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Abstract: Due to the increasing amount of unlabeled data, a more flexible approach is required to
label data efficiently. Active learning aims to identify which data samples are the most valuable for
learning with the dataset, thus achieving better performance with much fewer samples. Recent works
show that although the data augmentation strategies are simple, they have the potential to improve
active learning by expanding the input space’s exploration and assisting in the discovery of more
informative samples. By effectively controlling a set of augment operators on each active learning
cycle, one could choose promising candidates from the set of unlabeled data for each iteration step
of active learning. However, the scoring model is built on a hard reset at each data acquisition cycle,
which is time-consuming and missing important information from previous cycles. To address the
issues, we propose an incremental training procedure for active learning that avoids retraining the
scoring model at each updating cycle. By relying on an augmentation strategy, the model can be used
to derive a new score based on the combination between the lowest confidence score with its variance
in previous cycles. Thus, the resulting scores give a better approximation of the uncertainty of the
samples. We evaluate our proposed algorithms on three popular benchmarks, FASHION-MNIST,
CIFAR-10, and SVHN, and the results highlight that our method can improve the accuracy from 2%
to 4% in comparison with the other baselines.
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1. Introduction

Deep learning models have proven as the
most successful approach for a wide range of
applications [1, 2]. However, these successes
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often come with the requirement of enough
labeled data, thus resulting in high labor
and financial cost. Active learning which
integrates the activity of acquiring data into
the learning process of deep models, can
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be considered as an alternative approach to
reduce the required resources for creating such
a training dataset. Applications of active
learning are employed in the domains of
biology [3, 4] and chemistry [5, 6], autonomous
driving [7, 8], medical research [9, 10], and
remote sensing [11, 12]. To effectively reduce
training costs and improve model performance, a
selection mechanism of active learning approach
is employed to decide which images should be
labeled next. Current active learning methods
can be divided into two large branches which
are uncertainty-based methods [13, 14] and
representation-based methods [15]. Compared
to the latter, the former is preferred due to the
comfort of designing a scoring mechanism for
unlabelled data. It is worth noting that without
enough training data, it is not easy to learn a good
latent representation for the representation-based
methods. The main intuition of uncertainty-
based approaches is roughly to select the most
useful samples from the available data pool which
can help to increase the training efficiency of
the deep model. In [16], the authors propose
a sampling strategy that combines both the
predictive uncertainty and the sample diversity
into one framework.

On the other hand, one can increase
the available training data by employing data
augmentation techniques, especially for image-
based active learning. Works in [17, 18] employ
augmentation techniques on image data to
provide virtual data instances for active learning
from early iteration. However, these works tend
to rely on a fixed set of data augmentation,
which makes it difficult to select a proper set of
operators. To make the augmentation operator
more flexible, the authors in [19] introduce a
controllable data augmentation process, namely
CAMPAL, to enrich the pooling data. Generally
speaking, CAMPAL learns a useful set of data
augmentation automatically and based on the
learned augmentation decides which are the
most prominent samples to be labeled. The

next selected samples are decided by a scoring
model which is re-trained for each learning cycle.
The usage of this scoring model is similar to
other approaches such as in [20]. However,
the re-training process, results in a more time-
consuming process and missing knowledge from
previous cycles.

In our work, we address the issue of
CAMPAL by applying an incremental learning
process for the scoring model. Instead of
retraining the model at each learning cycle, we
reuse the previous scoring model and adapt it
with the new labeled data. The resulting model
is then used to sample the next candidates for
the next batch. Due to the continuing training
process, it requires fewer training epochs in each
active learning cycle. Moreover, the resulting
model is more effective in identifying the most
uncertain samples for the sampling process as
it contains the past knowledge of the available
data. We further derive a scoring mechanism
that takes into account the historical scoring of
each sample in the unlabelled data pool. The
scoring mechanism is built on the assumption
that if a sample has a large fluctuation in its
score, it contains more uncertainty than the
others. We evaluate our algorithm in three
popular benchmarks FASHION-MNIST, CIFAR-
10, and SVHN with different active learning
settings. Our proposed methods can improve
the accuracy by about 2% in the FASHION-
MNIST benchmark, 2.2% in the SVHN, and
4% in the CIFAR-10 benchmark, in comparison
with the standard augment-based active learning
approach.

2. Related Works

Active learning is a branch of machine
learning that aims to reduce the amount of
labeled data required for training a model by
actively selecting the most informative samples
for annotation [21, 22]. Recent works on
active learning can be divided into uncertainty-
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based sampling and representation-based
sampling. Representation-based approaches
choose unlabeled instances, which are considered
to contain most of the representations of all
classes [15, 23, 24]. On the other hand,
uncertainty-based methods select samples that
can minimize the uncertainty of the training
classifier on certain datasets [25, 26]. Traditional
active learning strategies compute the uncertainty
of data rely on: entropy [27], query-by-
committee [27], maximizing the error reduction
[28], disagreement between experts [29] or
Bayesian methods [14]. Recent approaches
combine different techniques to improve
performance such as [13] suggests characterizing
the precise behavior of uncertainty sampling for
high-dimensional Gaussian mixture data in a
contemporary big data regime where the numbers
of samples and features are correspondingly
large. Another problem in the previous strategy
is after each cycle, just one sample is chosen,
which consumes a lot of training time. To avoid
this, BADGE [16] samples groups of points
that are high-magnitude and divergent when
represented in a hallucinated gradient space to
add sample diversity and predictive uncertainty
into each batch that is chosen.

Several works suggest that the size of the data
pool has a strong connection to the performance
of general active learning framework [30–32].
In general, the small size of the labeled pool
in early cycles could lead to a reduction in
performance due to the cold-start issue of active
learning. To tackle this issue, data augmentation
techniques can be employed to enlarge the
training pool of active learning methods. [33]
propose a way to apply various transformations
or modifications to existing image samples to
create new synthetic data that is similar but not
identical to the original ones. The augmentation
operators include basic image transformations
or more advanced ones such as picture mixing
[34, 35], and geometric alterations [36]. A
more recent work [37] proposes to optimize the

strength of an augmentation group rather than
creating new types of augmentations. To decide
which samples are chosen to add to the labeled
pool, the value of each sample needs to be
evaluated. Some commonly used strategies that
rely on uncertainty information include: entropy-
based, least confidence, and margin sampling
[19]. These methods, however, rely on a set of
augmentation operators that have a predetermined
strength. This augmentation technique may be
feasible with a labeled pool at the current cycle
but not with all cycles. To determine various
possible strengths with updated training labeled
pools in active learning, CAMPAL[19] is the first
method which varies the strength of presented
augmentation sets, thus adding more flexible to
the augmentation operators.

3. Method

3.1. Definitions and Preliminaries

Let D be the underlying dataset, which is
divided into two parts: one with labels DL and
the other without label DU , with |DU | ≫ |DL|.
The uncertainty-based approaches of the active
learning framework attempt to extend the set DL
by selecting the most informative samples from
DU . The uncertainty of a sample is measured by
a fully-trained classifier fθ. One could define a
data acquisition function hacq as follows:

hacq(x, fθ) : DU → R, (1)

which calculates the score for each data instance.
Then as with a lot of active learning strategies, the
most valuable sample batch will be selected and
added to the label pool, which is used for training
fθ.

To leverage the lacking issue of label data
samples, the authors of CAMPAL [19] rely on
image augmentations such as translation, and
histogram equalization to generate more training
data. These basic operators for augmentation
are denoted as T . For a data point xU , which
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Figure 1. Our proposed incremental in active learning loop with the updated classifier. The x̂l and x̂u represent the
augmentation set from labelled images and unlabelled images, respectively. The function fθ denotes a short-form
of a parameterized classifier with θ and fθK is a specific classifier, which is updated from the previous cycle and
re-used for training at cycle kth. In each cycle, NI unlabelled data is sampled for labelling. Labeled data after

being augmented with appropriate operators and strength is used for training θk.

is sampled from DU , T (ms)(x) indicates all of
its strengthened viewpoints with m. Given this
setup of CAMPAL, the scoring function fθ is
re-init after each update on the labeled set DL.
For selecting the new candidate, several scoring
strategies can be used [19]. For example, the
margin sampling methods select the data samples
that have the lower margin score between the
two most confident classes. However, the design
choice of re-training DU is mostly a time-
consuming process. It usually requires more
training epochs with the new samples in DL to
arrive at a stable classifier modelDU . In addition
to that, the newly trained classifier of each loop
is independent, which results in the missing
historical information of the scoring strategy.
Therefore, we propose an incremental method
to re-use knowledge from previous fθ to address
these issues.

3.2. Incremental active learning with adaptive
data augmentation

To train with an incremental learning scoring
function fθ, we rely on the adaptive data

augmentation in [19] with a margin sampling
approach. The overview of a training cycle
is illustrated in Figure 1. Starting with xU in
the unlabeled pool DU , the augmenting operator
with a strengthened viewpoint T (m) is employed
to generate the augmented x̂. The augmented
data x̂ is then scored with the scoring function
fθ, which is parameterized by a neural network
with θ. After selecting the highest score samples,
the label of these samples is acquired and then
they are added to the labeled pool DL. The
augmenting operator T (m) is further applied to
DL for generating the training samples to the
fθ. The scoring function fθ is training by the
following equation:

θ ← argmin
θ

1
|DL|

∑
x∈DL

L( fθ(x), y) (2)

Then, the details of each active learning cycle
are illustrated in the Algorithm 1. To provide
appropriate control over labeled augmentations
without incurring additional training costs, a
virtual loss term L f is incorporated to find the
appropriate strength ml for labeled samples as
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Algorithm 1 Pseudocode of our proposed
incremental training process with controllable
augmentation at cycle K

1: Input: Labeled data poolDL, unlabeled data
poolDU , classifier parameterized as θ0

2: ml = argminm
1
|DL |

∑
xL∈DL L f (xL,m);

3: Generate an augmentation set T (ml) with the
strength ml;

4: θK ← argminθK−1
LθK ;

5: mu = argmaxm
∑

xU∈DU min {H(x̃U)|(x̃U) ∈
T (m)(xU), fθ(x̃U) = fθ(xU)};

6: Generate an augmentation set T (mu) with the
strength mu;

7: htemp(x) = minx̃∈Tu(x)hbase(x̃)
8: hacq(x) = htemp(x) + var(hacq(x))
9: Select NI samples according to hacq;

10: DU ← DU − NI

11: DL ← DL ∪ NI

shown in Step 2. The strength ml is computed
by minimizing over the loss L f [19].

Classifier fθK reuse the historical sample
scoring through the load network from the last
epoch of the previous active cycle and continue
training with T (ml), where LθK is defined as
follow:

LθK =
1

|T (mlab)(DL)|

∑
x∈T (ml)(DL)

L( fθK−1(x), y) (3)

Then, fθK score augmented set T (mu), where
mu is a suitable strength that optimizes the
unlabeled pool’s total informativeness.

With the incremental setup of scoring
parameterized by θk, it is able to identify
the variance of sample scores across different
training cycles. The standard margin score
for each counterpart in augmented pool TU(x)
only contains the uncertainty under the specific
scoring model at step k. However, when more
training data is added to the scoring model,
the uncertainty of a sample can be changed in
an unpredictable way. Therefore, it is able to

reuse the old scores of a sample to approximate
the uncertainty of a sample. After generating
the augmented set TU(x), the temporal score is
extracted based on the margin sampling of each
augmented image x̂

htemp(x) = minx̃∈Tu(x)hbase(x̃) (4)

We compute variance of k step score and combine
the temporal score htemp(x) with the variance over
the historical scores:

hacq(x) = htemp(x) + var(hacq(x)) (5)

Our main intuition of samples that have higher
variance scores are more difficult to learn than
the other samples. In addition to that, if a
sample’s score fluctuates much across different
training, with different augmentation strengths,
the sample may come with much noise. Thus, the
corresponding label of the samples is expected
to add more information to the learning process.
We illustrate our scoring mechanism in Fig. 2 in
detail.

4. Experiment Results and Discussions

4.1. Experimental setup

To evaluate our method, we employ the
three image datasets: CIFAR-10, SHVN, and
FASHION-MNIST for comparison with other
baselines. We give the details settings for each
dataset as follows:

CIFAR-10[38]: There are 60,000 images in
total. Images are 32x32 color images, which are
divided into 10 classes, with 6,000 images in each
class, consisting of the CIFAR-10 dataset. A
total of 50,000 training and 10,000 test images are
available.

FASHION-MNIST[39]: The dataset
contains a training set with 60,000 examples and
a test set with 10,000 examples. Every example
consists of a 28 x 28 grayscale picture with a
label from one to ten classes.
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Figure 2. Illustration of our scoring method with scoring function parameterized by θk. Each sample x ∈ DU is
augmented with strength mu as in Step 6 from Algorithm 1. Then, the classifier fθ is used to label for each

counterparts x̂ in T (mu)(x). Based on the margin sampling strategy, margin score hbase is measured for each x̂, and
the minimum score htemp is selected in all the augmented counterparts. Then, all the calculated scores are stored

after each learning cycle and used to compute the next sampling score following Eq. 5.

SVHN [40]: A benchmark dataset for
digit classification, Street View House Numbers
(SVHN), comprises 600,000 32x32 RGB images
of printed digits (numbered 0–9) that have been
clipped from photos of house number plates. The
reduced images retain surrounding numbers and
other distractions, but they are centered around
the digit of interest. Three sets comprise SVHN:
training, testing, and an additional set of 530,000
easier-to-understand images that can be utilized
to aid in the training process.

To train with an active learning framework,
we first construct a random initial dataset with
NI labeled samples, then when training fully-
classifier fθ, we add NI instances into the labeled
set after each cycle. In this section, we choose
NI = {500, 1000} in both datasets to conduct
experiment. The training cycle with active

learning is 5 cycles. The set of augmentation
operators uses conventional augmentation pools
such as random crop, flip, and rotate which
are predefined and fixed for each dataset. The
ResNet-18 architecture [41] is used as the
backbone architecture for both the base model θk
and the classification model. Each update of the
base model θk is 5 epochs with an SGD optimizer
of learning rate 0.01, momentum 0.9, and weight
decay 5e-4.

We compare our proposed method with
other scoring-based systems including the three
sampling methods Entropy, Least Confidence
(LC), Margin, which are mentioned in the
implementation of CAMPAL [19]. In addition to
that, we also employ the BADGE [16] approach
which is the standard baseline for batch active
learning. To highlight the effectiveness of
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Dataset Method CIFAR-10 SVHN FASHION-MNIST

NI = 500

BADGE 60.87 ± 2.38 82.63 ± 1.80 97.57 ± 0.14
Entropy 62.11 ± 1.29 81.12 ± 2.88 97.03 ± 0.84

LC 59.50 ± 2.89 81.42 ± 1.46 96.88 ± 0.72
Margin 61.52 ± 2.46 80.91 ± 0.49 97.37 ± 0.31
Incre 62.60 ± 3.29 82.73 ± 1.43 96.86 ± 0.36

IncreVR 66.07 ± 1.45 84.31 ± 0.53 97.65 ± 0.17

NI = 1000

BADGE 70.88 ± 1.78 85.13 ± 0.53 97.66 ± 0.28
Entropy 70.67 ± 0.96 85.11 ± 2.00 98.15 ± 0.36

LC 71.16 ± 2.49 85.10 ± 0.21 98.28 ± 0.16
Margin 70.53 ± 1.12 83.95 ± 0.56 98.19 ± 0.46
Incre 69.67 ± 5.40 84.08 ± 0.48 97.56 ± 0.61

IncreVR 72.15 ± 0.87 87.30 ± 0.33 98.29 ± 0.09

Table 1. Comparison of the averaged test accuracy on three benchmarks and different active learning strategies.
The best performance in each dataset is indicated in bold while the second performance is underlined. NI denotes

the number of initial labeled samples as well as the size of the added labeled pool.

our proposed method, we further implement an
incremental version of CAMPAL (Incre) which
replaces the initial classifier after each cycle with
an incremental training model from the last epoch
of the previous cycle. Our work is denoted
as IncreVR, which adds the variance into the
incremental training of θk.

4.2. Main Empirical Results

Table 1 shows the overall performance of our
proposed method and the above baselines with
two datasets, CIFAR-10 and FASHION-MNIST.
Our proposed method IncreVR, which combines
with a new scoring strategy to choose which
samples are selected, has the most competitive
performance against the other baselines. The
largest increase is in the settings of NI = 500 on
the CIFAR-10 dataset, which has an improvement
of about 3.47%. In SVHN, our proposed method
has a stable improvement, about 2.2% in both
settings of NI = 500 and NI = 1000. The
other baselines are not as stable as our methods
across the four settings. Our method shows
the most improvements in the CIFAR-10, in
comparison to the FASHION-MNIST. This can

be explained by the latter being more trivial
to learn than the former. The non-variance
addition version of our approach, namely Incre,
only has a slight advantage against the other
baseline. Among tested baselines, the BADGE
method underperformed in comparison with other
augmentation-based approaches.

Table 2 shows the comparison of the accuracy
and total training time across the Margin baseline
and our IncreVR with the same settings. We set
up this experiment on CIFAR-10 with 5 cycles
while changing the number of epochs of each
cycle. With the same epoch setup, our proposed
method has the same training time as the baseline;
however, our IncreVR outperforms the Margin
baseline. Moreover, our IncreVR with 3 epochs
has a smaller training time while outperforming
the baseline with a setup of 4 epochs, which is
similar when comparing 4 epochs IncreVR with
5 epochs baseline.

Figure 3 highlights the effectiveness of
our IncreVR with different numbers of added
samples in the CIFAR-10 dataset. We keep the
same setting as the above except that we vary
the sampling added size at each active cycle
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Epoch Margin IncreVR
Acc. Time Acc. Time

3 55.01 5945s 58.00 5940s
4 57.32 6255s 62.66 6250s
5 61.52 6553s 66.07 6550s

Table 2. Comparison of the averaged accuracy on test
data and total training time on CIFAR-10 between

Margin and our IncreVR.

NI = {100, 200, 300, 400, 500}. As can be seen
from Figure 3, with NI = 100, both incremental
learning methods, IncreVR and Incre, achieve
the highest performance. The variance addition
scoring strategy has better results when NI

increases to 500. Meanwhile, the incremental
version Incre works best with a smaller number
of added samples.
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Figure 3. Experiment on different NI with three
scoring strategies in CIFAR-10. The number of NI is

varied from 100 to 500.

Figure 4 highlights the improvement in
performance with the change in the number of
training cycles. We apply reduced settings,
which reduce the added size NI and reduce the
updating training epochs to 1. This setting is used
to illustrate our efficiency in a limited learning
setting. Our method IncreVR completely
outperforms the Margin approach and the other
version Incre. When the number of training
cycles increases, the effect of variance addition is
demonstrated clearly. With 20 updating cycles,

IncreVR outperforms the other methods 3%
approximately. Note that, because we only use
NI = 100 with 1 training epoch, the result
accuracy is not as high as the other settings.
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Figure 4. Experiment on different updating cycle for
selecting new samples in CIFAR-10; the number of

epochs is decreased to 1 and NI is set to 100 samples.
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Figure 5. The fitting distribution of sample scores by
sorting increases after 5 updating cycles on the

CIFAR-10 with NI = 500.

Figures 5 also plot the distribution of scores,
which is used to evaluate the uncertainty of each
data point in the augmented pool. To fairly
compare, we choose a fixed setup with NI =

500, the active learning cycle is 5 with each
loop having 5 epochs and the same seed. It can
be seen from the plot that the score range of
Incre is narrower than the range of score with
variance in the plot of IncreVR. By including the
high variance sample across each updating cycle,
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our proposed algorithm can spread a range of
uncertainty samples, thus we can discover more
valuable newly labeled data.

5. Conclusions

In this paper, we present an augmented-based
active learning method that employs incremental
training in the score function. While re-training
the model after each active learning cycle is time-
consuming and misses important information
from the previous cycle, our incremental training
approach can be used to extract such information
for evaluating the uncertainty of a sample.
Based on this observation, we propose the
IncreVR approach which combines the variance
of sample scores for selecting the next added
samples. We experiment on three benchmarks
CIFAR-10, SVHN, and FASHION-MNIST to
prove the effectiveness of our model. With
CIFAR-10 and SVHN, the result shows that our
proposed method outperforms all baselines from
2% to 4% accuracy while providing competitive
performance in the FASHION-MNIST dataset.
Given the flexibility of the proposed method,
our work can be extended to include more
flexible sampling techniques such as based on
latent representation or reinforcement learning
settings.
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