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Abstract 

In this paper, a PCA and ANN-based face recognition system is proposed and implemented on a Coarse Grain 
Reconfigurable Computing (CGRC) platform. Our work is quite distinguished from previous ones in two aspects. 
First, a new hardware-software co-design method is proposed, and the whole face recognition system is divided 
into several parallel tasks implemented on both the Coarse-Grained Reconfigurable Architecture (CGRA) and the 
General-Purpose Processor (GPP). Second, we analyzed the source code of the ANN algorithm and proposed the 
optimization solution to explore its multi-level parallelism to improve the performance of the application on the 
CGRC platform. The computation tasks of ANN are dynamically mapped onto CGRA only when needed, and it's 
quite different from traditional Field Programmable Gate Array (FPGA) methods in which all the tasks are 
implemented statically. Implementation results show that our system works correctly in face recognition with a 
correct recognition rate of approximately 90.5%. To the best of our knowledge, this work is the first 
implementation of PCA and ANN-based face recognition system on a dynamically CGRC platform presented in 
the literature. 
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1. Introduction* 

Face recognition is one of the most common 
biometric recognition techniques that attract 
huge attention of many researchers in the field of 
computer vision since the 1980s. Today, face 
recognition has proven its important role and is 
widely used in many areas of life. Some 
important applications of face recognition are 
automatic criminal record checking, integration 
with surveillance cameras or ATM systems to 
increase security, online payment, tracking, and 
prediction of strange diseases in medicine. 

The face recognition system gets an image, a 
series of photos, or a video as input and then 
processes them to identify whether a person is 

________ 
*Corresponding author. E-mail.: kiemhung@vnu.edu.vn 

known or not. The system includes two phases 
which are the feature extraction and the 
classification as shown in  

Figure 1. 

Feature 
Extraction

Face Image
Classification

Decision
Feature 
Vector

 
Figure 1. Processes in face recognition. 

The problem we have to deal with when 
implementing a face recognition system is that 
the data set has a very large number of 
dimensionality resulting in a large amount of 
computation which takes a lot of processing 
time. Therefore, a significant improvement 
would be achieved if we could reduce the 

mailto:kiemhung@vnu.edu.vn


N.K. Hung et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 31, No. 3 (2020) 1-9 

 

2 

dimensionality of data by mapping them to 
another space with a smaller number of 
dimensionality [16]. Especially, dimensionality 
reduction is indispensable for real-time face 
recognition system while processing high-
resolution images. Feature extraction is a process 
to reduce the dimensionality of a set of raw data 
to more manageable groups for processing. 
Feature extraction selects and/or combines 
variables into features, effectively reducing the 
amount of data that must be processed, while still 
accurately and completely describing the 
original data set. The principal components 
analysis (PCA) [15] method is the appearance-
based technique used widely for reducing 
dimensionality and achieved a great 
performance in face recognition. 

Classification is a process in which ideas and 
objects are recognized, differentiated, and 
understood based on the extracted features by an 
appropriate classifier. The artificial neural 
networks (ANNs) are one of the most successful 
classification systems that can be trained to 
perform complex functions in various face 
recognition systems. State-of-the-art ANNs are 
demonstrating high performance and flexibility 
in a wide range of applications including video 
surveillance, face recognition, and mobile robot 
vision, etc.  

Face recognition using PCA in combination 
with neural networks is a method to achieve high 
recognition efficiency by promoting the 
advantages of PCA and neural networks [11]. In 
this paper, a face recognition system based on 
the combination of PCA and neural network is 
implemented on the coarse-grained 
reconfigurable computing platform.  The 
proposed system offers an improvement in the 
recognition performance over the conventional 
PCA face recognition system. The system 
operates stably and has high adaptability when 
the data input has a large variation. The system 
has been implemented and validated on the 
coarse-grained reconfigurable computing 
platform built around the CGRA called MUSRA 
that was proposed in our previous work [10]. 

The rest of this paper is organized as follows. 
Section 2 reviews some related works. In Section 
3, the proposal of the MUSRA-based coarse-
grained reconfigurable computing (CGRC) 

platform is introduced. Section 4 presents the 
implementation of the face recognition system 
on the CGRC platform. Evaluation of the 
proposed system in comparison with the related 
works are given in Section 5. Finally, some 
conclusions are drawn in Section 6. 

2. Related works 

2.1 PCA for Face Recognition 

Principal Component Analysis (PCA) is a 
standard method for dimensionality reduction 
and feature extraction. It uses a mathematical 
method called orthogonal transformation to 
transform a large number of correlated variables 
into a smaller set of uncorrelated variables so 
that the newly generated variables are linear 
combinations of old variables [15]. 

In this paper, the PCA method is used to 
reduce the number of dimensionality of the 
image, helping to reduce the computation 
complexity of the training or identification 
process in the neural network later. The steps to 
perform PCA are as follows: 

Step 1: Let’s establish the training set of face 
images be S = {Γ1, Γ2,…, ΓM}. Each image in 2-
dimension with size W×H is converted into a 1-
dimension vector of W×H elements. 

Step 2: Calculate the average image Ψ: 

Ψ =  
1
𝑀𝑀
�Γ𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (1) 

Step 3: Calculate the deviation of input 
images from average image: 

Φ𝑖𝑖 = Γ𝑖𝑖 − Ψ  (2) 
Step 4: Calculate the covariance matrix C: 

C =  1
𝑀𝑀
∑ Φ𝑖𝑖Φ𝑖𝑖

𝑇𝑇𝑀𝑀
𝑖𝑖=1 = 𝐴𝐴.𝐴𝐴𝑇𝑇  (3) 

 where A = [Φ𝟏𝟏, Φ2, … , Φ𝑴𝑴] 
Step 5: Because matrix C is too large in size 

(N×N), therefore, to find the eigenvector ui of C 
we find the eigenvector and the eigenvalue of the 
matrix L: 

𝐿𝐿 = 𝐴𝐴𝑇𝑇𝐴𝐴  với 𝐿𝐿𝑚𝑚,𝑛𝑛 = Φ𝑚𝑚
𝑇𝑇 Φ𝑛𝑛  (4) 

The size of the matrix L is M×M << N×N, so 
calculating eigenvector is faster.  

Step 6: Let’s set vi as the eigenvector of L. 
The eigenvector of C is: 

𝑢𝑢𝑖𝑖 =  ∑ v𝑖𝑖𝑖𝑖Φ𝑖𝑖
𝑀𝑀
𝑖𝑖=1  , i =1,𝑀𝑀������ (5) 
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Because vectors ui are the eigenvectors of the 
covariance matrix corresponding to the original 
face images, so they are referred as eigenfaces. 

Step 7: After finding the eigenfaces, the 
images in the database will be projected onto 
these eigenfaces space to create the feature 
vectors. These vectors are much smaller than the 
image size but still carries the most key 
information contained in the image.  

There is much research 
([13][14][15][16][18][19][20]) on using PCA in 
scientific disciplines, some works have 
published the implementation of PCA for face 
recognition ([13][14]). 

2.2. Artificial Neural Networks 

Artificial neural networks take their 
inspiration from a human brain’s nervous 
system. Figure 2 depicts a typical neural network 
with a single neuron explained separately. 
Similar to human nervous system, each neuron 
in the ANN collects all the inputs and performs 
an operation on them. Lastly, it transmits the 
output to all other neurons of the next layer to 
which it is connected. A neural network is 
composed of three layer types: 

• Input Layer: takes input values and feeds 
them to the neurons in the hidden layers. 

• Hidden Layers: are the intermediate layers 
between input and output which help the 
neural network learn the complicated 
relationships involved in data. 

• Output Layer: presents the final outputs 
of the network to the user.  

Computation at each neuron in hidden layers 
and output layer is modeled by the expression:  

𝑦𝑦𝑖𝑖 = 𝑓𝑓(�𝑊𝑊𝑖𝑖𝑖𝑖 × 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖)
R

𝑖𝑖=1

 (6) 

where 𝑊𝑊𝑖𝑖𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the weights, bias, 
input activations, and output activations, 
respectively, and f( ⋅ ) is a nonlinear activation 
function such as Sigmoid [5], Hyperbolic 
Tangent [5], Rectified Linear Unit (RELU) [6], 
etc.  

Just like in human brain, an ANN needs to 
be trained to perform its given tasks. This 
training involves determining the value of the 
weights (and bias) in the network. After that, the 

ANN can perform its task by computing the 
output of the network by using the weights 
determined during the training process. This 
process is referred to as inference. Training and 
inference must be considered during the 
development of hardware platform for ANN. 
Training generally requires high-computing 
performance, high-precision arithmetic, and 
programmability to support different deep 
learning models. In fact, training is usually 
performed offline on workstations or servers. 
Some research efforts have been looking for 
incremental training solutions [7] and a 
reduction in precision training [8] to decrease the 
computation complexity. 

Many ANN frameworks are implemented on 
GPU (Graphic Processing Unit) platforms such 
as Caffe [1], Torch [2], and Chainer [3]. These 
fast and friendly frameworks are developed for 
easily modifying the structures of neural 
networks. However, from the performance point 
of view, dedicated architectures for ANNs have 
a higher throughput as well as higher energy 
efficiency. In recent decades, interest in the 
hardware implementation of artificial neural 
networks (ANN) by using FPGA and ASIC has 
grown. This is mainly due to the rapid 
development of semiconductor technology that 
is used for implementing digital ANN. Previous 
FPGA/ASIC architectures already achieved a 
throughput of several hundreds of Gop/s. These 
architectures are easily scalable to get a higher 
performance by leveraging parallelism. 
However, one problem that most of these designs 
are still faced with is: ASIC solution are usually 
suffering from a lack of the flexibility to be 
reconfigured for the various parameters of ANN. 
With deep ANN comprising many layers with 
different characteristics, it is impossible to use 
heterogeneous architectures for the different 
layers. In this paper, we propose an 
implementation of ANN on the coarse-grained 
reconfigurable architecture. 

 
2.3 Reconfigurable Hardware 

The reconfigurable hardware is generally 
classified into the Field Programmable Gate 
Array (FPGA) and coarse-grained dynamically 
reconfigurable architecture (CGRA). A typical  
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Figure 2. An artificial neuron and an ANN model. 

 
example of the FPGA-based reconfigurable SoC 
is Xilinx Zynq-7000 devices [21]. Generally, 
FPGAs support the fine-grained reconfigurable 
fabric that can operate and be configured at bit 
level. FPGAs are extremely flexible due to their 
higher reconfigurable capability. However, the 
FPGAs consume more power and have more 
delay and area overhead due to greater quantity 
of routing required per configuration [22]. This 
limits the capability to apply FPGA to embedded 
applications. To overcome the limitation of the 
FPGA-like fine-grained reconfigurable devices, 
coarse-grained reconfigurable architectures 
(CGRAs) focus on data processing and 
configuration at bit-group with complex 
functional blocks (e.g. Arithmetic Logic unit 
(ALU), multiplier, etc.). These architectures are 
often designed for a specific domain of 
applications. CGRAs achieve a good trade-off 
between performance, flexibility, and power 
consumption. 
Many CGRAs have been proposed with the 
unique features that is dedicated to a specific 
domain of applications. Typical two of them are 
REMUS[23] and ADRES[24]. ADRES 
(Architecture for Dynamically Reconfigurable 
Embedded System) is a reconfigurable system 
template, which tightly couples a VLIW (Very 
Long Instruction Word) processor and a coarse-
grained reconfigurable matrix into a single 
architecture. Here, coarse-grained 
reconfigurable matrix plays a role of a co-
processor in the VLIW processor. Coupling 
CGRA directly with the processor increases the 
performance at the expense of decrease in 

flexibility because the CGRA architecture has to 
be compatible with the given processor 
architecture. By contrast, in the REMUS-II 
(REconfigurable MUltimedia System version II) 
architecture - a coarse-grained dynamically 
reconfigurable heterogeneous computing SoC 
for multimedia and communication baseband 
processing, the CGRA is implemented as an IP 
core that is attached to the system bus of the 
processor. The REMUS-II consists of one or two 
coarse-grained dynamically reconfigurable 
processing units (RPUs) and an array of RISC 
processors (µPU) coupled with a host ARM 
processor via the AHB bus. Designing the 
CGRA as an IP core in the REMUS makes it 
easy to reuse design in the various systems with 
no dependence on any particular processor 
architecture. 

In [10], we developed and modeled a coarse-
grained dynamically reconfigurable architecture, 
called MUSRA (Multimedia Specific 
Reconfigurable Architecture). The MUSRA is a 
high-performance, flexible platform for a 
domain of applications in multimedia 
processing. In contrast with FPGAs, the 
MUSRA aims at reconfiguring and manipulating 
on the data at word-level. The MUSRA was 
proposed to exploit high data-level parallelism 
(DLP), instruction-level parallelism (ILP) and 
TLP (Task Level Parallelism) of the 
computation-intensive loops of an application. 
The MUSRA also supports the capability of 
dynamic reconfiguration by enabling the 
hardware fabrics to be reconfigured into 
different functions even if the system is working. 
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3. Proposed Architecture of CGRC Platform 

3.1 Coarse-Grained Reconfigurable 
Computing Platform 

In this paper, we developed a high-
performance Coarse-Grained Reconfigurable 
Computing Platform (CGRC) for experimentally 
evaluating and validating the applications of 
multimedia processing. The platform’s hardware 
is a system-on-chip based on the MUSRA 
(Multimedia Specified coarse-grained 
Reconfigurable Architecture) [10], the ARM 
processor, and the other IP cores from the 
Xilinx’s library as shown in Figure 3. The CGRC 
platform was synthesized and implemented on 
the Xilinx ZCU106 Evaluation Kit [25]. The 
ARM processor functions as the central 
processing unit (CPU) that takes charge of 
managing and scheduling all activities of the 
system. The external memory is used for 
communicating data between tasks on the CPU 
and tasks on the MUSRA. Cooperation between 
MUSRA, CPU, and DMACs (Direct Memory 
Access Controllers) are synchronized by the 
interrupt mechanism. When the MUSRA 
finishes the assigned task, it generates an 
interrupt via IRQC (Interrupt Request 
Controller) unit to signal the CPU and returns 
bus control to the CPU. In order to run on the 
platform, the C-program of the application is 
compiled and loaded into the Instruction 
Memory of the platform. Meanwhile, the data is 
copied into the Data Memory. 

Execution and data-flow of the MUSRA are 
reconfigured dynamically under controlling of 
the CPU. After resetting, the operation of the 
system is briefly described as follows: 

① Context Memory Initialization: CPU 
writes the necessary control parameters 
and then grant bus control to CDMAC in 
Context Memory. CDMAC will copy a 
context from the instruction memory to 
context memory. At the same time, CPU 
executes another function. 

② Context Parser Initialization: CPU 
writes the configuration words to the 
context parser.  

③ RCA Configuration and Data Memory 
Initialization: After configured, parser 

reads one proper context from the 
context memory, decode it and configure 
RCA. Concurrently, CPU initializes 
DDMAC that will copy data from the 
external data memory to the internal data 
memory. DDMAC is also used for 
writing the result back to the external 
data memory. 

④ RCA Execution: RCA performs a 
certain task right after it has been 
configured. 
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Figure 3. Coarse-Grained Reconfigurable Computing 
Platform (CGRC). 

3.2 MUSRA architecture 

The MUSRA [10] is composed of a 
Reconfigurable Computing Array (RCAs), 
Input/Output FIFOs, Global Register File 
(GRF), Data/Context memory subsystems, and 
DMA (Direct Memory Access) controllers, etc. 
Data/Context memory subsystems consist of 
storage blocks and DMA controllers (i.e. 
CDMAC and DDMAC). The RCA is an array of 
8×8 RCs (Reconfigurable Cells) that can be 
configured partially to implement computation-
intensive tasks. The input and output FIFOs are 
the I/O buffers between the data memory and the 
RCA. Each RC can get the input data from the 
input FIFO or/and GRF, and store the results 
back to the output FIFO. These FIFOs are all 
512-bit in width and 8-row in depth, and can 
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load/store sixty-four bytes or thirty-two 16-bit 
words per cycle. Especially, the input FIFO can 
broadcast data to every RC that has been 
configured to receive the data from the input 
FIFO. This mechanism aims at exploiting the 
reusable data between several iterations. The 
interconnection between two neighboring rows 
of RCs is implemented by a crossbar switch. 
Through the crossbar switch, an RC can get 
results that come from an arbitrary RC in the 
above row of it. The Parser decodes the 
configuration information that has been read 
from the Context Memory, and then generates 
the control signals that ensure the execution of 
RCA accurately and automatically.  
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Figure 4. RC architecture. 

RC (Figure 4) is the basic processing unit of 
RCA. Each RC includes a data-path that can 
execute signed/unsigned fixed-point 8/16-bit 
operations with two/three source operands, such 
as arithmetic and logical operations, multiplier, 
and multimedia application-specific operations 
(e.g. barrel shift, shift and round, absolute 

differences, etc.). Each RC also includes a local 
register called LOR. This register can be used 
either to adjust operating cycles of the pipeline 
or to store coefficients when a loop is mapped 
onto the RCA. A set of configuration registers, 
which stores configuration information for the 
RC, is called a layer. Each RC contains two 
layers that can operate in the ping-pong fashion 
to reduce the configuration time. 

The configuration information for the 
MUSRA is organized into the packets called 
context. The context specifies a particular 
operation of the RCA core (i.e. the operation of 
each RC, the interconnection between RCs, the 
input source, output location, etc.) as well as the 
control parameters that control the operation of 
the RCA core. The total length of a context is 
128 32-bit words. An application is composed of 
one or more contexts that are stored into the 
context memory of the MUSRA. 

The MUSRA architecture is basically the 
such-loop-oriented one. By mapping the body of 
the kernel loop onto the RCA, the RCA just 
needs configuring one time for executing 
multiple times, therefore it can improve the 
efficiency of the application execution. 
Executing model of the RCA is the pipelined 
multi-instruction-multi-data (MIMD) model. In 
this model, each RC can be configured 
separately to a certain operation, and each row of 
RCs corresponds to a stage of a pipeline. 
Multiple iterations of a loop are possible to 
execute simultaneously in the pipeline.  
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Figure 5. (a) DFG representation of a simple loop body, and (b) its map onto RCA.
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For purpose of mapping, a kernel loop is first 
analyzed and loop transformed (e.g. loop 
unrolling, loop pipelining, loop blocking, etc.) in 
order to expose inherent parallelism and data 
locality that are then exploited to maximize the 
computation performance on the target 
architecture. Next, the body of the loop is 
represented by data-flow graphs (DFGs) as 
shown in Figure 5. Thereafter, DFGs are mapped 
onto RCA by generating configuration 
information, which relates to binding nodes to 
the RCs and edges to the interconnections. 
Finally, these DFGs are scheduled in order to 
execute automatically on RCA by generating the 
corresponding control parameters for the 
CGRA’s controller. Once configured for a 
certain loop, RCA operates as the hardware 
dedicated for this loop. When all iterations of 
loop have completed, this loop is removed from 
the RCA, and the other loops are mapped onto 
the RCA. 

4. Implementation of Face Recognition 
System 

4.1. Face recognition system  

Face Database

Testing SetTraining Set

Eigenspace 
Computation

Projection of 
Image

Feature Vector

Projection of 
Image

Feature Vector

Training ANN

Set of weights 
and bias ANN

PCA 
(Feature 

Extraction)

Classification

Training Inference

Decision Making
 

Figure 6. Face recognition based on the combination 
between ANN and PCA. 

The face recognition system is based on the 
combination of PCA and an artificial neural 
network called the PCA-ANN system. The PCA-
ANN face recognition system is divided into 3 
processes: feature extraction, training, and 
recognition as shown in Figure 6. In the feature 
extraction process, an eigenfaces space is 
established from the training images using the 
PCA feature extraction method. The ANN 
requires the training process where the weights 
connecting the neurons in consecutive layers are 
calculated based on the training images and 
target classes. After generating the eigenvectors 
using PCA methods, the projection of face 
images in the training set is calculated and then 
used to train the neural network on how to 
classify images for each person. In the 
recognition process, each input face image in the 
testing set is also projected to the same 
eigenfaces space and classified by the trained 
ANN. 

4.2. Hardware/Software Partition 

Instead of implementing the system entirely 
by hardware or software, this paper proposes a 
system-level model for the realization of the 
PCA-ANN face recognition system, including 
hardware and software tasks, as shown in Figure 
7. 

In PCA feature extraction, calculating 
eigenvalues and eigenvectors for eigenfaces 
space requires very complicated algebraic 
methods like QR or Jacobi [12]. The hardware 
architecture for implementing a PCA algorithm 
is often very complex. Because of the 
complexity of the PCA algorithm, in the scope 
of this paper it will be implemented as software 
running on the CPU. 

In ANN-based classification, two aspects 
must be considered, including training and 
inference. Training still requires high-
performance computing, high-precision 
arithmetic, and programmability to support 
different deep learning models. The training 
process is time-consuming and involves a lot of 
power consumption. Therefore, it is usually done 
offline on the server's GPU. In particular, the 
training is performed in software using 
MATLAB running on the server. Matlab 
program includes one function to calculate the 
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Figure 7. Hardware/Software partition. 

eigenvectors using the built-in functions and 
another for training the neural network. The 
results are the average vector, the eigenvectors, 
the weights and biases of the neural network 
after being trained. These parameters are then 
saved in text files (.txt) and will be written to the 
memory on the CGRC platform while the system 
is operating. 

On the other side, the inference is performed 
by both software and hardware on the high-
performance CGRC platform. Here, PCA feature 
extraction is performed by the CGRC platform’s 
CPU, and ANN is mapped onto the CGRC 
platform’s MUSRA. The face image, which is 
considered for recognition, is firstly pre-
processed by a MATLAB program on the server, 
then passed through the PCA module to extract 
the features, and finally sent to the ANN module 
for making recognition decision. 

4.3 Mapping ANN onto MUSRA 

Let’s examine a generic ANN that has L 
layers with one input layer, one output layer, and 
L-2 hidden layers. At the layer kth, the input 
vector Xk is forwardly transferred through the 
neurons to generate an output vector Yk that then 
becomes the input vector Xk+1 for the next layer 
(k+1)th. The pseudo-code in Algorithm 1 
describes ANN computation. 

Algorithm 1. ANN Computation 

1 
2 
3 
4 
5 
6 
7 

X1
 = input 

For k in 1 to L – 1 loop 
  Ak = XkWk 
  Yk = f(Ak) 
  Xk+1 = Yk 
End For 
Output = XL

 

 
Where, input = (i1, i2, … in) is the input vector, 

and output = (o1, o2, … om) is the output vector.  
Let’s set Nk is the number of neurons in 

kth layer, where k = 1, 2, …, L-1. Since the output 
of each layer forms the input of the next layer, 
therefore, the input vector of the kth layer is 𝑋𝑋𝑖𝑖 =
[𝑥𝑥0𝑖𝑖 , 𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑁𝑁𝑘𝑘−1−1

𝑖𝑖 ] and its dimension is 1×Nk-

1.  The output vector of the kth layer is 𝑌𝑌𝑖𝑖 =
[𝑦𝑦0𝑖𝑖 ,𝑦𝑦1𝑖𝑖 , … ,𝑦𝑦𝑁𝑁𝑘𝑘−1

𝑖𝑖 ], which has 1×Nk elements. 
Wk is the weight matrix at the layer kth.   
 

𝑊𝑊𝑖𝑖 = �
𝑤𝑤0,0
𝑖𝑖 ⋯ 𝑤𝑤𝑁𝑁𝑘𝑘−1,0

𝑖𝑖

⋮ ⋱ ⋮
𝑤𝑤0,𝑁𝑁𝑘𝑘−1−1
𝑖𝑖 ⋯ 𝑤𝑤𝑁𝑁𝑘𝑘−1,𝑁𝑁𝑘𝑘−1−1

𝑖𝑖
� 

Algorithm 1 can be expanded to some loops, 
as shown in Algorithm 2. 

Algorithm 2. ANN Computation 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

X1
 = input 

For k in 1 to L – 1 loop   
// loop_k runs through all layers 

For i = 0 to Nk – 1 loop  
//loop_i runs through all neurons 

 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖 
For j = 0 to Nk-1 – 1 loop //loop_j   
 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖,𝑖𝑖

𝑖𝑖  
       End for j 

  𝑌𝑌𝑖𝑖𝑖𝑖 =  𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖) //activation function 
              𝑋𝑋𝑖𝑖𝑖𝑖+1 = 𝑌𝑌𝑖𝑖𝑖𝑖 

 End for i 
End For k 
Output = XL

 

The loop loop_j (line 7 to line 9 in 
Algorithm 2) is unrolled and implemented by the 
adder tree with the output that is the 
accumulation of the products of the inputs and 
weights as shown in Figure 8. The structure of 
adder-tree for different layers varies in the 
number of inputs, weights, and bias. 

X

X[
1]

W
[i]

[1
]

X

X[
2]

W
[i]

[2
]

+

X

X[
r-

1]
W

[i]
[r

-1
]

X

X[
r]

W
[i]

[r
]

+

+ +

+

+

b

a[
i]

 
Figure 8. DFG of the loop loop_j. 

The sum of the weighted inputs will be fed 
to the activation function to calculate the output 
value at each neuron (line 10 in Algorithm 2). 
The activation function used here is the Sigmoid 
function, as shown in expression (7): 

𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

  (7) 
There some different methods for the 

implementation of the sigmoid activation 
function, including Look-up table (LUT), Taylor 
transformation, piecewise linear approximation 
[9]. The method of Taylor transformation 
requires many multiplications. The LUT method 
uses a large memory to store the table of possible 
values of the target function. As a result, both of 
these methods are not realizable for the 
implementation on CGRA. Therefore, in this 
paper, we adopted the method of a piecewise 
linear approximation to perform the sigmoid 
activation function. The chosen approximation 
method has a great influence on the accuracy and 
performance of the neural network. 

For x in the range [0, +∞), the sigmoid 
function is approximated by expression: 
𝑓𝑓̅(𝑥𝑥)

= � 1, 𝑥𝑥 ≥ 4 
−0.03125 ∗ 𝑥𝑥2 + 0.25 ∗ 𝑥𝑥 + 0.5,   0 ≤ 𝑥𝑥 < 4 

(8) 

For negative values of x, the sigmoid 
function can be calculated using the expression: 

𝑓𝑓̅(𝑥𝑥) = 1 − 𝑓𝑓(̅−𝑥𝑥)  (9) 

× 

a x

+

b

× 

+

c

1 0

― 

0

x

-x

1 0
1

X>4?

LOR

LOR

LOR

X<0?

― 

1 F(x)

1-f(x)

LOR

1 0

F(x)

LOR

LOR

LOR

LOR

LOR

LOR

 

Figure 9. DFG of activation function. 
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Figure 9 shows a DFG for implementing the 
sigmoid activation function, where, a = -
0.03125, b = 0.25, and c = 0.5. Because of the 
reconfigurability of MUSRA, the activation 
function can be easily configured to different 
ones for the hidden layers and the output layer. 

5. Experiment and Evaluation 

This section presents the validation of the 
PCA-ANN face recognition system on the 
CGRC platform. The performance of our 
implementation is compared with the other 
works. 

5.1 Validation script 

The face database used for the experiment is 
the image set from the AT&T ORL (Olivetti 
Research Laboratory). This database consists of 
400 images of 40 people, each with 10 different 
images. Each image has dimensions of 80 × 110 
pixels. The face database are divided into 
training set and testing set. After PCA feature 
extraction, each face image is represented by a 
feature vector of size 1×30. 

The neural network consists of three layers 
and is configured as follows: 

- Input Layer: includes 30 neurons 
corresponding to the number of elements 
of the feature vector of size 1×30. 

- Hidden Layer: consists of 120 neurons, 
each has 30 inputs, 30 weights and one 
bias. 

- Output Layer: is made of three neurons 
corresponding to three outputs. Each of 
neuron has 120 inputs, 120 weights and 
one bias. 

- Number of training times: 10000 times. 
- Learning coefficient: 0.01 
- Permissible error: 10-5 

5.2 Experimental Results 

1) Sigmoid function and its approximation 
Figure 10 shows the chart of Sigmoid 

function and its approximation by (8) and (9) in 
the range (-8, 8). Where, the orange line depicts 
the sigmoid function, and the blue line depicts 
the sigmoid function’s approximation. 
Experiment estimation shows that the average 
error and the maximum error of approximation 
of the sigmoid function are εaverage = 0.00774 và 
εmaximum = 0.02163. 

2) Functional verification of face recognition 
system 
To functionally verify the face recognition 

system, the training set and testing set are 
extracted from the database as follows. First, 
choose three image sets of three people in the 
ORL database to build the training set. Next, 
take three images of these three people, each 
person one image, and flip that image to create 
the testing set. The purpose of flipping the image 
is to make it different from the image in the 
training set. The training set and testing set is 
shown in Figure 11 and Figure 12, respectively. 

 
 

 
Figure 10.  Chart of Sigmoid function and its approximation. 
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Figure 11. Training set including images of three first persons in the ORL database. 

 
(a) images in the training set 

 
(b) image not in the training set 

Figure 12.Testing set. 

1st Person Image

2nd Person Image

Kth Person Image

Mst Person Image

PCA Neural Network 
ANN

0
0

1

0

Kth 
Person

Make
Decision

Feature 
Vector

CPU CGRA CPU
 

Figure 13.  Inference Processing. 

 
Figure 14. Simulation results for the first image in the training set. 

 

 
Figure 15. Simulation results for the second image in the training set. 
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Figure 16. Simulation results for the third image in the training set. 

 
Figure 17. Simulation results for the image not in the training set. 

Testing images are represented in feature 
vectors before feeding to ANN and the ANN’s 
outputs are compared with the given threshold 
by CPU to make a recognition decision as shown 
in Figure 13. The simulation results of ANN are 
shown in Figure 14, Figure 15, and Figure 16. 

Similarly, take an image that is not included 
in the training set as input to face recognition 
system. Simulation results are shown in Figure 
17. 

The computation result of ANN is 
represented by 16-bit fixed-point numbers where 
6 bits represent the integer part, and another 10 
bits represent the fractional part. This result is 
displayed on the port output in the waveform 
window while simulating. For easy viewing, this 
result is left-shifted 10 bits (i.e. multiplied by 
210) to convert to 16-bit integers, as shown in the 
figures Figure 14 - Figure 17 above. The value at 
the output is compared to the threshold by the 
CPU to determine which face is detected. The 
thresholds chosen for comparison are 0.9 and 0.1 
(values greater than 0.9 are determined to be 1, 
less than 0.1 is decided as 0). To compare with 
the simulation results, these threshold values are 
also left-shifted 10 bits to become values 921 
and 102, respectively. The rules for making 
identification decisions are shown in Table 1. 

Based on the rules in Table 1 and the 
simulation results in figures Figure 14 - Figure 

17, we get the results of identification, as shown 
in Table 2. This result proves that the system is 
functional correctness as expected. 
Table 1. The Rule for making decision 

OUPUT Decision Identification 
results 

output(2) > 921 
output(1) < 102 
output(0) < 102 

[1; 0; 0] First Person 

output(2) < 102 
output(1) > 921 
output(0) < 102 

[0; 1; 0] Second Person 

output(2) < 102 
output(1) < 102 
output(0) > 921 

[0; 0; 1] Third Person 

Others [0; 0; 0] Stranger 
 

3) Performance Analysis of face recognition 
system 
To evaluate the performance of the system, 

we use the training and testing set which are built 
as follows. We use 30 images of the first three 
people in the ORL database as a training set. The 
testing set has 400 images, including 30 flipped 
images of three selected people (to make the 
difference from the training images) and 370 
images of the remaining 37 people in the ORL 
database.  
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Table 2. Identification results 

 First Image Second image Third Image Fourth image 

Displayed result (16-bit) [1003; 3; 0] [69; 983; 0] [1; 0; 1024] [43; 387; 0] 

*Real result [0.9794; 0.0029; 0] [0.0673; 0.9599; 0] [0.0009; 0; 1] [0.0419; 0.3779; 0] 

Decision [1; 0; 0] [0; 1; 0] [0; 0; 1] [0; 0; 0] 

Identification results First person Seconf person Third person Stranger 

*Real result = Displayed result/𝟐𝟐𝟏𝟏𝟏𝟏. 

Table 3. Performance Evaluation. 

 Number of images Correct Identification Wrong Identification 

First person 10 10 0 

Second person 10 8 2 

Third persom 10 9 1 

Stranger 370 332 38 

Total 400 359 41 

Ratio  90.5% 9.5% 

The validation results are recorded in Table 
3. Here, “strangers” are those who are not in the 
training set, and "acquaintances” are those who 
are in the training set. The result is considered as 
“Correct Identification” (a) when inputting the 
image of an “acquaintance”, the system correctly 
identifies which of the three selected persons the 
image is; or (b) when inputting an image of a 
stranger, the system returns "stranger". On the 
contrary, the result is considered as "Wrong 
identification" when the system mistakenly 
recognizes "stranger" as "acquaintance", 
"acquaintance" as "stranger", or confuses an 
acquaintance with each other. 
Table 4. Performance Comparison 

PCA-ANN PCA 

Our [13]  [14] [13]  [14] 

90.5% 85% 88% 78% 86% 

 

Evaluation results show that the system has 
quite high recognition efficiency, achieving 
correct recognition rate of 90.5%. The 
experimental results are compared with the 
results of other works in Table 4.  

Compared to the results of other works using 
the same method, our system achieved 5.5% and 
2. 5% higher correct recognition rate than [13] 
and [14], respectively. Compared with using 
only PCA method for identification, the 
recognition results when using the combination 
of two methods are 12.5% and 4.5% more 
accurate than [13] and [14], respectively. 

Table 5 shows the change in recognition 
efficiency when changing the number of hidden 
layer neurons. When the number of hidden layer 
neurons increased from 120 to 150, the 
difference in performance was very small. 
However, when the number of hidden layer 
neurons is reduced, especially when it is reduced 
to 30, the performance is greatly reduced, 
showing that the number of hidden layer neurons  
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Table 5. Recognition performance vs. number of hidden layer neurons. 

Number of neurons 150 120 90 60 30 

Performance 89.75% 90.5% 88.75% 85.25% 80.5% 

has a large impact on the identification 
performance of the neural network. This can be 
explained as follows. When the number of 
hidden layer neurons is too small, the network 
cannot learn deeply enough, resulting in poor 
recognition performance. Conversely, 
increasing the number of hidden layer neurons 
will make the network model more complicated 
and the possibility of "over-matching" becomes 
higher. "Over-matching" occurs when the 
trained network matches with the training 
samples so much, therefore it answers exactly 
what has been learned, and does not care what is 
not learned. 

6. Conclusion 

 In this paper, we presented our work on the 
proposal, implementation and evaluation of PCA 
and ANN-based face recognition system. The 
feature vectors obtained through the PCA 
method are used as the input for training and 
testing the ANN. The combination of PCA 
method and neural network is to improve the 
system's identification efficiency. The face 
recognition system has been hardware/software 
co-designed and implemented on a coarse-
grained reconfigurable computing platform. We 
analyzed the source code of the ANN algorithm 
and proposed the optimization solution to 
explore its multi-level parallelism in order to 
improve the performance of the application on 
the CGRC platform. Our implementation has 
been simulated and validated by the CGRC 
platform of the MUSRA on the Xilinx 
ZCU106 Evaluation Kit. The verification 
process has confirmed that the system works 
correctly in face recognition. The correct 
recognition rate is approximately 90.5%. The 
proposed system gets an improvement on the 
recognition rates over classical PCA face 
recognition system. In addition, the recognition 
performance of our system is higher than the 

PCA-ANN system proposed by other works. It 
is also easy to reconfigure the MUSRA to 
support different ANN configuration (for 
example, number of layer, number of neurons 
per layer, activation function, etc.). 

Our method on CGRC platform could be 
extended to the algorithm of the other 
applications. In the future work, some aspects 
such as hardware/software partitioning, DFG 
extracting, and scheduling, etc., will continue to 
be optimized according to the architecture of the 
MUSRA to achieve a better performance. 
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