
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 37, No. 1 (2021) 16-25 

16 

 

 

Original Article 

Robustify Hand Tracking by Fusing Generative  

and Discriminative Methods 

Nguyen Duc Thao1, Nguyen Viet Anh2, Le Thanh Ha1, Ngo Thi Duyen1,*  
1VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam 

2AI Academy Vietnam, 489 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam 

Received 14 August 2020 

Revised 04 September 2020; Accepted 04 September 2020 

 
Abstract: With the development of virtual reality (VR) technology and its applications in many fields, 

creating simulated hands in the virtual environment is an e ective way to replace the controller as well as 

to enhance user experience in interactive processes. Therefore, hand tracking problem is gaining a lot of 

research attention, making an important contribution in recognizing hand postures as well as tracking 

hand motions for VR’s input or human machine interaction applications. In order to create a markerless 

real-time hand tracking system suitable for natural human machine interaction, we propose a new 

method that combines generative and discriminative methods to solve the hand tracking problem using 

a single RGBD camera. Our system removes the requirement of the user having to wear to color wrist 

band and robustifies the hand localization even in di cult tracking scenarios. 

Keywords: Hand tracking, generative method, discriminative method, human performance capture. 

1. Introduction * 

Hand tracking is a fundamental research 

topic and has been widely studied for decades 

because of its wide range of applications. The 

exact reconstruction of the shape and 

articulation of the human hand is one of the 

particularly important questions when solving 

that problem. Virtual reality technology has 

become more popular in recent years and 

moreover become an e ective way to enhance 

_______ 
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the experience as well as the sense of presence 

and immersion. To make the interaction more 

“realistic”, there are many ways to optimize the 

input mechanism such as using controllers, 

keyboards. However, the fully articulated hand 

tracking is at the top of the expectation. 

Although recent works have focused on creating 

systems that allow hand tracking in real-time, we 

cannot deny that extracting hand motions is still a 

challenge with many factors such as fast 

movements, data noises, and self-occlusions [1]. 

These challenges require us to constantly explore 

more powerful methods of recreating the hand 

model, increasing input clarity. 
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Approaching by the input devices, we can 

categorize existing works in the field of hand 

tracking into the invasive and the non-invasive. 

For the invasive works, using gloves for 

recording hand pose is the most representative 

that directly reconstruct the hand model from 

gloves data [2, 3]. These methods provide high 

accuracy but are di cult to deploy for the 

reasons of complexity in calibration, cost of 

expensive commercial gloves and user 

movement impediment due to additional 

hardware. Therefore, non-invasive methods are 

being developed in recent years, towards 

systems that require less cost, easy to deploy 

and make further improvement in flexibility. 

With non-invasive works, these methods 

mainly use imaging devices or depth sensors to 

implement tracking algorithms. These works 

can be divided into two main classes: 

discriminative (appearance-based) methods and 

generative (model-based) methods. 

Discriminative methods build a machine 

learning model that relies on large amounts of 

data to automatically detect hand pose from 

each individual frame. Without the need of 

relying on temporal coherence, discriminative 

methods are still successfully employed for 

real-time hand tracking [4]. In another 

approach, generative (model-based) methods 

apply iterative model-fitting optimization to 

sensor information. These methods describe the 

hand with an articulated model and typically 

minimizes the discrepancy between the data 

synthesized from the model and the data 

observed by the sensor [5]. 

With such complex tasks, most  

non-invasive works in the past have made a 

number of assumptions that greatly simplify the 

problem of detecting or tracking a hand. 

However, the above generative methods still 

face certain limitations such as: 

i) Delimitation of the wrist: In most 

previous works, the hand in the image (video) 

can be easily segmented from the arm by 

wearing a colored wristband [5, 6]. Besides, if a 

person is wearing long non-skin coloured 

sleeves shirt, the extraction of the hand 

silhouette is much simplified [7]. However, in 

reality, these solutions are easily broken when a 

person wears a shirt that has the same color as 

the wristband or when the background behind 

the person is cluttered. In addition to that, the 

preparation of a wristband also makes hand 

tracking not very flexible; 

ii) Using  static  background:   A  blank  or 

uniform background will allow the hand to be 

segmented more easily  [7].  However, using  a  

static  background  is  considered too restrictive 

for a general system, and the technique of 

background subtraction is unreliable when there 

are strong shadows in the scene, when 

background objects move or if the illumination 

changes, especially with hand tracking systems 

in reality. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. In complex mixed backgrounds, previous 

methods [5] might misrecognize the wrist position. 

iii) Some works localize and segment the 

hand using a learned pixel-wise classifier [8, 9]. 

This approach does not fully exploit the context 

information of other body parts, therefore it has 

limited robustness and has di culty in 

disambiguating left and right hands of the  

same person. 

Although the restrictions listed above only 

occur in some certain circumstances, they are 

still considered to be limited in general cases. 

For example, with a given input image (video), 
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no hands are identified (Figure 1) or it is 

impossible to guarantee whether the hand is 

located correctly. This proves that a stronger 

method of hand recognition is needed. 

Moreover, the process to extract hands in some 

generative methods is still sketchy, requiring 

wrist determination in many practical cases.  
In this paper, we present a method with the 

synergy of a discriminative method and a 

generative method to recover articulated hand 

motions. The body part locations in the 

discriminative method will be used to remove 

the dependence of the wrist position in the 

generative method. We aim to achieve more 

accurate and robust tracking results and 

overcome some drawbacks of existing works. 

The contributions of this paper are as follows: 

i) A new approach for hand localization and 

segmentation in hand tracking, therefore 

removes the wristband preparation and 

wristband segmentation process; 

ii) We fully disclose our source code to 

ensure reproducibility of our results and 

facilitate future research in this domain: https:// 

github.com/thaond98/robust-htrack. 

The paper is organized as follows. Section 2 

provides the background on the two mainstream 

methods which are the base for developing our 

hand tracking system. The proposed method is 

described in Section 3, we will explain the 

synergy of the generative and discriminative 

methods which improves upon existing works 

[5]. In Section 4, we qualitatively analyze the 

performance of our hand tracking system and 

discuss the results. Section 5 concludes the paper 

and opens the discussion for future works. 

2. Related Works 

As mentioned, studies on hand tracking 

problem can be divided into two main 

categories: generative and discriminative 

methods. In this section, we present an 

overview of these two methods, which is the 

basis for proposing our new solution. 

2.1. Generative Method 

The generative method describes a model of the 

hand and search for the optimal solution in the 

model’s continuous parameter space by 

minimize the energy functions which are 

defined to measure the fit between the model 

and observed data. The optimal solution comes 

from local optimization around the estimate for 

the previous frame. 

 

A typical study in the generative method is 

the work of Tagliasacchi et al [5]. The system is 

called htrack, and it is the foundation for us to 

propose new solutions. Htrack is a method for 

real-time capturing articulated hand poses and 

motions using a single RGBD sensor. The 

system is based on a real-time registration 

process that fits a 3D articulated hand model to 

depth images to accurately reconstruct hand 

poses. The most common problems for generative 

methods are a good enough input preprocessing 

and initialization, an expressive and e cient 

enough hand model, and an objective function 

that minimizes the error between the 3D hand 

model and the observed data. 

 

Initialization: There are many initialization 

methods that provide an alignment for the first 

frame. Some works [10] initializes by 

extracting the sensor color image and 

performing a skin color segmentation. Besides, 

[6] also initializes by fingertip detection. Htrack 

[5] detects a color wristband by color 

segmentation. After that, it gets the 3D points in 

the proximity of the wristband and compute the 

principal axis. The hand point cloud is 

segmented by conjunction of this axis and the 

wristband centroid. Any depth pixel within the 

hand point cloud is labelled as belonging to the 

silhouette image as shown in Figure 2. 

However, the method of Tagliasacchi et al. [5] 

has some drawbacks such as being prone to the 

color similarity between the wristband and 

nearby objects of the same color, or it can be 

impractical for those gestures which contain di 

cult hand orientations, and it requires 

inconvenient wristband preparation. 

https://github.com/thaond98/robust-htrack
https://github.com/thaond98/robust-htrack
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Figure 2. Htrack’s wrist localization  

and hand segmentation [5]. 
 

Tracking model: The articulated hand 

model serves as the mean of the fitting 

procedure and the presentation of tracking 

results [6]. It also encodes geometric priors for 

shape completion and constrains hand 

morphology. Human hands are highly 

articulated and therefore require models with su 

ciently many degrees of freedom to adequately 

describe the corresponding motion space. In 

order to model the hand, there are a variety of 

options depending on the balance required 

between accuracy and performance. There are 

some hand models have been proposed. Melax 

et al., [11] used a union of convex bodies for 

hand tracking. Qian et al., [6] built the hand 

model using a number of spheres. Tagliasacchi 

et al. [5] found that a hand model using only 

cylinder primitives works well for tracking in 

terms of accuracy and e ciency. They register a 

template cylinder hand model to the sensor data 

with: 26 degrees of freedom, 6 for global 

rotation and translation and 20 for articulation. 

Not only the model can be quickly adjusted to 

the user by specifying global scale, palm size 

and finger lengths, but also this one can be used 

to drive a high-resolution skinned hand because 

they compute joint angles (including rigid 

transformation) in the widespread BVH motion 

sequence format (Figure 3). 

 

 

 

Figure 3. Htrack’s hand tracking model. Left to 

right: the cylinder model used for tracking, the 

skeleton, the BVH skeleton exported to drive the 

rendering, the rendered hand model [5]. 

Objective function: The objective function 

measures the discrepancy between the hand 

model and input data, as well as the validity and 

plausibility of the hand pose [6]. The objective 

function is composed of data fitting terms and 

prior terms in general. With htrack [5], 

Tagliasacchi et al. also formulate this goal as a 

minimum of the following objective function: 

3 2 w

er

min D D rist

fitting t m

E E E


     

emporal

er

pose kinematic t

prior t m

E E E    

where E3D, E2D and Ewrist are the 

alignment energies corresponding to 3D point 

cloud, 2D silhouette and wrist joint. In htrack 

[5], authors use publicly available database of 

recorded hand poses to build a low-dimensional 

subspace of plausible poses. Then they enforce 

the hand parameters to closely match with this 

subspace using the projection energy Epose. 

Kinematic prior is used to deal with hand poses 

that have unrealistic joint angle limit. Ekinematic 

is kinematic prior energy, including Ecollision 

and Ebounds where E collision is an energy that 

accounts for the inter-penetration between each 

pair of cyninders in the hand model while 

Ebounds helps preventing the hand from 

overbending the joint to impossible postures. 

Temporal prior helps with jitter in hand motion, 

therefore increase smoothness. Etemporal is an 

energy penalizing the velocity and acceleration 

of points attached to the kinematic chain. 

Let F be the sensor input data consisting of 

a 3D point cloud Xs and 2D silhouette Ss (see 

Fig. 1). Given M a 3D hand model with joint 

parameters  = {1, 2, ..., 26}, they aim at 

recovering the pose  of the user’s hand that 

matches the sensor input data F . Fitting terms 

measure how well the hand parameters explain 

the input frames F and prior terms regularize 

the solution to produce realistic hand poses. 
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2.2. Discriminative Method 

Discriminative method aims to extract the 

hand poses directly by train a classifier or a 

regressor to map image features of hand 

appearance to hand poses. Over the past few 

years, many works based on discriminative 

method have been developed for hand tracking. 

Approaches based on nearest neighbor search 

[12], decision trees [13], or convolutional 

networks [14], or CNN models [15, 16] have 

demonstrated that appearance-based methods 

can be successfully employed for real-time 

hand tracking. They are usually implemented 

with machine learning and require a large 

amount of training data to automatically detect 

the position of joints in each frame. 

A typical study in the discriminative 

method is that of Cao et al [4]. The system is 

called OpenPose, and it is the foundation for us 

to propose new solutions. OpenPose provides a 

real-time method for multi-person 2D pose 

estimation based on its bottom-up approach. 

With their various related research works, they 

can extend their work into the real-time multi-

person system to jointly detect human body, 

hand, facial, and foot key-points on single 

images. The pipeline of the system is depicted 

in Figure 4. 

 

 

 

 

 

 

Figure 4. Overall pipeline of OpenPose system [4]. 

First, they let the frame pass through the 

first 10 layers of VGG-19 model to extract 

feature maps. Then, the feature maps are 

processed with multiple CNN stages to predicts 

the confidence maps (Figure 4b) of di erent 

body parts location and predicts the a nity fields 

(Figure 4c), which represents a degree of 

association between di erent body parts. 

Finally, the confidence maps and part a nity 

fields are processed by a greedy algorithm to 

obtain the poses for each person in the image. 

The greedy algorithm which is used to parse 

poses of multiple people from confidence maps 

and part a nity fields can be summarized as: 

Step 1: Find all body part locations using 

the confidence maps. 

Step 2: Find which body parts go together 

to form pairs using the part a nity fields and 

joints in step 1. 

Step 3: Associate limbs that belong to  

the same person and get the final list of  

human poses. 

Multi-people parsing and tracking are not 

really important in our goal, and the result when 

identifying a key point belonging to the main 

person becomes easier when there is only one 

person in the scene (Figure 5). 

 

 

 

 

 

 

 

 

 
Figure 5. Using OpenPose to detect body  

and hand keypoints. 

3. Proposed Method 

Robust hand tracking requires a strategy for 

hand localization and segmentation during 

tracking, as well as finding hand when tracking 

is lost. This is highly important for human 

computer interaction applications, in which 

hand motion can be fast and it is di cult to 

accurately predict the motion. As mentioned in 

the related works, color-based approaches such 

as [5] are easily broken in cluttered background 

or lighting changes. We address this issue by 

building a combination method based on the 

use of OpenPose [4] and htrack [5]. The method 
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currently only allows one person to stand in the 

background and it is able to track one hand. The 

combination follows the pipeline in Figure 6. 

An RGB image and its corresponding depth 

image are taken from the depth sensor. The 

RGB image will go through OpenPose to get 

the wrist position as coordinates on the color 

image. The wrist data from the depth image will 

be used to retrieve the 3D point cloud of the 

hand and the 2D distance transform of its 

silhouette. An energy minimization problem 

with the iterative closest point procedure will be 

solved to best align the hand model to the 

processed data. 

3.1. Acquisition Device 

Microsoft Kinect V2 is one of the most 

popular depth sensors because of its price and 

image quality. Unfortunately, this device is not 

supported by htrack. We therefore build a new 

module in htrack to retrieve the Kinect sensor data 

using libfreenect 2 as the driver. The Kinect V2 

has a depth resolution of 512x424 pixels, a color 

resolution of 1920x1080 pixels, acquired at 30 

fps. For real-time performance, we down-sample 

the color image by a factor of 2 and synthesize a 

new depth image in the view of the color camera 

to bring the sensor data into a single coordinate 

system. The system will make use of both color 

and depth data for tracking hand poses. 

3.2. Wrist Localization and Hand Segmentation 

We use OpenPose C++ API and its  

pre-trained model BODY 25 to detect 25 body 

key-points of possibly multiple people on the 

color image. The network inference is run on 

GPU in parallel with the energy optimization 

process of the previous frame. By detecting 

whole body key-points, we fully exploit the 

context information of other body parts to infer 

the wrist location and can easily disambiguate 

left and right hands. This whole body 

information is also extremely helpful if we want 

to build a whole body 3-D performance capture 

system including body, face, and hands. 

We use the wrist location of the main user 

to replace the color-based wristband 

identification and segmentation. The hand 

silhouette is extracted by retrieving the wrist 

depth value and all depth information in a fixed 

depth range around the wrist. After calculating 

the axis of the first principle component at the 

wrist position, we will crop a circle above the 

axis to identify the hand as well as the 2D hand 

silhouette. This way, we remove the 

requirement of wearing a wristband and 

performing a color calibration at the start. 

4. Results 

Our system is evaluated on a laptop running 

Ubuntu 16.04 with Intel Core i7 3.5GHz CPU 

and NVIDIA GTX 1060 GPU. Similar to 

htrack, we perform 1 iteration for rigid 

alignment and 7 full iterations for articulation 

alignment, at 4.5ms per iteration. We run body 

key point detection, closed form closest point 

correspondences and Jacobian computation for 

the fitting energies on GPU. Hand pose 

estimation with detected wrist on a frame is 

shown in Figure 7. 

Since our main contribution is the removal 

of the wrist band requirement and its color 

calibration by using discriminative body key 

point detection, it is enough to compare 

qualitatively our system against the original 

htrack implementation under the same tracking 

conditions. We come up with the following 

evaluation scenarios: 

The user does not wear a color wrist band. 

The user wears a color wrist band and the 

tracking performance is compared between our 

method and the previous one htrack [5] in 

various tracking scenarios. 

- The background is normal. 

- The background has a similar color as the 

wristband. 

- There are the lighting changes during the 

tracking. 

- The background has an object whose color 

is roughly the same as the wristband color. 

- The background is cluttered. 
K 
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Figure 6. Our improved hand tracking pipeline upon [5]. 

 

 

 

 

 

Figure 7. The tracking is stable in complex 

backgrounds, even when colorful objects are around. 

When the user does not wear a wristband, 

that means the hand recognition of the original 

htrack is disabled, as expected htrack fails to 

identify the hand as shown in Figure 8. 

However, our method can still track the hand 

successfully in various scenarios, see Figure 9. 

 

 

 

 

Figure 8. htrack [5] does not work  

without a wristband. 

 

 

 

Figure 9. Tracking results of our system  

in no-wristband scenarios. 

We then qualitatively show our real-time 

performance when the user wears a wristband 

in Figure 10, with a normal background. We 

can see that our system performs well on 

various hand poses and the rendered hand 

model looks almost the same as the input depth 

image of the hand. Compared with the results of 

htrack, the preprocessing and initialization 

through OpenPose gives equivalent results. The 

first column shows the result of htrack, while 

the second one shows the result of the new 

method. All results are displayed in our 

computer in real-time. We also present the 

robustness of our system with occlusion in 

Figure 10, third and forth columns. With the 

occlusion, flipping and pointing down, our 

system still recognizes the wrist in such cases. 

Those qualitative comparisons also show 

comparable performance with the existing 

generative method [5]. 

In the scenario that the background color 

matches the color of the wristband as shown in 

Figure 11, the old method reveals its limitation. It 

misidentifies the wristband position when 

considering the background as an object that is 

likely to be wristband. However, in this scenario, 

our proposed method can still find exactly  

the position of the wrist, and our system still  

works normally. 
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Figure 10. Tracking results of our system in comparison with htrack  

when the user wears a wrist band, with the normal background.

In the scenario in which the lighting is 

changed continuously, the hand recognition of 

Htrack is unstable, apparently due to the sudden 

lighting changes causing the color information 

and the depth information to be abnormally 

altered, the wrist center calculation becomes 

misleading, see Figure 12. Thanks to the 

discriminative wrist detection, our method is 

not negatively a ected by lighting changes and 

the system still works well in this condition. 

In the case of having an object with a 

wristband-like color in the background, 

proposed method demonstrates better results in 

di erent hand tracking scenarios. When using a 

complex background or when not using a 

wristband, our method yields more stable 

results. Besides, the computational time of the 

proposed method is e ective enough to enable 

the system to work real time. Currently our 

method only allows one person to stand in the 

background. We can however extend our 

method to track person identity and support 

hand tracking even when multiple people are 

present in the scene. 

 

Figure 11. Tracking results of our system  

in comparison with htrack when the background  

has a similar color as the wristband. 

 

 
 

 

 

 

 

Figure 12. Tracking results of our system  

in comparison with htrack when there 

 are lighting changes. 
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Figure 13. Tracking results of our system  

in comparison with htrack when there is an object  

in a wristband-like color in the background. 

 

 

 

 

 

Figure 14. Tracking results of our system  

in comparison with htrack, with the  

cluttered background. 

5. Conclusions 

In this paper, we contributed a new method 

that combines the strengths of the two existing 

methods for real-time hand tracking. Our 

approach makes use of the discriminative 

method OpenPose’s pose estimation [4] to 

provide preprocessing and initialization for the 

generative hand tracking method htrack [5]. 

The synergy helps to remove the 

requirement of a color wristband and the color 

calibration step. Our system demonstrates good 

performance in various tracking scenarios and 

complex backgrounds.  
In the future work, we aim to use the 

discriminative method to intervene more deeply in 

the optimization process of the generative 

method, meaning that for each finger joint 

location received from OpenPose, we will adjust 

the hand model’s joints so that it aligns 

accordingly. It is expected to improve the tracking 

performance in di cult poses such as rotating fist, 

which lacks of depth features when being 

acquired by current commodity depth sensors. 
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