
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

1

An Implementation of PCA and ANN-based Face Recognition
System on Coarse-grained Reconfigurable Computing Platform

Hung K. Nguyen*, Xuan-Tu Tran

University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam

Abstract

In this paper, a PCA and ANN-based face recognition system is proposed and implemented on a Coarse Grain
Reconfigurable Computing (CGRC) platform. Our work is quite distinguished from previous ones in two aspects.
First, a new hardware-software co-design method is proposed, and the whole face recognition system is divided
into several parallel tasks implemented on both the Coarse-Grained Reconfigurable Architecture (CGRA) and the
General-Purpose Processor (GPP). Second, we analyzed the source code of the ANN algorithm and proposed the
optimization solution to explore its multi-level parallelism to improve the performance of the application on the
CGRC platform. The computation tasks of ANN are dynamically mapped onto CGRA only when needed, and it's
quite different from traditional Field Programmable Gate Array (FPGA) methods in which all the tasks are
implemented statically. Implementation results show that our system works correctly in face recognition with a
correct recognition rate of approximately 90.5%. To the best of our knowledge, this work is the first
implementation of PCA and ANN-based face recognition system on a dynamically CGRC platform presented in
the literature.

Keywords: Coarse-grained Reconfigurable Architecture; Principal Components Analysis (PCA); Face Recognition; Artificial
Neural Network (ANN); Reconfigurable Computing platform.

1. Introduction*

Face recognition is one of the most common
biometric recognition techniques that attract
huge attention of many researchers in the field of
computer vision since the 1980s. Today, face
recognition has proven its important role and is
widely used in many areas of life. Some
important applications of face recognition are
automatic criminal record checking, integration
with surveillance cameras or ATM systems to
increase security, online payment, tracking, and
prediction of strange diseases in medicine.

The face recognition system gets an image, a
series of photos, or a video as input and then
processes them to identify whether a person is

*Corresponding author. E-mail.: kiemhung@vnu.edu.vn

known or not. The system includes two phases
which are the feature extraction and the
classification as shown in

Figure 1.

Feature
Extraction

Face Image
Classification

Decision
Feature
Vector

Figure 1. Processes in face recognition.

The problem we have to deal with when
implementing a face recognition system is that
the data set has a very large number of
dimensionality resulting in a large amount of
computation which takes a lot of processing
time. Therefore, a significant improvement
would be achieved if we could reduce the

mailto:kiemhung@vnu.edu.vn

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

2

dimensionality of data by mapping them to
another space with a smaller number of
dimensionality [16]. Especially, dimensionality
reduction is indispensable for real-time face
recognition system while processing high-
resolution images. Feature extraction is a process
to reduce the dimensionality of a set of raw data
to more manageable groups for processing.
Feature extraction selects and/or combines
variables into features, effectively reducing the
amount of data that must be processed, while still
accurately and completely describing the
original data set. The principal components
analysis (PCA) [15] method is the appearance-
based technique used widely for reducing
dimensionality and achieved a great
performance in face recognition.

Classification is a process in which ideas and
objects are recognized, differentiated, and
understood based on the extracted features by an
appropriate classifier. The artificial neural
networks (ANNs) are one of the most successful
classification systems that can be trained to
perform complex functions in various face
recognition systems. State-of-the-art ANNs are
demonstrating high performance and flexibility
in a wide range of applications including video
surveillance, face recognition, and mobile robot
vision, etc.

Face recognition using PCA in combination
with neural networks is a method to achieve high
recognition efficiency by promoting the
advantages of PCA and neural networks [11]. In
this paper, a face recognition system based on
the combination of PCA and neural network is
implemented on the coarse-grained
reconfigurable computing platform. The
proposed system offers an improvement in the
recognition performance over the conventional
PCA face recognition system. The system
operates stably and has high adaptability when
the data input has a large variation. The system
has been implemented and validated on the
coarse-grained reconfigurable computing
platform built around the CGRA called MUSRA
that was proposed in our previous work [10].

The rest of this paper is organized as follows.
Section 2 reviews some related works. In Section
3, the proposal of the MUSRA-based coarse-
grained reconfigurable computing (CGRC)

platform is introduced. Section 4 presents the
implementation of the face recognition system
on the CGRC platform. Evaluation of the
proposed system in comparison with the related
works are given in Section 5. Finally, some
conclusions are drawn in Section 6.

2. Related works

2.1 PCA for Face Recognition

Principal Component Analysis (PCA) is a
standard method for dimensionality reduction
and feature extraction. It uses a mathematical
method called orthogonal transformation to
transform a large number of correlated variables
into a smaller set of uncorrelated variables so
that the newly generated variables are linear
combinations of old variables [15].

In this paper, the PCA method is used to
reduce the number of dimensionality of the
image, helping to reduce the computation
complexity of the training or identification
process in the neural network later. The steps to
perform PCA are as follows:

Step 1: Let’s establish the training set of face
images be S = {Γ1, Γ2,…, ΓM}. Each image in 2-
dimension with size W×H is converted into a 1-
dimension vector of W×H elements.

Step 2: Calculate the average image Ψ:

Ψ =
1
𝑀𝑀
�Γ𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (1)

Step 3: Calculate the deviation of input
images from average image:

Φ𝑖𝑖 = Γ𝑖𝑖 − Ψ (2)
Step 4: Calculate the covariance matrix C:

C = 1
𝑀𝑀
∑ Φ𝑖𝑖Φ𝑖𝑖

𝑇𝑇𝑀𝑀
𝑖𝑖=1 = 𝐴𝐴.𝐴𝐴𝑇𝑇 (3)

 where A = [Φ𝟏𝟏, Φ2, … , Φ𝑴𝑴]
Step 5: Because matrix C is too large in size

(N×N), therefore, to find the eigenvector ui of C
we find the eigenvector and the eigenvalue of the
matrix L:

𝐿𝐿 = 𝐴𝐴𝑇𝑇𝐴𝐴 với 𝐿𝐿𝑚𝑚,𝑛𝑛 = Φ𝑚𝑚
𝑇𝑇 Φ𝑛𝑛 (4)

The size of the matrix L is M×M << N×N, so
calculating eigenvector is faster.

Step 6: Let’s set vi as the eigenvector of L.
The eigenvector of C is:

𝑢𝑢𝑖𝑖 = ∑ v𝑖𝑖𝑖𝑖Φ𝑖𝑖
𝑀𝑀
𝑖𝑖=1 , i =1,𝑀𝑀������ (5)

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 3

Because vectors ui are the eigenvectors of the
covariance matrix corresponding to the original
face images, so they are referred as eigenfaces.

Step 7: After finding the eigenfaces, the
images in the database will be projected onto
these eigenfaces space to create the feature
vectors. These vectors are much smaller than the
image size but still carries the most key
information contained in the image.

There is much research
([13][14][15][16][18][19][20]) on using PCA in
scientific disciplines, some works have
published the implementation of PCA for face
recognition ([13][14]).

2.2. Artificial Neural Networks

Artificial neural networks take their
inspiration from a human brain’s nervous
system. Figure 2 depicts a typical neural network
with a single neuron explained separately.
Similar to human nervous system, each neuron
in the ANN collects all the inputs and performs
an operation on them. Lastly, it transmits the
output to all other neurons of the next layer to
which it is connected. A neural network is
composed of three layer types:

• Input Layer: takes input values and feeds
them to the neurons in the hidden layers.

• Hidden Layers: are the intermediate layers
between input and output which help the
neural network learn the complicated
relationships involved in data.

• Output Layer: presents the final outputs
of the network to the user.

Computation at each neuron in hidden layers
and output layer is modeled by the expression:

𝑦𝑦𝑖𝑖 = 𝑓𝑓(�𝑊𝑊𝑖𝑖𝑖𝑖 × 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖)
R

𝑖𝑖=1

 (6)

where 𝑊𝑊𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the weights, bias,
input activations, and output activations,
respectively, and f( ⋅ ) is a nonlinear activation
function such as Sigmoid [5], Hyperbolic
Tangent [5], Rectified Linear Unit (RELU) [6],
etc.

Just like in human brain, an ANN needs to
be trained to perform its given tasks. This
training involves determining the value of the
weights (and bias) in the network. After that, the

ANN can perform its task by computing the
output of the network by using the weights
determined during the training process. This
process is referred to as inference. Training and
inference must be considered during the
development of hardware platform for ANN.
Training generally requires high-computing
performance, high-precision arithmetic, and
programmability to support different deep
learning models. In fact, training is usually
performed offline on workstations or servers.
Some research efforts have been looking for
incremental training solutions [7] and a
reduction in precision training [8] to decrease the
computation complexity.

Many ANN frameworks are implemented on
GPU (Graphic Processing Unit) platforms such
as Caffe [1], Torch [2], and Chainer [3]. These
fast and friendly frameworks are developed for
easily modifying the structures of neural
networks. However, from the performance point
of view, dedicated architectures for ANNs have
a higher throughput as well as higher energy
efficiency. In recent decades, interest in the
hardware implementation of artificial neural
networks (ANN) by using FPGA and ASIC has
grown. This is mainly due to the rapid
development of semiconductor technology that
is used for implementing digital ANN. Previous
FPGA/ASIC architectures already achieved a
throughput of several hundreds of Gop/s. These
architectures are easily scalable to get a higher
performance by leveraging parallelism.
However, one problem that most of these designs
are still faced with is: ASIC solution are usually
suffering from a lack of the flexibility to be
reconfigured for the various parameters of ANN.
With deep ANN comprising many layers with
different characteristics, it is impossible to use
heterogeneous architectures for the different
layers. In this paper, we propose an
implementation of ANN on the coarse-grained
reconfigurable architecture.

2.3 Reconfigurable Hardware

The reconfigurable hardware is generally
classified into the Field Programmable Gate
Array (FPGA) and coarse-grained dynamically
reconfigurable architecture (CGRA). A typical

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

4

i1

i2

in

o1

o2

om

Input layer Hidden layer
#1

Hidden layer
#k

Output layer

 Σ f
yk

iak
i

Wk
i,1

Wk
i,2

Wk
i,3

Wk
i,r

xk
1

xk
2

xk
r bk

i

1

Figure 2. An artificial neuron and an ANN model.

example of the FPGA-based reconfigurable SoC
is Xilinx Zynq-7000 devices [21]. Generally,
FPGAs support the fine-grained reconfigurable
fabric that can operate and be configured at bit
level. FPGAs are extremely flexible due to their
higher reconfigurable capability. However, the
FPGAs consume more power and have more
delay and area overhead due to greater quantity
of routing required per configuration [22]. This
limits the capability to apply FPGA to embedded
applications. To overcome the limitation of the
FPGA-like fine-grained reconfigurable devices,
coarse-grained reconfigurable architectures
(CGRAs) focus on data processing and
configuration at bit-group with complex
functional blocks (e.g. Arithmetic Logic unit
(ALU), multiplier, etc.). These architectures are
often designed for a specific domain of
applications. CGRAs achieve a good trade-off
between performance, flexibility, and power
consumption.
Many CGRAs have been proposed with the
unique features that is dedicated to a specific
domain of applications. Typical two of them are
REMUS[23] and ADRES[24]. ADRES
(Architecture for Dynamically Reconfigurable
Embedded System) is a reconfigurable system
template, which tightly couples a VLIW (Very
Long Instruction Word) processor and a coarse-
grained reconfigurable matrix into a single
architecture. Here, coarse-grained
reconfigurable matrix plays a role of a co-
processor in the VLIW processor. Coupling
CGRA directly with the processor increases the
performance at the expense of decrease in

flexibility because the CGRA architecture has to
be compatible with the given processor
architecture. By contrast, in the REMUS-II
(REconfigurable MUltimedia System version II)
architecture - a coarse-grained dynamically
reconfigurable heterogeneous computing SoC
for multimedia and communication baseband
processing, the CGRA is implemented as an IP
core that is attached to the system bus of the
processor. The REMUS-II consists of one or two
coarse-grained dynamically reconfigurable
processing units (RPUs) and an array of RISC
processors (µPU) coupled with a host ARM
processor via the AHB bus. Designing the
CGRA as an IP core in the REMUS makes it
easy to reuse design in the various systems with
no dependence on any particular processor
architecture.

In [10], we developed and modeled a coarse-
grained dynamically reconfigurable architecture,
called MUSRA (Multimedia Specific
Reconfigurable Architecture). The MUSRA is a
high-performance, flexible platform for a
domain of applications in multimedia
processing. In contrast with FPGAs, the
MUSRA aims at reconfiguring and manipulating
on the data at word-level. The MUSRA was
proposed to exploit high data-level parallelism
(DLP), instruction-level parallelism (ILP) and
TLP (Task Level Parallelism) of the
computation-intensive loops of an application.
The MUSRA also supports the capability of
dynamic reconfiguration by enabling the
hardware fabrics to be reconfigured into
different functions even if the system is working.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 5

3. Proposed Architecture of CGRC Platform

3.1 Coarse-Grained Reconfigurable
Computing Platform

In this paper, we developed a high-
performance Coarse-Grained Reconfigurable
Computing Platform (CGRC) for experimentally
evaluating and validating the applications of
multimedia processing. The platform’s hardware
is a system-on-chip based on the MUSRA
(Multimedia Specified coarse-grained
Reconfigurable Architecture) [10], the ARM
processor, and the other IP cores from the
Xilinx’s library as shown in Figure 3. The CGRC
platform was synthesized and implemented on
the Xilinx ZCU106 Evaluation Kit [25]. The
ARM processor functions as the central
processing unit (CPU) that takes charge of
managing and scheduling all activities of the
system. The external memory is used for
communicating data between tasks on the CPU
and tasks on the MUSRA. Cooperation between
MUSRA, CPU, and DMACs (Direct Memory
Access Controllers) are synchronized by the
interrupt mechanism. When the MUSRA
finishes the assigned task, it generates an
interrupt via IRQC (Interrupt Request
Controller) unit to signal the CPU and returns
bus control to the CPU. In order to run on the
platform, the C-program of the application is
compiled and loaded into the Instruction
Memory of the platform. Meanwhile, the data is
copied into the Data Memory.

Execution and data-flow of the MUSRA are
reconfigured dynamically under controlling of
the CPU. After resetting, the operation of the
system is briefly described as follows:

① Context Memory Initialization: CPU
writes the necessary control parameters
and then grant bus control to CDMAC in
Context Memory. CDMAC will copy a
context from the instruction memory to
context memory. At the same time, CPU
executes another function.

② Context Parser Initialization: CPU
writes the configuration words to the
context parser.

③ RCA Configuration and Data Memory
Initialization: After configured, parser

reads one proper context from the
context memory, decode it and configure
RCA. Concurrently, CPU initializes
DDMAC that will copy data from the
external data memory to the internal data
memory. DDMAC is also used for
writing the result back to the external
data memory.

④ RCA Execution: RCA performs a
certain task right after it has been
configured.

Context
Parser

Context
Memory

Input DMA

Output DMA

Data
Memory

IN_FIFO

OUT_FIFO

GRF

 AXI/CGRA Interface

1
2

3

4

3

RCA

 AXI BUS

ARMInstruction
Memory

Data
MemoryIRQC

CDMAC

DDMAC

MUSRA

Figure 3. Coarse-Grained Reconfigurable Computing
Platform (CGRC).

3.2 MUSRA architecture

The MUSRA [10] is composed of a
Reconfigurable Computing Array (RCAs),
Input/Output FIFOs, Global Register File
(GRF), Data/Context memory subsystems, and
DMA (Direct Memory Access) controllers, etc.
Data/Context memory subsystems consist of
storage blocks and DMA controllers (i.e.
CDMAC and DDMAC). The RCA is an array of
8×8 RCs (Reconfigurable Cells) that can be
configured partially to implement computation-
intensive tasks. The input and output FIFOs are
the I/O buffers between the data memory and the
RCA. Each RC can get the input data from the
input FIFO or/and GRF, and store the results
back to the output FIFO. These FIFOs are all
512-bit in width and 8-row in depth, and can

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

6

load/store sixty-four bytes or thirty-two 16-bit
words per cycle. Especially, the input FIFO can
broadcast data to every RC that has been
configured to receive the data from the input
FIFO. This mechanism aims at exploiting the
reusable data between several iterations. The
interconnection between two neighboring rows
of RCs is implemented by a crossbar switch.
Through the crossbar switch, an RC can get
results that come from an arbitrary RC in the
above row of it. The Parser decodes the
configuration information that has been read
from the Context Memory, and then generates
the control signals that ensure the execution of
RCA accurately and automatically.

DATAPATH

MUX MUX

LOR

MUX

A B

C

M
U

X

In
pu

tF
IF

O

PR
E_

LI
N

E

In
pu

tF
IF

O

PR
E_

LI
N

E

In
pu

tF
IF

O

OUT_REG

LOR_input

LOR_output

PE_OUT

PR
E_

LI
N

E

LOR_OUT

PE

CLK

RESETN
A_IN B_IN

C
_I

NConfig._Addr

Config. Data

ENABLE

G
R

Fs

Cnfig.
REGs

Layer
1

Config.
REGs

Layer
0Config._ENB

Figure 4. RC architecture.

RC (Figure 4) is the basic processing unit of
RCA. Each RC includes a data-path that can
execute signed/unsigned fixed-point 8/16-bit
operations with two/three source operands, such
as arithmetic and logical operations, multiplier,
and multimedia application-specific operations
(e.g. barrel shift, shift and round, absolute

differences, etc.). Each RC also includes a local
register called LOR. This register can be used
either to adjust operating cycles of the pipeline
or to store coefficients when a loop is mapped
onto the RCA. A set of configuration registers,
which stores configuration information for the
RC, is called a layer. Each RC contains two
layers that can operate in the ping-pong fashion
to reduce the configuration time.

The configuration information for the
MUSRA is organized into the packets called
context. The context specifies a particular
operation of the RCA core (i.e. the operation of
each RC, the interconnection between RCs, the
input source, output location, etc.) as well as the
control parameters that control the operation of
the RCA core. The total length of a context is
128 32-bit words. An application is composed of
one or more contexts that are stored into the
context memory of the MUSRA.

The MUSRA architecture is basically the
such-loop-oriented one. By mapping the body of
the kernel loop onto the RCA, the RCA just
needs configuring one time for executing
multiple times, therefore it can improve the
efficiency of the application execution.
Executing model of the RCA is the pipelined
multi-instruction-multi-data (MIMD) model. In
this model, each RC can be configured
separately to a certain operation, and each row of
RCs corresponds to a stage of a pipeline.
Multiple iterations of a loop are possible to
execute simultaneously in the pipeline.

+

&

-

x y

×
CLK1

CLK2

CLK3

CLK4

CLK5

LOAD -
EXECUTION

STORE-
EXECUTION

z

v

InputFIFO

x y
z

LO
AD NI = 2

A
CLK6 w

OutputFIFO

v
w

0
1

Output #1

Output #2
NO = 2

Data broadcasted
directly to every RC

Input #1

Input #2

35

t

t

EXECUTION

(a)

PE

LORPE

PE

PE TD

PE

PE

PE LOR

PE TD

x y

×

-

+

&

Stage1

 Stage2

Stage3

Stage4

z

LOR

LOR

LOR

LOR

PE TD PE TDAStage4

w

t

GRF(0)

OUT_FIFO(0)

OUT_FIFO(0)

v

(b)

Figure 5. (a) DFG representation of a simple loop body, and (b) its map onto RCA.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 7

For purpose of mapping, a kernel loop is first
analyzed and loop transformed (e.g. loop
unrolling, loop pipelining, loop blocking, etc.) in
order to expose inherent parallelism and data
locality that are then exploited to maximize the
computation performance on the target
architecture. Next, the body of the loop is
represented by data-flow graphs (DFGs) as
shown in Figure 5. Thereafter, DFGs are mapped
onto RCA by generating configuration
information, which relates to binding nodes to
the RCs and edges to the interconnections.
Finally, these DFGs are scheduled in order to
execute automatically on RCA by generating the
corresponding control parameters for the
CGRA’s controller. Once configured for a
certain loop, RCA operates as the hardware
dedicated for this loop. When all iterations of
loop have completed, this loop is removed from
the RCA, and the other loops are mapped onto
the RCA.

4. Implementation of Face Recognition
System

4.1. Face recognition system

Face Database

Testing SetTraining Set

Eigenspace
Computation

Projection of
Image

Feature Vector

Projection of
Image

Feature Vector

Training ANN

Set of weights
and bias ANN

PCA
(Feature

Extraction)

Classification

Training Inference

Decision Making

Figure 6. Face recognition based on the combination
between ANN and PCA.

The face recognition system is based on the
combination of PCA and an artificial neural
network called the PCA-ANN system. The PCA-
ANN face recognition system is divided into 3
processes: feature extraction, training, and
recognition as shown in Figure 6. In the feature
extraction process, an eigenfaces space is
established from the training images using the
PCA feature extraction method. The ANN
requires the training process where the weights
connecting the neurons in consecutive layers are
calculated based on the training images and
target classes. After generating the eigenvectors
using PCA methods, the projection of face
images in the training set is calculated and then
used to train the neural network on how to
classify images for each person. In the
recognition process, each input face image in the
testing set is also projected to the same
eigenfaces space and classified by the trained
ANN.

4.2. Hardware/Software Partition

Instead of implementing the system entirely
by hardware or software, this paper proposes a
system-level model for the realization of the
PCA-ANN face recognition system, including
hardware and software tasks, as shown in Figure
7.

In PCA feature extraction, calculating
eigenvalues and eigenvectors for eigenfaces
space requires very complicated algebraic
methods like QR or Jacobi [12]. The hardware
architecture for implementing a PCA algorithm
is often very complex. Because of the
complexity of the PCA algorithm, in the scope
of this paper it will be implemented as software
running on the CPU.

In ANN-based classification, two aspects
must be considered, including training and
inference. Training still requires high-
performance computing, high-precision
arithmetic, and programmability to support
different deep learning models. The training
process is time-consuming and involves a lot of
power consumption. Therefore, it is usually done
offline on the server's GPU. In particular, the
training is performed in software using
MATLAB running on the server. Matlab
program includes one function to calculate the

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

8

ORL Face DatabaseTraining Set Testing Set

Matlab code runs on PC
Feature_extraction()
//represents the image as
a vector
//calculates average
vector
//calulates eigenvectors
//Projects the training set
on eigenspace
Training_ANN()
//calculates weights and
bias

PCA on
CPU

Mem_3.txt

Mem_2.txt

w_hid.txt

w_out.txt

b_hid.txt

b_out.txt

ANN on
MUSRA

Matlab code runs on PC
Preprocess()
// convert image to 8-bit
gray one

Mem_1.txt

Recognition
Decision

CGRC

Figure 7. Hardware/Software partition.

eigenvectors using the built-in functions and
another for training the neural network. The
results are the average vector, the eigenvectors,
the weights and biases of the neural network
after being trained. These parameters are then
saved in text files (.txt) and will be written to the
memory on the CGRC platform while the system
is operating.

On the other side, the inference is performed
by both software and hardware on the high-
performance CGRC platform. Here, PCA feature
extraction is performed by the CGRC platform’s
CPU, and ANN is mapped onto the CGRC
platform’s MUSRA. The face image, which is
considered for recognition, is firstly pre-
processed by a MATLAB program on the server,
then passed through the PCA module to extract
the features, and finally sent to the ANN module
for making recognition decision.

4.3 Mapping ANN onto MUSRA

Let’s examine a generic ANN that has L
layers with one input layer, one output layer, and
L-2 hidden layers. At the layer kth, the input
vector Xk is forwardly transferred through the
neurons to generate an output vector Yk that then
becomes the input vector Xk+1 for the next layer
(k+1)th. The pseudo-code in Algorithm 1
describes ANN computation.

Algorithm 1. ANN Computation

1
2
3
4
5
6
7

X1
 = input

For k in 1 to L – 1 loop
 Ak = XkWk
 Yk = f(Ak)
 Xk+1 = Yk
End For
Output = XL

Where, input = (i1, i2, … in) is the input vector,

and output = (o1, o2, … om) is the output vector.
Let’s set Nk is the number of neurons in

kth layer, where k = 1, 2, …, L-1. Since the output
of each layer forms the input of the next layer,
therefore, the input vector of the kth layer is 𝑋𝑋𝑖𝑖 =
[𝑥𝑥0𝑖𝑖 , 𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑁𝑁𝑘𝑘−1−1

𝑖𝑖] and its dimension is 1×Nk-

1. The output vector of the kth layer is 𝑌𝑌𝑖𝑖 =
[𝑦𝑦0𝑖𝑖 ,𝑦𝑦1𝑖𝑖 , … ,𝑦𝑦𝑁𝑁𝑘𝑘−1

𝑖𝑖], which has 1×Nk elements.
Wk is the weight matrix at the layer kth.

𝑊𝑊𝑖𝑖 = �
𝑤𝑤0,0
𝑖𝑖 ⋯ 𝑤𝑤𝑁𝑁𝑘𝑘−1,0

𝑖𝑖

⋮ ⋱ ⋮
𝑤𝑤0,𝑁𝑁𝑘𝑘−1−1
𝑖𝑖 ⋯ 𝑤𝑤𝑁𝑁𝑘𝑘−1,𝑁𝑁𝑘𝑘−1−1

𝑖𝑖
�

Algorithm 1 can be expanded to some loops,
as shown in Algorithm 2.

Algorithm 2. ANN Computation

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14

X1
 = input

For k in 1 to L – 1 loop
// loop_k runs through all layers

For i = 0 to Nk – 1 loop
//loop_i runs through all neurons

 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖
For j = 0 to Nk-1 – 1 loop //loop_j
 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖,𝑖𝑖

𝑖𝑖
 End for j

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖) //activation function
 𝑋𝑋𝑖𝑖𝑖𝑖+1 = 𝑌𝑌𝑖𝑖𝑖𝑖

 End for i
End For k
Output = XL

The loop loop_j (line 7 to line 9 in
Algorithm 2) is unrolled and implemented by the
adder tree with the output that is the
accumulation of the products of the inputs and
weights as shown in Figure 8. The structure of
adder-tree for different layers varies in the
number of inputs, weights, and bias.

X

X[
1]

W
[i]

[1
]

X

X[
2]

W
[i]

[2
]

+

X

X[
r-

1]
W

[i]
[r

-1
]

X

X[
r]

W
[i]

[r
]

+

+ +

+

+

b

a[
i]

Figure 8. DFG of the loop loop_j.

The sum of the weighted inputs will be fed
to the activation function to calculate the output
value at each neuron (line 10 in Algorithm 2).
The activation function used here is the Sigmoid
function, as shown in expression (7):

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 (7)
There some different methods for the

implementation of the sigmoid activation
function, including Look-up table (LUT), Taylor
transformation, piecewise linear approximation
[9]. The method of Taylor transformation
requires many multiplications. The LUT method
uses a large memory to store the table of possible
values of the target function. As a result, both of
these methods are not realizable for the
implementation on CGRA. Therefore, in this
paper, we adopted the method of a piecewise
linear approximation to perform the sigmoid
activation function. The chosen approximation
method has a great influence on the accuracy and
performance of the neural network.

For x in the range [0, +∞), the sigmoid
function is approximated by expression:
𝑓𝑓̅(𝑥𝑥)

= � 1, 𝑥𝑥 ≥ 4
−0.03125 ∗ 𝑥𝑥2 + 0.25 ∗ 𝑥𝑥 + 0.5, 0 ≤ 𝑥𝑥 < 4

(8)

For negative values of x, the sigmoid
function can be calculated using the expression:

𝑓𝑓̅(𝑥𝑥) = 1 − 𝑓𝑓(̅−𝑥𝑥) (9)

×

a x

+

b

×

+

c

1 0

―

0

x

-x

1 0
1

X>4?

LOR

LOR

LOR

X<0?

―

1 F(x)

1-f(x)

LOR

1 0

F(x)

LOR

LOR

LOR

LOR

LOR

LOR

Figure 9. DFG of activation function.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

10

Figure 9 shows a DFG for implementing the
sigmoid activation function, where, a = -
0.03125, b = 0.25, and c = 0.5. Because of the
reconfigurability of MUSRA, the activation
function can be easily configured to different
ones for the hidden layers and the output layer.

5. Experiment and Evaluation

This section presents the validation of the
PCA-ANN face recognition system on the
CGRC platform. The performance of our
implementation is compared with the other
works.

5.1 Validation script

The face database used for the experiment is
the image set from the AT&T ORL (Olivetti
Research Laboratory). This database consists of
400 images of 40 people, each with 10 different
images. Each image has dimensions of 80 × 110
pixels. The face database are divided into
training set and testing set. After PCA feature
extraction, each face image is represented by a
feature vector of size 1×30.

The neural network consists of three layers
and is configured as follows:

- Input Layer: includes 30 neurons
corresponding to the number of elements
of the feature vector of size 1×30.

- Hidden Layer: consists of 120 neurons,
each has 30 inputs, 30 weights and one
bias.

- Output Layer: is made of three neurons
corresponding to three outputs. Each of
neuron has 120 inputs, 120 weights and
one bias.

- Number of training times: 10000 times.
- Learning coefficient: 0.01
- Permissible error: 10-5

5.2 Experimental Results

1) Sigmoid function and its approximation
Figure 10 shows the chart of Sigmoid

function and its approximation by (8) and (9) in
the range (-8, 8). Where, the orange line depicts
the sigmoid function, and the blue line depicts
the sigmoid function’s approximation.
Experiment estimation shows that the average
error and the maximum error of approximation
of the sigmoid function are εaverage = 0.00774 và
εmaximum = 0.02163.

2) Functional verification of face recognition
system
To functionally verify the face recognition

system, the training set and testing set are
extracted from the database as follows. First,
choose three image sets of three people in the
ORL database to build the training set. Next,
take three images of these three people, each
person one image, and flip that image to create
the testing set. The purpose of flipping the image
is to make it different from the image in the
training set. The training set and testing set is
shown in Figure 11 and Figure 12, respectively.

Figure 10. Chart of Sigmoid function and its approximation.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 11

Figure 11. Training set including images of three first persons in the ORL database.

(a) images in the training set

(b) image not in the training set

Figure 12.Testing set.

1st Person Image

2nd Person Image

Kth Person Image

Mst Person Image

PCA Neural Network
ANN

0
0

1

0

Kth
Person

Make
Decision

Feature
Vector

CPU CGRA CPU

Figure 13. Inference Processing.

Figure 14. Simulation results for the first image in the training set.

Figure 15. Simulation results for the second image in the training set.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

12

Figure 16. Simulation results for the third image in the training set.

Figure 17. Simulation results for the image not in the training set.

Testing images are represented in feature
vectors before feeding to ANN and the ANN’s
outputs are compared with the given threshold
by CPU to make a recognition decision as shown
in Figure 13. The simulation results of ANN are
shown in Figure 14, Figure 15, and Figure 16.

Similarly, take an image that is not included
in the training set as input to face recognition
system. Simulation results are shown in Figure
17.

The computation result of ANN is
represented by 16-bit fixed-point numbers where
6 bits represent the integer part, and another 10
bits represent the fractional part. This result is
displayed on the port output in the waveform
window while simulating. For easy viewing, this
result is left-shifted 10 bits (i.e. multiplied by
210) to convert to 16-bit integers, as shown in the
figures Figure 14 - Figure 17 above. The value at
the output is compared to the threshold by the
CPU to determine which face is detected. The
thresholds chosen for comparison are 0.9 and 0.1
(values greater than 0.9 are determined to be 1,
less than 0.1 is decided as 0). To compare with
the simulation results, these threshold values are
also left-shifted 10 bits to become values 921
and 102, respectively. The rules for making
identification decisions are shown in Table 1.

Based on the rules in Table 1 and the
simulation results in figures Figure 14 - Figure

17, we get the results of identification, as shown
in Table 2. This result proves that the system is
functional correctness as expected.
Table 1. The Rule for making decision

OUPUT Decision Identification
results

output(2) > 921
output(1) < 102
output(0) < 102

[1; 0; 0] First Person

output(2) < 102
output(1) > 921
output(0) < 102

[0; 1; 0] Second Person

output(2) < 102
output(1) < 102
output(0) > 921

[0; 0; 1] Third Person

Others [0; 0; 0] Stranger

3) Performance Analysis of face recognition
system
To evaluate the performance of the system,

we use the training and testing set which are built
as follows. We use 30 images of the first three
people in the ORL database as a training set. The
testing set has 400 images, including 30 flipped
images of three selected people (to make the
difference from the training images) and 370
images of the remaining 37 people in the ORL
database.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 13

Table 2. Identification results

 First Image Second image Third Image Fourth image

Displayed result (16-bit) [1003; 3; 0] [69; 983; 0] [1; 0; 1024] [43; 387; 0]

*Real result [0.9794; 0.0029; 0] [0.0673; 0.9599; 0] [0.0009; 0; 1] [0.0419; 0.3779; 0]

Decision [1; 0; 0] [0; 1; 0] [0; 0; 1] [0; 0; 0]

Identification results First person Seconf person Third person Stranger

*Real result = Displayed result/𝟐𝟐𝟏𝟏𝟏𝟏.

Table 3. Performance Evaluation.

 Number of images Correct Identification Wrong Identification

First person 10 10 0

Second person 10 8 2

Third persom 10 9 1

Stranger 370 332 38

Total 400 359 41

Ratio 90.5% 9.5%

The validation results are recorded in Table
3. Here, “strangers” are those who are not in the
training set, and "acquaintances” are those who
are in the training set. The result is considered as
“Correct Identification” (a) when inputting the
image of an “acquaintance”, the system correctly
identifies which of the three selected persons the
image is; or (b) when inputting an image of a
stranger, the system returns "stranger". On the
contrary, the result is considered as "Wrong
identification" when the system mistakenly
recognizes "stranger" as "acquaintance",
"acquaintance" as "stranger", or confuses an
acquaintance with each other.
Table 4. Performance Comparison

PCA-ANN PCA

Our [13] [14] [13] [14]

90.5% 85% 88% 78% 86%

Evaluation results show that the system has
quite high recognition efficiency, achieving
correct recognition rate of 90.5%. The
experimental results are compared with the
results of other works in Table 4.

Compared to the results of other works using
the same method, our system achieved 5.5% and
2. 5% higher correct recognition rate than [13]
and [14], respectively. Compared with using
only PCA method for identification, the
recognition results when using the combination
of two methods are 12.5% and 4.5% more
accurate than [13] and [14], respectively.

Table 5 shows the change in recognition
efficiency when changing the number of hidden
layer neurons. When the number of hidden layer
neurons increased from 120 to 150, the
difference in performance was very small.
However, when the number of hidden layer
neurons is reduced, especially when it is reduced
to 30, the performance is greatly reduced,
showing that the number of hidden layer neurons

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9

14

Table 5. Recognition performance vs. number of hidden layer neurons.

Number of neurons 150 120 90 60 30

Performance 89.75% 90.5% 88.75% 85.25% 80.5%

has a large impact on the identification
performance of the neural network. This can be
explained as follows. When the number of
hidden layer neurons is too small, the network
cannot learn deeply enough, resulting in poor
recognition performance. Conversely,
increasing the number of hidden layer neurons
will make the network model more complicated
and the possibility of "over-matching" becomes
higher. "Over-matching" occurs when the
trained network matches with the training
samples so much, therefore it answers exactly
what has been learned, and does not care what is
not learned.

6. Conclusion

 In this paper, we presented our work on the
proposal, implementation and evaluation of PCA
and ANN-based face recognition system. The
feature vectors obtained through the PCA
method are used as the input for training and
testing the ANN. The combination of PCA
method and neural network is to improve the
system's identification efficiency. The face
recognition system has been hardware/software
co-designed and implemented on a coarse-
grained reconfigurable computing platform. We
analyzed the source code of the ANN algorithm
and proposed the optimization solution to
explore its multi-level parallelism in order to
improve the performance of the application on
the CGRC platform. Our implementation has
been simulated and validated by the CGRC
platform of the MUSRA on the Xilinx
ZCU106 Evaluation Kit. The verification
process has confirmed that the system works
correctly in face recognition. The correct
recognition rate is approximately 90.5%. The
proposed system gets an improvement on the
recognition rates over classical PCA face
recognition system. In addition, the recognition
performance of our system is higher than the

PCA-ANN system proposed by other works. It
is also easy to reconfigure the MUSRA to
support different ANN configuration (for
example, number of layer, number of neurons
per layer, activation function, etc.).

Our method on CGRC platform could be
extended to the algorithm of the other
applications. In the future work, some aspects
such as hardware/software partitioning, DFG
extracting, and scheduling, etc., will continue to
be optimized according to the architecture of the
MUSRA to achieve a better performance.

Acknowledgement

References

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J.
Long, R. Girshick, S. Guadarrama, and T.
Darrell, “Caffe,” in the ACM International
Conference on Multimedia - MM ’14, 2014, pp.
675–678.

[2] R. Collobert, “Torch7: A matlab-like
environment for machine learning,” BigLearn,
NIPS Workshop, 2011.

[3] S. Tokui, K. Oono, S. Hido, C. S. A. S. Mateo,
and J. Clayton, “Chainer: a Next-Generation
Open Source Framework for Deep Learning,”
learningsys.org.

[4] Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S.
(2017). Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of
the IEEE, 105(12), 2295-2329.

[5] Tsmots, I., Skorokhoda, O., & Rabyk, V. (2019).
Hardware Implementation of Sigmoid
Activation Functions using FPGA. In 2019 IEEE
15th International Conference on the Experience
of Designing and Application of CAD Systems
(CADSM) (pp. 34-38). IEEE.

N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 15

[6] V. Nair and G. E. Hinton, “Rectified linear units
improve restricted boltzmann machines,” in
Proc. ICML, 2010, pp. 807–814.

[7] Istrate, R.; Malossi, A.C.I.; Bekas, C.;
Nikolopoulos, D.S. Incremental Training of
Deep Convolutional Neural Networks. arXiv
2018, arXiv:1803.10232.

[8] Guo, S.; Wang, L.; Chen, B.; Dou, Q.; Tang, Y.;
Li, Z. FixCaffe: Training CNN with Low
Precision Arithmetic Operations by Fixed Point
Caffe. In Proceedings of the APPT 2017, Oslo,
Norway, 14–15 September 2017.

[9] Beiu, V., Peperstraete, J. A., Vandewalle, J., &
Lauwereins, R. (1994). Closse approximations of
sigmoid functions by sum of step for vlsi
implementation of neural networks. Sci. Ann.
Cuza Univ., 3, 5-34.

[10] Nguyen, H. K., & Phan, M. T. (2017,
November). RTL design of a dynamically
reconfigurable cell array for multimedia
processing. In 2017 4th NAFOSTED
Conference on Information and Computer
Science (pp. 189-194). IEEE.

[11] B.-J. Oh, “Face recognition by using neural
network classifiers based on PCA and LDA,” in
2005 IEEE International Conference on Systems,
Man and Cybernetics, 2005, vol. 2, pp. 1699-
1703 Vol. 2.

[12] Golub, Gene H., and Henk A. Van der Vorst.
"Eigenvalue computation in the 20th
century", Journal of Computational and Applied
Mathematics 123.1-2 (2000): 35-65.

[13] Alaa Eleyan, and Hasan Demirel. Pca and lda
based neural networks for human face
recognition. Vol. 558. INTECH Open Access
Publisher, 2007.

[14] MP. Rajath Kumar, and K. M. Aishwarya.
"Artificial neural networks for face recognition
using PCA and BPNN." TENCON 2015-2015
IEEE Region 10 Conference. IEEE, 2015.

[15] Abdi, Hervé, and Lynne J. Williams. "Principal
component analysis." Wiley interdisciplinary
reviews: computational statistics 2.4 (2010):
433-459.

[16] P Valarmathie, MV Srinath, K Dinakaran, An
increased performance of clustering high
dimensional data through dimensionality
reduction technique. Theoretical and Applied
Information Technology 5(6), 731–733 (2005).

[17] A.A.S. Ali, A. Amira, F. Bensaali, M.
Benammar, Hardware PCA for gas identification
systems using high level synthesis on the Zynq

SoC, in IEEE International Conference on
Electronics, Circuits, and Systems, (2013), pp.
707–710.

[18] T.C. Chen,W.Liu,L.G. Chen,VLSI architecture
of leading eigenvector generation for on-chip
principal component analysis spike sorting
system, in International Conference of the IEEE
Engineering in Medicine and Biology Society,
(2008), pp. 3192–3195.

[19] A. Das, S. Misra, S. Joshi, J. Zambreno, G.
Memik, A. Choudhary, An efficient FPGA
implementation of principle component analysis
based network intrusion detection system, in
Proceedings of the Conference on Design,
Automation and Test in Europe, (2008), pp.
1160–1165.

[20] 11. T. Karnthak P.Kumhom, A hardware
implementation of PCAbased-on the networks-
on-chip paradigm, in International Symposium
on Communications and Information
Technologies, (2012), pp. 834–839

[21] http://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.htm.

[22] G. Theodoridis, D. Soudris and S. Vassiliadis, “A
Survey of Coarse-Grain Reconfigurable
Architectures and Cad Tools Basic Definitions,
Critical Design Issues and Existing Coarse-grain
Reconfigurable Systems”, Springer, 2008.

[23] M. Zhu, L. Liu, S. Yin, et al., "A Cycle-Accurate
Simulator for a Reconfigurable Multi-Media
System," IEICE Transactions on Information and
Systems, Vol. 93, pp. 3202-3210, 2010.

[24] Frank Bouwens, Mladen Berekovic, Bjorn De
Sutter, and Georgi Gaydadjiev: “Architecture
Enhancements for the ADRES Coarse-rained
Reconfigurable Array” HiPEAC 2008, LNCS
4917, pp. 66-81, 2008.

[25] https://www.xilinx.com/products/boards-and-
kits/zcu106.html

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.htm

	Hung K. Nguyen*, Xuan-Tu Tran
	5.2 Experimental Results
	1) Sigmoid function and its approximation
	2) Functional verification of face recognition system
	3) Performance Analysis of face recognition system

