN), in which 

concatenation is better for CDR classification. To this end, a CNN based model is developed with 

multiple input concatenated for CDR classification. The study experimental results on the 

benchmark dataset demonstrate their outperformance over the other recent state-of-the-art CDR 

classification models. 

Keywords: Chemical-induced disease relation prediction, convolutional neural network, biomedical text mining.

1. Introduction * 

Drug manufacturing is an extremely 

expensive and time-consuming process [1]. It 

_______ 
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requires approximately 14 years, with a total 

cost of about $1 billion, for a specific drug to be 

available in the pharmaceutical market [2].  

Nevertheless, even when being in clinical uses 

for a while, side effects of many drugs are still 

unknown to scientists and/or clinical doctors 

[3]. Understanding drugs’ side effects is 
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essential for drug safety and toxicity. All these 

facts explain why chemical compounds (drugs) 

and diseases are among top searched keywords 

on PubMed by biomedical researchers all over 

the world (according to [4]). PubMed is a huge 

database of biomedical literature, currently with 

~28 million scientific articles, and is growing 

very fast (approximately two articles added  

per minute).  

Working with such a huge number of 

unstructured textual documents in PubMed is a 

catastrophic burden for biomedical researchers. 

It can be, however, accelerated with the 

application of biomedical text mining, hereby 

for drug (chemical) - disease relation 

prediction, in particular. Biomedical text 

mining has been empirically demonstrating its 

great implications in biomedical research 

communities [5-7].     

Biomedical text has its own distinct 

challenging properties, attracting much 

attention from natural language processing 

communities [8, 9]. In 2004, an annual 

challenge, called BioCreative (Critical 

Assessment of Information Extraction systems 

in Biology) was launched for biomedical  

text mining researchers. In 2016, researchers 

from NCBI organized the chemical disease 

relationship extraction task for the  

challenge [10]. 

To date, almost all the proposed models have 

been only for prediction of relationships between 

chemicals and diseases that appear within a 

sentence (intra-sentence relationships) [11]. It is 

important to note that those models that produce 

the state-of-the-art performance are mainly based 

on deep neural architechtures [12-14], such as 

recurrent neural networks (RNN) like  

bi-directional long short-term memory (biLSTM) 

in [15] and convolutional neural networks (CNN) 

in [16-18].  

Recently, Le et al. [19] developed a 

biLSTM based intra-sentence biomedical 

relation prediction model that incorporates 

various informative linguistic properties in an 

independent multiple-layer manner. Their 

experimental results demonstrate that 

incorporating information into independent 

multiple-input layers outperforms concatenating 

them into a single input layer (for biLSTM), 

producing better performance when compared 

to the relevant state-of-the-art models. To the 

best of our knowledge, there is currently no 

study confirming whether it is still held true for 

a CNN-based intra-sentence chemical disease 

relationship prediction model by far. To this 

end, this paper proposes a model for prediction 

of intra-sentence chemical disease relations in 

biomedical text using CNN with concatenation 

of multiple layers for encoding different 

linguistic properties as input. 

The rest of this paper is organized as 

follows: Section 2 describes the proposed 

method; Experimental results are discussed in 

Section 3; and, Section 4 concludes the paper. 

2. Method 

Given a preprocessed and tokenized 

sentence containing two entity types of interest 

(i.e. chemical and disease), the proposed model 

first extracts the shortest dependency path 

(SDP) (on the dependency tree) between the 

two entities. The SDP contains tokens (together 

with dependency relations between them) that are 

important for understanding the semantic 

connection between the two entities (see Figure 1 

for an example of the SDP). 

 

Figure 1. Dependency tree for an example sentence. 

The shortest dependency path between the 

two entities (i.e. depressions and methyldopa) 

goes through the tokens “occurring”  

and “patients”.  

Each token t on a SDP is encoded with the 

embedding et by concatenating three embeddings 

of equal dimension d (i.e. ew
⨁ ept

⨁ eps), which 
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represents important linguistic information, 

including its token itself (ew), part of speech 

(POS) (ept) and its position (eps). The two 

former partial embeddings are fine-tuned during 

the model training. Position embeddings are 

indexed by distance pairs [dl%5, dr%5], where 

dl and dr are distances from a token to the left 

and the right entity, respectively.  

For each dependency relation (r) on the 

SDP, its embedding has the dimension of 3*d, 

and is randomly initialized and fine-tuned as the 

model’s parameters during training. 

To this end, each SDP is embedded into the 

RNxD space (see Figure 2), where N is the 

number of all tokens and dependency relations 

on the SDP and D=3*d. The embedded SDP 

will be fed as input into a conventional 

convolutional neural network (CNN [20]) for 

being classified if there is or there is not a 

predefined relation (i.e. chemical-induced 

disease relation) between two entities. 

Figure 2. Embedding by concatenation mechanism 

of the Shortest Dependency Path (SDP)  

from the example in Figure 1. 

2.1. Multiple-Channel Embedding 

For multi-channel embedding, instead of 

concatenating three partial embeddings of each 

token on a SDP, three independent embedding 

channels are maintained. Channels for relations 

on the SDP are identical embeddings. As a 

result, SDPs are embedded into Rnxdxc, where n 

is the number of all tokens and dependency 

relations between them, d is the dimension 

number of embeddings, and c=3 is the number 

of embedding channels. 

Feature maps for CNN are calculated using 

the scheme in the work of Kim 2014 [21]. Each 

CNN’s filter fi is slided along each embedding 

channel (c) independently, creating a 

corresponding feature map ℱic. The max 

pooling operator is then applied on those 

created feature maps on all channels (three in 

our case) to create a feature value for filter fi 

(Figure 3). 

2.2. Hyper-Parameters 

The model’s hyper-parameters are 

empirically set as follows: 

- Filter size: n x d, where d is the embedding 

dimension (300 in our experiments), n is a number 

of consecutive elements (tokens/POS tags, 

relations) on SDPs (Figure 3). 

- Number of filters: 32 filters of the size 2 x 

300, 128 of 3 x 300, 32 of 4 x 300, 96 of 5 x 300. 

- Number of hidden layers: 2. 

- Number of units at each layer: 128. 

+ The number of training epochs: 100. 

+ Patients for early stopping: 10. 

+ Optimizer: Adam 

3. Experimental Results 

3.1. Dataset 

The experiments in this study are conducted 

on the Bio Creative V data [10]. It’s an 

annotated text corpus that consists of human 

annotations for chemicals, diseases and their 

chemical-induced-disease (CID) relations at the 

abstract level. The dataset contains 1,500 

PubMed articles divided into three subsets for 

training, development and testing. Most of the 

1,500 articles were selected from the CTD data 

set (accounting for 1,400/1,500 articles). The 

remaining 100 articles in the test set were 

carefully selected from different sources. All 

these data are manually curated. The detail 

information is shown in Table 1. 
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3.2. Model Evaluation 

The training and development subsets of the 

BioCreative V CDR are merged into a single 

training dataset, which is then divided into the 

new training and validation/development data 

with a ratio of 85%:15%. To stop the training 

process at the right time, the early stop technique 

on F1-score on the new validation data is used.  

The entire text will be passed through a 

sentence splitter. Then, based on the name of 

the disease and the name of the chemical 

marked from the previous step, all the sentences 

containing at least one pair of chemical-disease 

entities are filtered out. With all the sentences 

found, the relation for each pair of chemical-

disease entities can be classified. Model 

training and evaluating are performed 15 times 

on the new training and development set, and 

the averaged F1 on the test set is chosen as the 

final evaluation result across the entire dataset 

to make sure that the model can work well with 

strange samples. 

Finally, the models that achieve the best results 

based on the sentence level will be applied to the 

problem on the abstract level to compare with the 

other most recent state-of-the-art methods. 
U 

Ơ 

 

Figure 3. Model architecture with three-channel embedding as an input for an SDP. 

Table 1. Statistics on BioCreative V CDR dataset [10] 

Dataset Articles 
Chemical Disease 

CID 
Mention ID Mention ID 

Training 500 5203 1467 4182 1965 1038 

Development 500 5347 1507 4244 1865 1012 

Test 500 5385 1435 4424 1988 1066 

 

3.3. Results and Comparison 

The experiment results show that the model 

achieves the averaged F1 of 57% (Precision of 

55.6% and Recall of 58.6%) at the abstract 

level. Compared with its variant that does not 

use dependency relations, an outperformance of 

about 2.6% at F1 is observed, which is very 

significant (see Table 2). This indicates that 

dependency relations contain much information 

for relation extraction. In the meanwhile, POS tag 

and position information are also very useful 

when contributing 0.9% of the F1 improvement to 

the final performance of the model. 

Compared with the recent state-of-the-art 

models such as MASS [19], ASM [22] and the 

tree kernel based model [23], the proposed 

model performs better (Table 3). The proposed 

model and MASS only exploit intra-sentence 
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information (namely, SDPs, POS and 

positions), ignoring prediction for cross-

sentence relations, while the other two 

incorporate cross-sentence information. 

Table 2. Performance of the proposed model with 

different linguistic information used as input 

Information used Precision Recall F1 

Tokens only 53.7 55.4 54.5 

Token, Dependency 

(depRE) 
55.7 56.8 56.2 

Tokens, DepRE and 

POS tags 
55.7 57.5 56.6 

Tokens, depRE, 

POS and Position 
55.6 58.6 57.0 

It is  noted that cross-sentence relations 

account for 30% of all relations in the CDR 

dataset. This probably explains why ASM could 

achieve better recall (67.4%) than the proposed 

model (58.6%). 

Table 3. Performance of the proposed model in 

comparison with the other state-of-the-art models 

Model Relations Precision Recall F1 

Zhou et 

al., 2016 

Intra- and 

inter-

sentence 

64.9 49.2 56.0 

Panyam 

et al., 

2018 

Intra- and 

inter-

sentence 

49.0 67.4 56.8 

Le et al., 

2018 

Intra-

sentence 
58.9 54.9 56.9 

Proposed 

model 

Intra-

sentence 
55.6 58.6 57.0 

4. Conclusion 

This paper experimentally demonstrates 

that CNNs perform better prediction of  

abstract-level chemical-induced disease 

relations in biomedical literature when using 

concatenated input embedding channels rather 

than independent multiple channels. It is vice 

versa for BiLSTM when multiple independent 

channels give better performance, as shown in a 

recent related large-scale study [Le et al., 2018]. 

To this end, this paper presents a model for 

prediction of chemical-induced disease relations 

in biomedical text based on a CNN with 

concatenated input embeddings. The 

experimental results on the benchmark dataset 

show that the proposed model outperforms the 

three recent state-of-the-art related models. 

Acknowledgements 

This research is funded by Vietnam 

National Foundation for Science and 

Technology Development (NAFOSTED) under 

Grant 102.05-2016.14. 

References 

[1] Paul SM, D.S. Mytelka, C.T. Dunwiddie,  

C.C. Persinger, B.H. Munos, S.R. Lindborg, A.L. 

Schacht, How to improve R&D productivity: The 

pharmaceutical industry's grand challenge, Nat 

Rev Drug Discov. 9(3) (2010) 203-14. 

https://doi.org/10.1038/nrd3078. 

[2] J.A. DiMasi, New drug development in the United 

States from 1963 to 1999, Clinical pharmacology 

and therapeutics 69 (2001) 286-296. 

https://doi.org/10.1067/mcp.2001.115132. 

[3] C.P. Adams, V. Van Brantner, Estimating the cost 

of new drug development: Is it really $802 

million? Health Affairs 25 (2006) 420-428. 

https://doi.org/10.1377/hlthaff.25.2.420. 

[4] R.I. Doğan, G.C. Murray, A. Névéol et al., 

“Understanding PubMed user search behavior 

through log analysis”, Oxford Database, 2009.  

[5] G.K. Savova, J.J. Masanz, P.V. Ogren et al., “Mayo 

clinical text analysis and knowledge extraction 

system (cTAKES): Architecture, component 

evaluation and applications”, Journal of the 

American Medical Informatics Association, 2010. 

[6] T.C. Wiegers, A.P. Davis, C.J. Mattingly, 

Collaborative biocuration-text mining 

development task for document prioritization for 

curation, Database 22 (2012) pp. bas037. 

[7] N. Kang, B. Singh, C. Bui et al., “Knowledge-

based extraction of adverse drug events from 

biomedical text”, BMC Bioinformatics 15, 2014. 



P.T.Q. Trang, et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 36, No. 1 (2020) 11-16 

 

16 

[8] A. Névéol, R.L. Doğan, Z. Lu, “Semi-automatic 

semantic annotation of PubMed queries: A study 

on quality, Efficiency, Satisfaction”, Journal of 

Biomedical Informatics 44, 2011.  

[9] L. Hirschman, G.A. Burns, M. Krallinger,  

C. Arighi, K.B. Cohen et al., Text mining for the 

biocuration workflow, Database Apr 18, 2012,  

pp. bas020. 

[10] Wei et al., “Overview of the BioCreative V 

Chemical Disease Relation (CDR) Task”, 

Proceedings of the Fifth BioCreative Challenge 

Evaluation Workshop, 2015. 

[11] P. Verga, E. Strubell, A. McCallum, 

Simultaneously Self-Attending to All Mentions 

for Full-Abstract Biological Relation Extraction, 

In Proceedings of the 2018 Conference of the 

North American Chapter of the Association for 

Computational Linguistics: Human Language 

Technologies 1 (2018) 872-884. 

[12] Y. Shen, X. Huang, Attention-based convolutional 

neural network for semantic relation extraction, 

In: Proceedings of COLING 2016, the Twenty-

sixth International Conference on Computational 

Linguistics: Technical Papers, The COLING 2016 

Organizing Committee, Osaka, Japan, 2016,  

pp. 2526-2536. 

[13] Y. Peng, Z. Lu, Deep learning for extracting 

protein-protein interactions from biomedical 

literature, In: Proceedings of the BioNLP 2017 

Workshop, Association for Computational 

Linguistics, Vancouver, Canada, 2016, pp. 29-38. 

[14] S. Liu, F. Shen, R. Komandur Elayavilli, Y.  

Wang, M. Rastegar-Mojarad, V. Chaudhary, H. 

Liu, Extracting chemical-protein relations using 

attention-based neural networks, Database, 2018. 

[15] H. Zhou, H. Deng, L. Chen, Y. Yang, C. Jia,  

D. Huang, Exploiting syntactic and semantics 

information for chemical-disease relation 

extraction,  Database, 2016, pp. baw048. 

[16] S. Liu, B. Tang, Q. Chen et al., Drug-drug 

interaction extraction via convolutional neural 

networks, Comput, Math, Methods Med, Vol 

(2016) 1-8. https://doi.org/10.1155/2016/6918381.  

[17] L. Wang, Z. Cao, G. De Melo et al., Relation 

classification via multi-level attention CNNs, In: 

Proceedings of the Fifty-fourth Annual Meeting of 

the Association for Computational Linguistics  

1 (2016) 1298-1307. 

 https://doi.org/10.18653/v1/P16-1123. 

[18] J. Gu, F. Sun, L. Qian et al., Chemical-induced 

disease relation extraction via convolutional 

neural network, Database, 2017, pp. 1-12. 

https://doi.org/10.1093/database/bax024.  

[19] H.Q. Le, D.C. Can, S.T. Vu, T.H. Dang, M.T. 

Pilehvar, N. Collier, Large-scale Exploration of 

Neural Relation Classification Architectures, 

In Proceedings of the 2018 Conference on 

Empirical Methods in Natural Language 

Processing, 2018, pp. 2266-2277. 

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 

Gradient-based learning applied to document 

recognition, In Proceedings of the IEEE. 86(11) 

(1998) 2278-2324. 

[21] Y. Kim, Convolutional neural networks for 

sentence classification, ArXiv preprint arXiv: 

1408.5882. 

[22] C. Nagesh, Panyam, Karin Verspoor, Trevor Cohn 

and Kotagiri Ramamohanarao, Exploiting graph 

kernels for high performance biomedical relation 

extraction, Journal of biomedical semantics 9(1) 

(2018) 7. 

[23] H. Zhou, H. Deng, L. Chen, Y. Yang, C. Jia, D. 

Huang, Exploiting syntactic and semantics 

information for chemical-disease relation 

extraction, Database, 2016. 

 

 

https://doi.org/10.18653/v1/P16-1123

