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Abstract: This paper presents an optimized method for reconstructing 3D floor plans using user-

defined boundaries and constraints for residential structures. This approach allows users to provide 

architectural constraints such as room types and quantities, as well as manual sketches or existing 

images of the house boundaries. Advanced deep learning algorithms are used to automatically 

partition the house boundaries and create a customized, optimized interior layout based on the users’ 

architectural constraints. In the experiment phase, we integrated the Graph2Plan-based deep learning 

module, which converts the user-provided boundary data and architectural constraints into a 

structured 2D floor plan, automatically allocating and refining the rooms to ensure a harmonious 

spatial arrangement. The evaluation of the deep learning model’s performance shows that this is a 

useful and time-saving solution for designers. Then, we utilized graphics and image processing 

techniques to generate the 3D floor plans. Based on this solution, we have developed a 3D floor plan 

generation application that provides a flexible and adaptive solution for individual home planning 

within defined boundaries. The application has been thoroughly tested to demonstrate its features, 

including the ability to meet users’ architectural constraints, provide rapid response times, and offer 

a convenient user interaction experience. 
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1. Introduction 

The design and planning of residential 

spaces is a critical task that requires significant 

________ 
 Corresponding author. 

   E-mail address: chaumt@vnu.edu.vn 

   https://doi.org/10.25073/2588-1086/vnucsce.2848 

time and effort from architects and interior 

designers. Traditionally, the process of creating 

3D floor plans for homes has been a manual and 

labor-intensive endeavor, relying on the 
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expertise and creativity of human designer1. The 

complete design time is usually estimated to be 

10 to 20 days. Within this, the time for designing 

the floor plan is estimated to be 3 to 5 days. 

However, advancements in deep learning and 

computer vision now offer opportunities to 

automate and optimize this process [1]. 

In this paper, we propose and discusses a 

deep learning-based approach for the automated 

generation of 3D floor plans for residential 

structures. By leveraging state-of-the-art deep 

learning algorithms, this method aims to 

streamline the floor plan design process, 

allowing users to quickly and easily create 

customized 3D floor plan that meet their specific 

architectural constraints and preferences. The 

key step of this approach lies in the integration 

of deep learning models that can intelligently 

analyze user-provided inputs, such as sketches, 

images, or spatial constraints, and then 

automatically generate an optimized 2D floor 

plan. 

Our contributions are: 

(i) An automated process for a 3D floor plan 

application, where we fine-tune the Graph2Plan 

model on the RP_LIF dataset, which is a 

combination of the RPLAN and LiFULL’sHome 

datasets. This serves as the deep learning core of 

the system to generate 2D floor plans. 

(ii) A sub-process that generates 3D floor 

plans from the 2D floor plans by deploying 

computer graphics and image processing 

algorithms. 

Through extensive experiments and 

evaluations, we demonstrate the effectiveness 

and efficiency of our deep learning-based 

approach in generating high-quality 3D floor 

plans that closely align with user requirements. 

The developed application not only reduces the 

time and effort needed for 3D floor plan design 

but also promotes greater creativity and 

flexibility in the design process. 

________ 
1 https://omshomesolutions.com/index.php/2021/09/21/ 

thoi-gian-thiet-ke-nha-o/, (accessed  on: August 24th2024) 

2. Background and Related works 

2.1. Background 

This section outlines some related basic 

concepts and the key steps involved in 

generating a floor plan manually, which provides 

context for the content discussed in the 

subsequent sections. 

Architectural constraints for a house refer 

to the various design requirements, limitations, 

and considerations that must be taken into 

account when planning and designing a 

residential building. In this paper, we are 

interested in the factors related to rooms such as 

type, number, and area. 

A floor plan refers to a scaled, two-

dimensional representation of the layout and 

arrangement of rooms, spaces, and structural 

elements within a building or a specific floor of 

a building. 

A bubble diagram is a simple, diagrammatic 

tool used in the early stages of architectural 

design and space planning. It is a visual 

representation of the relationships and adjacency 

between different spaces or functions within a 

building or site. 

A layout graph refers to the arrangement and 

visualization of spatial relationships and 

adjacency within a building or design. It is a 

conceptual and visual tool used in the early 

stages of the design process to help architects 

and designers explore, analyze, and 

communicate the functional and spatial 

organization of a project. 

Besides, when designing a house or an 

architectural structure, generating a floor plan 

involves several key steps: 

Gather information: Understand the project 

requirements and collect site details. 

Create a space program: Determine 

required spaces, their functions, and desired 

relationships. 
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Develop a bubble diagram: Represent 

spaces as bubbles, arrange to show connections. 

Establish circulation and zoning: Identify 

paths, group related spaces into zones. 

Create the initial floor plan: Translate 

bubble diagram into a detailed layout. 

Refine and iterate: Review, adjust, and 

experiment to optimize the design. 

Finalize the floor plan: Add measurements, 

annotations, and produce final floor plan. 

2.2. Related Works 

2D Floor plan generating 

There are several different approaches that 

have been explored for generating 2D floor plans 

from a graph-based layout representation. Here 

are some of the key methods: 

Rule-based layout generation [2]: Define a 

set of spatial layout rules and constraints based 

on architectural best practices. Use these rules to 

guide the translation of the layout graph into a 

2D floor plan, placing rooms, walls, doors 

accordingly. Example rules could be minimum 

room sizes, adjacency requirements, circulation 

paths, etc. 

Optimization-based approaches [3]: Formulate 

the floor   plan   generation   as an optimization   

problem,   with   the goal of minimizing violations 

of dimensional, functional, and aesthetic 

constraints. Use optimization techniques like 

evolutionary algorithms, simulated annealing, or 

mixed-integer programming to iteratively refine 

the floor plan layout. Objective functions can 

include metrics like space utilization, traffic 

flow, visual balance, etc. 

Data-driven generative models [1, 4, 5]: 

Train machine learning models like variational 

autoencoders or generative adversarial networks 

on large datasets of existing floor plans. Use 

these generative models to produce new floor 

plan layouts that capture the statistical patterns 

and design features learned from the training 

data. The layout graph can be used as input to 

condition the generative model and guide the 

floor plan generation. This approach necessitates 

a significant amount of data for model training. 

Grammar-based approaches [6]: Define a 

formal grammar that encodes the rules for 

translating a layout graph into a valid 2D floor 

plan. Use shape grammars, split grammars, or 

other grammatical formalisms to recursively 

generate and refine the floor plan layout. The 

layout graph provides the high-level structure 

that guides the application of grammar rules. 

This approach and the rule-based layout generation 

demand substantial expert knowledge, and this 

knowledge must be codified into formal rules. 

Hybrid Approaches [7]: Combine multiple 

techniques, such as using optimization to refine 

the output of a generative model. Use the 

strengths of different methods to produce more 

robust and versatile floor plan generation 

capabilities. The choice of approach often 

depends on the specific requirements of the 

project, the available data, and the desired level 

of user control and customization. Researchers 

continue to explore new methods and 

combinations of these techniques to advance the 

state-of-the-art in automated 2D floor plan 

generation. 

3D Floor plan generating 

Typically, when 2D floor plan are available, 

specialized software is used to generate 3D floor 

plans through a series of steps: (i) Extruding 

Walls - The 2D outlines of the walls are extruded 

vertically to give them height and create the 3D 

geometry of the rooms and spaces. (ii) Adding 

Floors and Ceilings - The floors and ceilings are 

added between the extruded walls, defining the 

vertical dimensions of each room and story. (iii) 

Incorporating Architectural Elements Doors, 

windows, stairs, and other architectural features 

are added to the 3D model based on their 

locations in the 2D plan. (iv) Defining Material 

Properties - The surfaces of the walls, floors, 

ceilings, and other elements are assigned 

material properties like color, texture, and 

reflectivity to give the 3D model a realistic 

appearance. (v) Lighting and Rendering - 

Lighting sources are positioned, and rendering 

algorithms are applied to generate photorealistic 

images and walkthrough visualizations of the 3D 
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floor plan. This process allows the 2D floor plan 

information to be transformed into a 3D floor 

plan which provides a much more immersive and 

detailed representation compared to the initial 

2D layout. In recent years, there have been 

several studies employing deep learning, but a 

great effort was required to secure a large 

amount of data for learning. In the present study 

[8], the authors used 3DPlanNet Ensemble 

methods incorporating rule-based heuristic 

methods to learn, and generated 110,000 3D 

vector data with a wall accuracy of 95% or more 

from 2D floor plan. 

3. Proposal 

To employ deep learning in generating 3D 

floor plan, the process of generating 3D floor 

plans from the architectural constraints provided 

by the user includes 3 steps as shown in Fig. 1: 

layout graph generating, 2D floor plan 

generating, and 3D floor generating. 

Fig. 1. The process of 3D floor plan generating. 

Layout graph generating from user-

specified constraints is an active area of research 

in architectural design automation. When 

architects create a floor plan, the generation of a 

bubble diagram is an intermediate step in the 

design process. For automated design systems, 

the representation of the user’s design 

requirements is done using a layout graph, which 

is also referred to as a graph representation. The 

key idea is to use graph-based representations 

and generative models to create graph-based 

representations of the architectural constraints 

provided by the user. Representing a floor plan 

as a graph structure is a way of modeling the 

spaces and relationships between rooms, 

furnishings, and other components as a graph, 

with nodes representing individual elements and 

edges capturing their spatial and functional 

connections. For example, user requirements 

such as the number and types of rooms, their 

approximate sizes, and desired connections can 

be encoded as attributes of the nodes and edges 

in the graph. This graph-based approach has the 

ability to directly incorporate high-level user 

requirements into the generation process, 

leading to floor plans that better match user 

needs and priorities. 

2D floor plan generating from the layout 

graph is a crucial step in this process. The node 

positions, node attributes, and edge connections 

in the layout graph are directly used to determine 

the shapes and placements of the various 

elements in the 2D floor plan, such as rooms, 

walls, doors, and other architectural features. 

However, this initial translation often requires 

further optimization to ensure the generated 

floor plan meets the necessary dimensional, 

functional, and aesthetic requirements. 

Optimization techniques, such as evolutionary 

algorithms or mixed-integer programming, are 

commonly employed to iteratively refine the 

floor plan layout, adjusting the sizes and 

positions of rooms and other components to 

better satisfy the specified design constraints. 
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This optimization-based approach allows the 

system to produce 2D floor plans that closely 

match the user’s needs and preferences encoded 

in the original graph-based representation. 

3D floor plan generating from a 2D floor 

plan is the process of transforming the 2D layout 

information into a comprehensive 3D digital 

model of the building. This conversion from 2D 

to 3D enables a far more immersive and detailed 

representation of the building design, which can 

then be utilized for a variety of important 

purposes- including further analysis and 

optimization of the layout, visualization and 

walkthroughs to better understand spatial 

relationships, construction planning and 

coordination of building elements, as well as 

intuitive 3D presentations to stakeholders. By 

converting the 2D floor plan into a full 3D floor 

plan, designers and engineers gain a much richer, 

more complete understanding of the building’s 

layout and features, facilitating more informed 

decision-making throughout the design and 

construction phases. 

4. Implementation and evaluation 

4.1. Layout Graph Generating 

The architectural constraints provided by the 

user include the number and types of rooms, the 

spatial relationships between them, as well as the 

overall house boundary. 13 room types are 

LivingRoom, MasterRoom, S econdRoom, 

GuestRoom, ChildRoom, S tudyRoom, 

DiningRoom, Bathroom, Kitchen, Balcony, S 

torage, Wall_in, and Entrance. The house 

boundary is then used to generate area 

constraints for the layout graph representation 

and to establish spatial geometry limits when 

generating the floor plan. With the architectural 

constraints, we initialize the graph G. We 

employed the modelC [1] to generate the layout 

graph (Fig. 2) from graph G and constraints CTs. 

 

 

Fig. 2. Process of layout graph generating. 

The pseudocode for the algorithm is as 

follows: 

 

function ModelC(G, CT s) 

{ 

# Initialize node positions randomly 

pos = initialize_R_pos(G) 

# Define the integrated cost function obj_funct = 

define_I_C_func(G, pos) # Define the constraint 

functions 

c_ f = define_C_func(CT s) 

# Solve the constrained optimization problem 

opt_pos = solve_C_opt(ob j_ f unct, c_ f , 

pos) 

return opt_pos } 

 

function define_I_C_funct(G, positions) 

{ 

# Define the integrated cost function cost = 0 

for u, v in G.edges(): 

cost += kamada_cost_function(pos[u], 

pos[v], G[u][v]) 

cost += modified_cost_function(pos[u], pos[v], 

G[u][v]) 

return cost 

} 

The primary advantage of using the modelC 

is that it enables the user to constrain the 

positions of nodes within the layout graph and to 

provide suggested values for node locations. 

This increased flexibility does not come at the 

expense of high computational complexity. 
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4.2. 2D floorplan generating 

Graph2Plan (G2P) [5], HouseGAN (HGan) [4] 

use different powerful architectures specifically 

designed to convert user input into a floorplan. 

We have utilized the G2P architecture (Fig. 3), 

the HGAN architecture (Fig. 4) and retrained 

them using a combined dataset RP_LIF 

consisting of RPLAN2 and LiFULL’s Home3. 

This combined dataset has produced the model 

parameters that we are currently using. To create 

dataset RP_LIF, we took 80,000 samples from 

dataset RPLAN that had been preprocessed by 

[5], including layout graphs and floor plans, and 

50,000 samples from dataset LiFULLs Home 

that had been preprocessed by [4], including 

bubble diagrams and floor plans. We coded a 

dual module to generate bubble diagrams from 

layout graphs (for the RPLAN set) and generate 

layouts from bubble diagrams (for the LiFULL’s 

Home set). In this way, dataset RP_LIF 

comprised 130,000 samples of the triplet of 

bubble diagrams, layout graphs, and floor plans. 

G2P model 

Input: The input consists of two components 

- building   boundaries   (B) and a layout graph 

(G). The building boundaries B are represented 

as a 128 128 image with three binary channels, 

which represent the interior, boundary, and door 

pixels. The layout graph G encapsulates nodes 

and edges, where each room i is described as a 

node ni = [ri, li, si], with ri representing the room 

category encoding, li the position vector 

representing the raw image position, and si the 

size vector conveying the room dimensions at 

different scales. The edge information eij 

captures the learned embeddings for pairwise 

relationships between nodes. 

Output: The output of G2P is a 128 128 floor 

plan image (I) and two sets of room-bounding 

boxes. 

________ 
2 2https://paperswithcode.com/dataset/rplan 
3 https://paperswithcode.com/dataset/lifull-home-s 

Fig. 3. G2P architecture. 

The architecture uses a Graph Neural 

Network (GNN) to process the G-layout graphs 

and embed room features. Concurrently, an 

encoder is   applied   to the building boundary B 

to extract boundary features. The combination of 

these features is used by the Box network to 

generate the corresponding bounding boxes. 

Room boxes are expected to guide the 

compositional generation of room features using 

a Cascading Refinement Network (CRN) [9] to 

generate floor plan images I. Overlapping areas 

use a combination of the respective room’s 

features. To capture global insights, the system 

uses additional refinement through 

BoxRefineNet, ensuring accurate room locations 

and dimensions. In short, G2P integrates GNN, 

CRN, and screening networks to translate user 

preferences into well-defined floor plans. 

HGan model 

Input: Given   a   bubble   diagram, a node 

for each room is initialized with a 128-

dimensional noise vector sampled from a normal 

distribution, concatenated with a 13-dimensional 

one-hot encoded room type vector. The result is 

a 141-dimensional vector. 

Output: A feature volume is converted into a 

room segmentation mask by a 3-layer CNN 

network. The graph of these segmentation masks 
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will be passed to the discriminator during 

training. The room mask is fit with the tightest 

axis-aligned rectangle for each room to generate 

the floor plan. 

4.3. 3D floor Plan Generating 

In this section, we present the technique for 

constructing a 3D floor plan from a 2D floor plan 

(Fig.   5).   The process begins by converting the 

input 2D floor plan image into a multi-level gray 

scale image. We then use the find contour 

algorithm [10] to identify the edges, including 

the boundary, walls, and doors, within the image. 

The boundary of the floor plan is determined by 

identifying the contour with the largest area. 

Next, we apply the watershed algorithm [11] to 

determine the edges that represent the walls. We 

then identify corner features [12] and connect 

them into line segments to form the rooms, using 

a threshold of coordinate differences. Additionally, 

doors are identified by connecting components 

into rooms using a different threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig. 4. HGan architecture. 

Fig. 5. 3D floor plan generating. 

4.4. Evaluation and application 

Evaluation: After training the models G2P 

and HGan with 2 datasets the RPLAN - similar 

to the one used in the G2P model and the 

RP_LIL, the results are shown in Table 1 with 

batch size 20, epoch 101. 

The training process ran stably with both 

datasets. The loss function was relatively good, 

and the Intersection over Union (IoU) score was 

around 0.65, which is a quite positive and good 

result. The IoU metric is commonly used to 

evaluate the performance of object detection 

models, with a higher score indicating better 

alignment between the predicted bounding boxes 

and the ground truth. 

Tab. 1. Results for G2P and Hgan  

Test info G2P 

RPLAN (baseline) 
G2P 

RP_LIF 

HGan 

RP_LIF 

Train time 41 hours 59 hours 65 hours 

Loss 0.0001 0.0001 0.0002 

IOU 0.64 0.65 0.67 

Time per 

floor plan 

0.4-1s 0.3-1s 0.1-0.6 
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The use of the combined RP_LIL dataset 

likely contributed to the model’s improved 

performance compared to using the RPLAN 

dataset alone. By incorporating a more diverse 

set of floor plans, the model was able to learn 

more robust representations and generalize 

better to unseen data. The results demonstrate 

the effectiveness of the model architecture and 

the benefits of training on a comprehensive 

dataset for this floor plan generation task. 

Currently, utilizing advanced computer 

graphics and image processing techniques, we 

have created a simple 3D floor plan model 

featuring enclosing walls, door orientations, and 

functional room divisions represented by distinct 

colors. 

Application: We have developed an 

application that automatically generates a 3D 

floor plan from the architectural constraint 

requirements provided by users. The application 

allows users to upload an image of the house 

boundary or to draw the house boundary 

themselves. Users also input information about 

the room types, sizes, and connections to other 

rooms (Fig. 6). We deploy the 2D floor plan 

generation module using a pre-trained G2P (as 

mentioned above) model. The parameters 

extracted from the boundary, room, and door 

identification in 2D floor plan are supplemented 

with height information to prepare the input for 

3D construction. Based on the stored parameters 

from the previous steps, we develop modules for 

constructing the walls and doors in dedicated 3D 

software. Along with the parameters used for 

constructing the walls and doors, and 

distinguishing colors in different areas of the 

input image representing different room types, 

we create a module to color the delineated areas 

of the different rooms in the final 3D floor plan 

(Fig. 7). In the Fig. 7, we have automatically 

generated 3D floor plans with the input of 

architectural constraints and the house’s 

boundaries. For each 3D floor plan, we have 

identified the location of doors, the location of 

windows in each room, colors indicating the type 

of room for each room, and the scale of the room 

areas as per the 2D floor plan. 

 

 

Fig. 6. User-provided architectural constraint descriptions. 
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5. Conclusion 

The proposed approach for generating 3D 

floor plans from architectural constraints 

provided by the user represents a promising 

direction for advancing architectural design 

automation. The three-step process of graph 

layout generating, 2D floor plan generating, and 

3D floor plan generating leverages graph-based 

representations and generative models to directly 

incorporate the user’s high-level design 

requirements into the generation process. 

 

Fig. 7. 3D floorplan results. 

The key advantages of this   approach are its 

ability to model the spatial and functional 

relationships between rooms, and other 

components using a graph-based representation, 

and the use of optimization techniques to refine 

the 2D floor plan layout to better satisfy the 

specified design constraints and reduce time 

process. By converting the 2D floor plan into a 

comprehensive 3D model, designers and 

engineers can gain a much richer, more 

immersive understanding of the 

building’s features, enabling more informed 

decision-making throughout the design and 

construction phases. With this approach, we 

built an application that generates 3D floor plans 

from user-provided architectural constraint 

descriptions. 

In summary, this   work   demonstrates the 

potential of combining graph-based 

representations, generative models, and 

optimization techniques to automate the 

generation of 3D floor plans that closely match 

user requirements. As architectural design 

continues to evolve, this type of approach could 

significantly streamline the design process and 

empower architects, engineers, and stakeholders 

to explore a wider range of design possibilities 

more efficiently. 
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