
VNU Journal of Science: Com. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90

81

Original Article

Deep Learning for Automated 3D Floor Plan Generation

Ma Thi Chau

Faculty of Information Technology, VNU University of Engineering and Technology,

144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 26 May 2024

Revised 29 July 2024; Accepted 10 December 2024

Abstract: This paper presents an optimized method for reconstructing 3D floor plans using user-

defined boundaries and constraints for residential structures. This approach allows users to provide

architectural constraints such as room types and quantities, as well as manual sketches or existing

images of the house boundaries. Advanced deep learning algorithms are used to automatically

partition the house boundaries and create a customized, optimized interior layout based on the users’

architectural constraints. In the experiment phase, we integrated the Graph2Plan-based deep learning

module, which converts the user-provided boundary data and architectural constraints into a

structured 2D floor plan, automatically allocating and refining the rooms to ensure a harmonious

spatial arrangement. The evaluation of the deep learning model’s performance shows that this is a

useful and time-saving solution for designers. Then, we utilized graphics and image processing

techniques to generate the 3D floor plans. Based on this solution, we have developed a 3D floor plan

generation application that provides a flexible and adaptive solution for individual home planning

within defined boundaries. The application has been thoroughly tested to demonstrate its features,

including the ability to meet users’ architectural constraints, provide rapid response times, and offer

a convenient user interaction experience.

Keywords: 3DFloorplan, Floorplan generation, layout graph, RPLAN dataset, house plan.

1. Introduction

The design and planning of residential

spaces is a critical task that requires significant

 Corresponding author.

 E-mail address: chaumt@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.2848

time and effort from architects and interior

designers. Traditionally, the process of creating

3D floor plans for homes has been a manual and

labor-intensive endeavor, relying on the

mailto:chaumt@vnu.edu.vn

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 82

expertise and creativity of human designer1. The

complete design time is usually estimated to be

10 to 20 days. Within this, the time for designing

the floor plan is estimated to be 3 to 5 days.

However, advancements in deep learning and

computer vision now offer opportunities to

automate and optimize this process [1].

In this paper, we propose and discusses a

deep learning-based approach for the automated

generation of 3D floor plans for residential

structures. By leveraging state-of-the-art deep

learning algorithms, this method aims to

streamline the floor plan design process,

allowing users to quickly and easily create

customized 3D floor plan that meet their specific

architectural constraints and preferences. The

key step of this approach lies in the integration

of deep learning models that can intelligently

analyze user-provided inputs, such as sketches,

images, or spatial constraints, and then

automatically generate an optimized 2D floor

plan.

Our contributions are:

(i) An automated process for a 3D floor plan

application, where we fine-tune the Graph2Plan

model on the RP_LIF dataset, which is a

combination of the RPLAN and LiFULL’sHome

datasets. This serves as the deep learning core of

the system to generate 2D floor plans.

(ii) A sub-process that generates 3D floor

plans from the 2D floor plans by deploying

computer graphics and image processing

algorithms.

Through extensive experiments and

evaluations, we demonstrate the effectiveness

and efficiency of our deep learning-based

approach in generating high-quality 3D floor

plans that closely align with user requirements.

The developed application not only reduces the

time and effort needed for 3D floor plan design

but also promotes greater creativity and

flexibility in the design process.

1 https://omshomesolutions.com/index.php/2021/09/21/

thoi-gian-thiet-ke-nha-o/, (accessed on: August 24th2024)

2. Background and Related works

2.1. Background

This section outlines some related basic

concepts and the key steps involved in

generating a floor plan manually, which provides

context for the content discussed in the

subsequent sections.

Architectural constraints for a house refer

to the various design requirements, limitations,

and considerations that must be taken into

account when planning and designing a

residential building. In this paper, we are

interested in the factors related to rooms such as

type, number, and area.

A floor plan refers to a scaled, two-

dimensional representation of the layout and

arrangement of rooms, spaces, and structural

elements within a building or a specific floor of

a building.

A bubble diagram is a simple, diagrammatic

tool used in the early stages of architectural

design and space planning. It is a visual

representation of the relationships and adjacency

between different spaces or functions within a

building or site.

A layout graph refers to the arrangement and

visualization of spatial relationships and

adjacency within a building or design. It is a

conceptual and visual tool used in the early

stages of the design process to help architects

and designers explore, analyze, and

communicate the functional and spatial

organization of a project.

Besides, when designing a house or an

architectural structure, generating a floor plan

involves several key steps:

Gather information: Understand the project

requirements and collect site details.

Create a space program: Determine

required spaces, their functions, and desired

relationships.

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 83

Develop a bubble diagram: Represent

spaces as bubbles, arrange to show connections.

Establish circulation and zoning: Identify

paths, group related spaces into zones.

Create the initial floor plan: Translate

bubble diagram into a detailed layout.

Refine and iterate: Review, adjust, and

experiment to optimize the design.

Finalize the floor plan: Add measurements,

annotations, and produce final floor plan.

2.2. Related Works

2D Floor plan generating

There are several different approaches that

have been explored for generating 2D floor plans

from a graph-based layout representation. Here

are some of the key methods:

Rule-based layout generation [2]: Define a

set of spatial layout rules and constraints based

on architectural best practices. Use these rules to

guide the translation of the layout graph into a

2D floor plan, placing rooms, walls, doors

accordingly. Example rules could be minimum

room sizes, adjacency requirements, circulation

paths, etc.

Optimization-based approaches [3]: Formulate

the floor plan generation as an optimization

problem, with the goal of minimizing violations

of dimensional, functional, and aesthetic

constraints. Use optimization techniques like

evolutionary algorithms, simulated annealing, or

mixed-integer programming to iteratively refine

the floor plan layout. Objective functions can

include metrics like space utilization, traffic

flow, visual balance, etc.

Data-driven generative models [1, 4, 5]:

Train machine learning models like variational

autoencoders or generative adversarial networks

on large datasets of existing floor plans. Use

these generative models to produce new floor

plan layouts that capture the statistical patterns

and design features learned from the training

data. The layout graph can be used as input to

condition the generative model and guide the

floor plan generation. This approach necessitates

a significant amount of data for model training.

Grammar-based approaches [6]: Define a

formal grammar that encodes the rules for

translating a layout graph into a valid 2D floor

plan. Use shape grammars, split grammars, or

other grammatical formalisms to recursively

generate and refine the floor plan layout. The

layout graph provides the high-level structure

that guides the application of grammar rules.

This approach and the rule-based layout generation

demand substantial expert knowledge, and this

knowledge must be codified into formal rules.

Hybrid Approaches [7]: Combine multiple

techniques, such as using optimization to refine

the output of a generative model. Use the

strengths of different methods to produce more

robust and versatile floor plan generation

capabilities. The choice of approach often

depends on the specific requirements of the

project, the available data, and the desired level

of user control and customization. Researchers

continue to explore new methods and

combinations of these techniques to advance the

state-of-the-art in automated 2D floor plan

generation.

3D Floor plan generating

Typically, when 2D floor plan are available,

specialized software is used to generate 3D floor

plans through a series of steps: (i) Extruding

Walls - The 2D outlines of the walls are extruded

vertically to give them height and create the 3D

geometry of the rooms and spaces. (ii) Adding

Floors and Ceilings - The floors and ceilings are

added between the extruded walls, defining the

vertical dimensions of each room and story. (iii)

Incorporating Architectural Elements Doors,

windows, stairs, and other architectural features

are added to the 3D model based on their

locations in the 2D plan. (iv) Defining Material

Properties - The surfaces of the walls, floors,

ceilings, and other elements are assigned

material properties like color, texture, and

reflectivity to give the 3D model a realistic

appearance. (v) Lighting and Rendering -

Lighting sources are positioned, and rendering

algorithms are applied to generate photorealistic

images and walkthrough visualizations of the 3D

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 84

floor plan. This process allows the 2D floor plan

information to be transformed into a 3D floor

plan which provides a much more immersive and

detailed representation compared to the initial

2D layout. In recent years, there have been

several studies employing deep learning, but a

great effort was required to secure a large

amount of data for learning. In the present study

[8], the authors used 3DPlanNet Ensemble

methods incorporating rule-based heuristic

methods to learn, and generated 110,000 3D

vector data with a wall accuracy of 95% or more

from 2D floor plan.

3. Proposal

To employ deep learning in generating 3D

floor plan, the process of generating 3D floor

plans from the architectural constraints provided

by the user includes 3 steps as shown in Fig. 1:

layout graph generating, 2D floor plan

generating, and 3D floor generating.

Fig. 1. The process of 3D floor plan generating.

Layout graph generating from user-

specified constraints is an active area of research

in architectural design automation. When

architects create a floor plan, the generation of a

bubble diagram is an intermediate step in the

design process. For automated design systems,

the representation of the user’s design

requirements is done using a layout graph, which

is also referred to as a graph representation. The

key idea is to use graph-based representations

and generative models to create graph-based

representations of the architectural constraints

provided by the user. Representing a floor plan

as a graph structure is a way of modeling the

spaces and relationships between rooms,

furnishings, and other components as a graph,

with nodes representing individual elements and

edges capturing their spatial and functional

connections. For example, user requirements

such as the number and types of rooms, their

approximate sizes, and desired connections can

be encoded as attributes of the nodes and edges

in the graph. This graph-based approach has the

ability to directly incorporate high-level user

requirements into the generation process,

leading to floor plans that better match user

needs and priorities.

2D floor plan generating from the layout

graph is a crucial step in this process. The node

positions, node attributes, and edge connections

in the layout graph are directly used to determine

the shapes and placements of the various

elements in the 2D floor plan, such as rooms,

walls, doors, and other architectural features.

However, this initial translation often requires

further optimization to ensure the generated

floor plan meets the necessary dimensional,

functional, and aesthetic requirements.

Optimization techniques, such as evolutionary

algorithms or mixed-integer programming, are

commonly employed to iteratively refine the

floor plan layout, adjusting the sizes and

positions of rooms and other components to

better satisfy the specified design constraints.

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 85

This optimization-based approach allows the

system to produce 2D floor plans that closely

match the user’s needs and preferences encoded

in the original graph-based representation.

3D floor plan generating from a 2D floor

plan is the process of transforming the 2D layout

information into a comprehensive 3D digital

model of the building. This conversion from 2D

to 3D enables a far more immersive and detailed

representation of the building design, which can

then be utilized for a variety of important

purposes- including further analysis and

optimization of the layout, visualization and

walkthroughs to better understand spatial

relationships, construction planning and

coordination of building elements, as well as

intuitive 3D presentations to stakeholders. By

converting the 2D floor plan into a full 3D floor

plan, designers and engineers gain a much richer,

more complete understanding of the building’s

layout and features, facilitating more informed

decision-making throughout the design and

construction phases.

4. Implementation and evaluation

4.1. Layout Graph Generating

The architectural constraints provided by the

user include the number and types of rooms, the

spatial relationships between them, as well as the

overall house boundary. 13 room types are

LivingRoom, MasterRoom, S econdRoom,

GuestRoom, ChildRoom, S tudyRoom,

DiningRoom, Bathroom, Kitchen, Balcony, S

torage, Wall_in, and Entrance. The house

boundary is then used to generate area

constraints for the layout graph representation

and to establish spatial geometry limits when

generating the floor plan. With the architectural

constraints, we initialize the graph G. We

employed the modelC [1] to generate the layout

graph (Fig. 2) from graph G and constraints CTs.

Fig. 2. Process of layout graph generating.

The pseudocode for the algorithm is as

follows:

function ModelC(G, CT s)

{

Initialize node positions randomly

pos = initialize_R_pos(G)

Define the integrated cost function obj_funct =

define_I_C_func(G, pos) # Define the constraint

functions

c_ f = define_C_func(CT s)

Solve the constrained optimization problem

opt_pos = solve_C_opt(ob j_ f unct, c_ f ,

pos)

return opt_pos }

function define_I_C_funct(G, positions)

{

Define the integrated cost function cost = 0

for u, v in G.edges():

cost += kamada_cost_function(pos[u],

pos[v], G[u][v])

cost += modified_cost_function(pos[u], pos[v],

G[u][v])

return cost

}

The primary advantage of using the modelC

is that it enables the user to constrain the

positions of nodes within the layout graph and to

provide suggested values for node locations.

This increased flexibility does not come at the

expense of high computational complexity.

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 86

4.2. 2D floorplan generating

Graph2Plan (G2P) [5], HouseGAN (HGan) [4]

use different powerful architectures specifically

designed to convert user input into a floorplan.

We have utilized the G2P architecture (Fig. 3),

the HGAN architecture (Fig. 4) and retrained

them using a combined dataset RP_LIF

consisting of RPLAN2 and LiFULL’s Home3.

This combined dataset has produced the model

parameters that we are currently using. To create

dataset RP_LIF, we took 80,000 samples from

dataset RPLAN that had been preprocessed by

[5], including layout graphs and floor plans, and

50,000 samples from dataset LiFULLs Home

that had been preprocessed by [4], including

bubble diagrams and floor plans. We coded a

dual module to generate bubble diagrams from

layout graphs (for the RPLAN set) and generate

layouts from bubble diagrams (for the LiFULL’s

Home set). In this way, dataset RP_LIF

comprised 130,000 samples of the triplet of

bubble diagrams, layout graphs, and floor plans.

G2P model

Input: The input consists of two components

- building boundaries (B) and a layout graph

(G). The building boundaries B are represented

as a 128 128 image with three binary channels,

which represent the interior, boundary, and door

pixels. The layout graph G encapsulates nodes

and edges, where each room i is described as a

node ni = [ri, li, si], with ri representing the room

category encoding, li the position vector

representing the raw image position, and si the

size vector conveying the room dimensions at

different scales. The edge information eij

captures the learned embeddings for pairwise

relationships between nodes.

Output: The output of G2P is a 128 128 floor

plan image (I) and two sets of room-bounding

boxes.

2 2https://paperswithcode.com/dataset/rplan
3 https://paperswithcode.com/dataset/lifull-home-s

Fig. 3. G2P architecture.

The architecture uses a Graph Neural

Network (GNN) to process the G-layout graphs

and embed room features. Concurrently, an

encoder is applied to the building boundary B

to extract boundary features. The combination of

these features is used by the Box network to

generate the corresponding bounding boxes.

Room boxes are expected to guide the

compositional generation of room features using

a Cascading Refinement Network (CRN) [9] to

generate floor plan images I. Overlapping areas

use a combination of the respective room’s

features. To capture global insights, the system

uses additional refinement through

BoxRefineNet, ensuring accurate room locations

and dimensions. In short, G2P integrates GNN,

CRN, and screening networks to translate user

preferences into well-defined floor plans.

HGan model

Input: Given a bubble diagram, a node

for each room is initialized with a 128-

dimensional noise vector sampled from a normal

distribution, concatenated with a 13-dimensional

one-hot encoded room type vector. The result is

a 141-dimensional vector.

Output: A feature volume is converted into a

room segmentation mask by a 3-layer CNN

network. The graph of these segmentation masks

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 87

will be passed to the discriminator during

training. The room mask is fit with the tightest

axis-aligned rectangle for each room to generate

the floor plan.

4.3. 3D floor Plan Generating

In this section, we present the technique for

constructing a 3D floor plan from a 2D floor plan

(Fig. 5). The process begins by converting the

input 2D floor plan image into a multi-level gray

scale image. We then use the find contour

algorithm [10] to identify the edges, including

the boundary, walls, and doors, within the image.

The boundary of the floor plan is determined by

identifying the contour with the largest area.

Next, we apply the watershed algorithm [11] to

determine the edges that represent the walls. We

then identify corner features [12] and connect

them into line segments to form the rooms, using

a threshold of coordinate differences. Additionally,

doors are identified by connecting components

into rooms using a different threshold.

 Fig. 4. HGan architecture.

Fig. 5. 3D floor plan generating.

4.4. Evaluation and application

Evaluation: After training the models G2P

and HGan with 2 datasets the RPLAN - similar

to the one used in the G2P model and the

RP_LIL, the results are shown in Table 1 with

batch size 20, epoch 101.

The training process ran stably with both

datasets. The loss function was relatively good,

and the Intersection over Union (IoU) score was

around 0.65, which is a quite positive and good

result. The IoU metric is commonly used to

evaluate the performance of object detection

models, with a higher score indicating better

alignment between the predicted bounding boxes

and the ground truth.

Tab. 1. Results for G2P and Hgan

Test info G2P

RPLAN (baseline)
G2P

RP_LIF

HGan

RP_LIF

Train time 41 hours 59 hours 65 hours

Loss 0.0001 0.0001 0.0002

IOU 0.64 0.65 0.67

Time per

floor plan

0.4-1s 0.3-1s 0.1-0.6

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 88

The use of the combined RP_LIL dataset

likely contributed to the model’s improved

performance compared to using the RPLAN

dataset alone. By incorporating a more diverse

set of floor plans, the model was able to learn

more robust representations and generalize

better to unseen data. The results demonstrate

the effectiveness of the model architecture and

the benefits of training on a comprehensive

dataset for this floor plan generation task.

Currently, utilizing advanced computer

graphics and image processing techniques, we

have created a simple 3D floor plan model

featuring enclosing walls, door orientations, and

functional room divisions represented by distinct

colors.

Application: We have developed an

application that automatically generates a 3D

floor plan from the architectural constraint

requirements provided by users. The application

allows users to upload an image of the house

boundary or to draw the house boundary

themselves. Users also input information about

the room types, sizes, and connections to other

rooms (Fig. 6). We deploy the 2D floor plan

generation module using a pre-trained G2P (as

mentioned above) model. The parameters

extracted from the boundary, room, and door

identification in 2D floor plan are supplemented

with height information to prepare the input for

3D construction. Based on the stored parameters

from the previous steps, we develop modules for

constructing the walls and doors in dedicated 3D

software. Along with the parameters used for

constructing the walls and doors, and

distinguishing colors in different areas of the

input image representing different room types,

we create a module to color the delineated areas

of the different rooms in the final 3D floor plan

(Fig. 7). In the Fig. 7, we have automatically

generated 3D floor plans with the input of

architectural constraints and the house’s

boundaries. For each 3D floor plan, we have

identified the location of doors, the location of

windows in each room, colors indicating the type

of room for each room, and the scale of the room

areas as per the 2D floor plan.

Fig. 6. User-provided architectural constraint descriptions.

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 89

5. Conclusion

The proposed approach for generating 3D

floor plans from architectural constraints

provided by the user represents a promising

direction for advancing architectural design

automation. The three-step process of graph

layout generating, 2D floor plan generating, and

3D floor plan generating leverages graph-based

representations and generative models to directly

incorporate the user’s high-level design

requirements into the generation process.

Fig. 7. 3D floorplan results.

The key advantages of this approach are its

ability to model the spatial and functional

relationships between rooms, and other

components using a graph-based representation,

and the use of optimization techniques to refine

the 2D floor plan layout to better satisfy the

specified design constraints and reduce time

process. By converting the 2D floor plan into a

comprehensive 3D model, designers and

engineers can gain a much richer, more

immersive understanding of the

building’s features, enabling more informed

decision-making throughout the design and

construction phases. With this approach, we

built an application that generates 3D floor plans

from user-provided architectural constraint

descriptions.

In summary, this work demonstrates the

potential of combining graph-based

representations, generative models, and

optimization techniques to automate the

generation of 3D floor plans that closely match

user requirements. As architectural design

continues to evolve, this type of approach could

significantly streamline the design process and

empower architects, engineers, and stakeholders

to explore a wider range of design possibilities

more efficiently.

6. Acknowledgement

This work has been supported by VNU

University of Engineering and Technology

under project number CN24.14 "Solution of 3D

floor plan generation".

References

[1] Y. Shi, M. Shang, Z. Qi, Intelligent Layout

Generation Based on Deep Generative

Models: A Comprehensive Survey,

Information Fusion 100 (2023) 101940. doi:

https://doi.org/10.1016/j.inffus.2023.101940.

[2] T. Tutenel, R. Bidarra, R. Smelik, K. J. de

Kraker, Rule-Based Layout Solving and its

Application to Procedural Interior Generation,

in: Proceedings of the CASA Workshop on 3D

Advanced Media in Gaming and Simulation

(3AMIGAS), 2019.

[3] P. Merrell, E. Schkufza, V. Koltun, Computer-

Generated Residential Building Layouts, ACM

Transactions on Graphics 29 (2010) 1–12.

doi:10.1145/1866158.1866203.

[4] N. Nauata, K.-H. Chang, C.-Y. Cheng, G. Mori,

Y. Furukawa, House-gan: Relational Generative

Adversarial Networks for Graph-Constrained

house Layout Generation, in: European

Conference on Computer Vision, Springer,

2020, pp. 162–177.

[5] R. Hu, Z. Huang, Y. Tang, O. van Kaick, H.

Huang, Graph2plan: Learning Floorplan

Generation From Layout graphs, ACM

M. T. Chau / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 2 (2024) 81-90 90

Transactions on Graphics 39 (2020) 118:1 –

118:14. doi:10.1145/3386569.3392391.

[6] X. Wang, Y. Liu, K. Zhang, A Graph Grammar

Approach to the Design and Validation of Floor

Plans, The Computer Journal 63 (2020) 137–

150. doi:10.1093/comjnl/bxz002.

[7] M. Nisztuk, P. Myszkowski, Hybrid

Evolutionary Algorithm Applied to

Automated Floor Plan Generation,

International Journal of Architectural

Computing 17 (2019) 260–283. doi:10.1177/

1478077119832982.

[8] S. Park, H. Kim, 3dplannet: Generating 3d

Models from 2d Floor Plan Images using

Ensemble Methods, Journal of Electronic 10

(2021) ’. doi:10.3390/electronics10222729.

[9] Q. Chen, V. Koltun, Photographic Image

Synthesis with Cascaded Refinement Networks,

in: 2017 IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 1520–1529.

doi:10.1109/ICCV.2017.168.

[10] S. Suzuki, K. Abe, Topological Structural

Analysis of Digitized Binary Images by Border

Following, Comput. Vis. Graph. Image Process.

30 (1985) 32–46.

[11] J. Cousty, G. Bertrand, L. Najman, M. Couprie,

Watershed cuts: Minimum Spanning Forests and

the Drop of Water Principle, IEEE Transactions

on Pattern Analysis and Machine Intelligence 31

(8) (2009) 1362–1374. doi:10.1109/TPAMI.

2008.173.

[12] C. G. Harris, M. J. Stephens, A Combined

Corner and Edge Detector, in: Alvey Vision

Conference, 1988.

