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Abstract

We study a Horn fragment called Horn-RegI of the regular description logic with inverse RegI , which extends the description logic
ALC with inverse roles and regular role inclusion axioms characterized by finite automata. In contrast to the well-known Horn
fragments EL, DL-Lite, DLP, Horn-SHIQ and Horn-SROIQ of description logics, Horn-RegI allows a form of the concept
constructor “universal restriction” to appear at the left hand side of terminological inclusion axioms, while still has PTime data
complexity. Namely, a universal restriction can be used in such places in conjunction with the corresponding existential restriction.
We provide an algorithm with PTime data complexity for checking satisfiability of Horn-RegI knowledge bases.
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1. Introduction

Description logics (DLs) are variants of modal logics
suitable for expressing terminological knowledge. They
represent the domain of interest in terms of individuals
(objects), concepts and roles. A concept stands for a
set of individuals, a role stands for a binary relation be-
tween individuals. The DL SROIQ [1] founds the logi-
cal base of the Web Ontology Language OWL 2, which
was recommended by W3C as a layer for the architec-
ture of the Semantic Web.

As reasoning in SROIQ has a very high complex-
ity, W3C also recommended the profiles OWL 2 EL,
OWL 2 QL and OWL 2 RL, which are based on the
families of DLs EL [2, 3], DL-Lite [4, 5] and DLP [6].
These families of DLs are monotonic rule languages
enjoying PTime data complexity. They are defined by
selecting suitable Horn fragments of the corresponding
full languages with appropriate restrictions adopted to
eliminate nondeterminism. A number of Horn frag-

ments of DLs with PTime data complexity have also
been investigated in [7, 8, 9, 10, 11, 12, 13]. The
combined complexities of Horn fragments of DLs were
studied, amongst others, in [14]. Some Horn fragments
of DLs without ABoxes that have PTime complexity
have also been studied in [15, 2]. The fragments Horn-
SHIQ [7, 11] and Horn-SROIQ [13] are notable, with
considerable rich sets of allowed constructors and fea-
tures. Combinations of rule languages like Datalog or
its extensions with DLs have also been widely studied.

To eliminate nondeterminism, all EL [2, 3], DL-
Lite [4, 5], DLP [6], Horn-SHIQ [7] and Horn-
SROIQ [13] disallow (any form of) the universal re-
striction ∀R.C at the left hand side of v in terminologi-
cal axioms. The problem is that the general Horn frag-
ment of the basic DL ALC allowing ∀R.C at the left
hand side of v has NP-complete data complexity [12].
Also, roles are not required to be serial (i.e., satisfying
the condition ∀x∃y R(x, y)), which complicates the con-
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struction of logically least models. For many applica-
tion domains, the profiles OWL 2 EL, OWL 2 QL and
OWL 2 RL languages and the underlying Horn frag-
ments EL, DL-Lite, DLP seem satisfactory. However,
in general, forbidding ∀R.C at the left hand side of v in
terminological axioms is a serious restriction.

In [16] Nguyen introduced the deterministic Horn
fragment of ALC, where the constructor ∀R.C is al-
lowed at the left hand side of v in the combination
with ∃R.C (in the form ∀R.C u ∃R.C, denoted by
∀∃R.C [15]). He proved that such a fragment has PTime
data complexity by providing a bottom-up method for
constructing a logically least pseudo-model for a given
deterministic positive knowledge base in the restricted
language. In [12] Nguyen applied the method of [16] to
regular DL Reg, which extends ALC with regular role
inclusion axioms characterized by finite automata. Let
us denote the Horn fragment of Reg that allows the con-
structor ∀∃R.C at the left hand side of v by Horn-Reg.
As not every positive Horn-Reg knowledge base has a
logically least model, Nguyen [12] proposed to approx-
imate the instance checking problem in Horn-Reg by
using its weakenings with PTime data complexity.

To see the usefulness of the constructor ∀∃R.C at the
left hand side of v in terminological axioms, note that
the following axioms are very intuitive and similar ax-
ioms are desirable:

∀∃hasChild.Happy v HappyParent
∀∃hasChild.Male v ParentWithOnlySons
∀∃hasChild.Female v ParentWithOnlyDaughters

interesting u ∀∃path.interesting v perfect
interesting t ∀∃link.interesting v worth surfing.

The works [16, 12] found a starting point for the re-
search concerning the universal restriction ∀R.C at the
left hand side of v in terminological axioms guarantee-
ing PTime data complexity. However, a big challenge
is faced: the bottom-up approach is used, but not every
positive Horn-Reg knowledge base has a logically least
model. As a consequence, the work [12] on Horn-Reg is
already complicated and the problem whether Horn-Reg
has PTime data complexity remained open until [17].

This paper is a revised and extended version of
our conference paper [17]. In this work we study
a Horn fragment called Horn-RegI of the regular de-
scription logic with inverse RegI . This fragment ex-
tends Horn-Reg with inverse roles. In contrast to
the well-known Horn fragments EL, DL-Lite, DLP,
Horn-SHIQ and Horn-SROIQ of description logics,
Horn-RegI allows the concept constructor ∀∃R.C to ap-
pear at the left hand side of terminological inclusion ax-

ioms. We provide an algorithm with PTime data com-
plexity for checking satisfiability of Horn-RegI knowl-
edge bases. The key idea is to follow the top-down ap-
proach1 and use a special technique to deal with non-
seriality of roles.

The DL RegI (resp. Reg) is a variant of regular gram-
mar logic with (resp. without) converse [18, 19, 20, 21].
The current work is based on the previous works [16,
12, 22]. Namely, [22] considers Horn fragments of se-
rial regular grammar logics with converse. The current
work exploits the technique of [22] in dealing with con-
verse (like inverse roles), but the difference is that it
concerns non-serial regular DL with inverse roles. The
change from grammar logic (i.e., modal logic) to DL is
syntactic, but may increase the readability for the DL
community.

The main achievements of the current paper are that:

• it overcomes the difficulties encountered in [16,
12] by using the top-down rather than bottom-
up approach, and thus enables to show that both
Horn-Reg and Horn-RegI have PTime data com-
plexity, solving an open problem of [12];

• the technique introduced in the current paper for
dealing with non-seriality leads to a solution for
the important issue of allowing the concept con-
structor ∀∃R.C to appear at the left hand side of v
in terminological inclusion axioms.

In comparison with [17], note that:

• Our algorithm now allows expansion rules to be
applied in an arbitrary order. That is, any strategy
can be used for expanding the constructed graph.
This gives flexibility for optimizing the computa-
tion.

• The current paper provides full proofs for the re-
sults as well as additional examples and explana-
tions.

The rest of this paper is structured as follows. In Sec-
tion 2 we present notation and semantics of RegI and
recall automaton-modal operators. In Section 3 we de-
fine the Horn-RegI fragment. In Section 4 we present
our algorithm of checking satisfiability of Horn-RegI

knowledge bases and discuss our technique of dealing
with ∀∃R.C at the left hand side of v. In Section 5 we
give proofs for the properties of the algorithm. We con-
clude this work in Section 6.

1In the top-down approach, the considered query is negated and
added into the knowledge base, and in general, a knowledge base may
contain “negative” constraints.
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2. Preliminaries

2.1. Notation and Semantics of RegI

Our language uses a countable set C of concept
names, a countable set R+ of role names, and a count-
able set I of individual names. We use letters like a, b to
denote individual names, letters like A, B to denote con-
cept names, and letters like r, s to denote role names.

For r ∈ R+, we call the expression r the inverse of r.
Let R− = {r | r ∈ R+} and R = R+ ∪ R−. For R = r,
let R stand for r. We call elements of R roles and use
letters like R, S to denote them.

A context-free semi-Thue system S over R is a finite
set of context-free production rules over alphabet R. It
is symmetric if, for every rule R → S 1 . . . S k of S, the
rule R → S k . . . S 1 is also in S.2 It is regular if, for
every R ∈ R, the set of words derivable from R using
the system is a regular language over R.

A context-free semi-Thue system is like a context-
free grammar, but it has no designated start symbol
and there is no distinction between terminal and non-
terminal symbols. We assume that, for R ∈ R, the word
R is derivable from R using such a system.

A role inclusion axiom (RIA for short) is an expres-
sion of the form S 1 ◦ · · · ◦ S k v R, where k ≥ 0. In the
case k = 0, the left hand side of the inclusion axiom
stands for the empty word ε.

A regular RBox R is a finite set of RIAs such that

{R→ S 1 . . . S k | (S 1 ◦ · · · ◦ S k v R) ∈ R}

is a symmetric regular semi-Thue system S over R. We
assume that R is given together with a mapping A that
associates every R ∈ R with a finite automaton AR rec-
ognizing the words derivable from R using S. We call
A the RIA-automaton-specification of R.

Recall that a finite automaton A over alphabet R is
a tuple 〈R,Q, q0, δ, F〉, where Q is a finite set of states,
q0 ∈ Q is the initial state, δ ⊆ Q×R×Q is the transition
relation, and F ⊆ Q is the set of accepting states. A
run of A on a word R1 . . .Rk over alphabet R is a finite
sequence of states q0, q1, . . . , qk such that δ(qi−1,Ri, qi)
holds for every 1 ≤ i ≤ k. It is an accepting run if qk ∈

F. We say that A accepts a word w if there exists an
accepting run of A on w.

Example 1. Let R = {r ◦ r v r, r ◦ r v r}. The sym-
metric regular semi-Thue system corresponding to R is

S = {r → rr, r → rr}.

2In the case k = 0, the right hand sides of the rules stand for ε.

The set of words derivable from r (resp. r) using S is a
regular language characterized by the regular expression
r ∪ (r; (r ∪ r)∗; r) (resp. r ∪ (r; (r ∪ r)∗; r)). Hence, R is
a regular RBox, whose RIA-automaton-specification A
is specified by:

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉.

Observe that every regular set of RIAs in SROIQ [1]
and Horn-SROIQ [13] is a regular RBox by our def-
inition. However, the above RBox R shows that the
converse does not hold. Roughly speaking using the
notion of regular expressions, “regularity” of a set of
RIAs in SROIQ [1] and Horn-SROIQ [13] allows
only a bounded nesting depth of the star operator ∗,
while “regularity” of a regular RBox in Horn-RegI is
not so restricted. That is, our notion of regular RBox is
more general than the notion of regular set of RIAs in
SROIQ [1] and Horn-SROIQ [13]. C

LetR be a regular RBox and A be its RIA-automaton-
specification. For R, S ∈ R, we say that R is a subrole of
S w.r.t. R, denoted by R vR S , if the word R is accepted
by AS .

Concepts are defined by the following BNF grammar,
where A ∈ C, R ∈ R:

C ::= > | ⊥ | A | ¬C | C uC | C tC | ∀R.C | ∃R.C

We use letters like C, D to denote concepts (including
complex concepts).

A TBox is a finite set of TBox axioms of the form
C v D. An ABox is a finite set of assertions of the form
C(a) or r(a, b). A knowledge base is a tuple 〈R,T ,A〉,
where R is a regular RBox, T is a TBox and A is an
ABox.

An interpretation is a pair I = 〈∆I, ·I〉, where ∆I

is a non-empty set called the domain of I and ·I is
a mapping called the interpretation function of I that
associates each individual name a ∈ I with an ele-
ment aI ∈ ∆I, each concept name A ∈ C with a set
AI ⊆ ∆I, and each role name r ∈ R+ with a binary
relation rI ⊆ ∆I × ∆I.

Define

(r)I = (rI)−1 = {〈y, x〉 | 〈x, y〉 ∈ rI} (for r ∈ R+)

εI = {〈x, x〉 | x ∈ ∆I}.

The interpretation function ·I is extended to complex
concepts as follows:
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>I = ∆I, ⊥I = ∅, (¬C)I = ∆I \CI,

(C u D)I = CI ∩ DI, (C t D)I = CI ∪ DI,

(∀R.C)I = {x ∈ ∆I | ∀y (〈x, y〉 ∈ RI ⇒ y ∈ CI)},

(∃R.C)I = {x ∈ ∆I | ∃y (〈x, y〉 ∈ RI ∧ y ∈ CI)}.

Given an interpretation I and an axiom/assertion ϕ,
the satisfaction relation I |= ϕ is defined as follows,
where ◦ at the right hand side of “if” stands for compo-
sition of relations:

I |= S 1 ◦ · · · ◦ S k v R if S I1 ◦ · · · ◦ S Ik ⊆ RI

I |= ε v R if εI v RI

I |= C v D if CI ⊆ DI

I |= C(a) if aI ∈ CI

I |= r(a, b) if 〈aI, bI〉 ∈ rI.

If I |= ϕ then we say that I validates ϕ.
An interpretation I is a model of an RBox R, a TBox

T or an ABoxA if it validates all the axioms/assertions
of that “box”. It is a model of a knowledge base
〈R,T ,A〉 if it is a model of all R, T andA.

A knowledge base is satisfiable if it has a model. For
a knowledge base KB, we write KB |= ϕ to mean that
every model of KB validates ϕ. If KB |= C(a) then we
say that a is an instance of C w.r.t. KB.

2.2. Automaton-Modal Operators
Given an interpretation I and a finite automaton A

over alphabet R, define AI = {〈x, y〉 ∈ ∆I × ∆I | there
exist a word R1 . . .Rk accepted by A and elements x0 =

x, x1, . . . , xk = y of ∆I such that 〈xi−1, xi〉 ∈ RIi for all
1 ≤ i ≤ k}.

We will use auxiliary modal operators [A] and 〈A〉,
where A is a finite automaton over alphabet R. We call
[A] (resp. 〈A〉) a universal (resp. existential) automaton-
modal operator. Automaton-modal operators were used
earlier, among others, in [23, 20, 24, 25, 12].

In the extended language, if C is a concept then [A]C
and 〈A〉C are also concepts. The semantics of [A]C and
〈A〉C are defined as follows:

([A]C)I =
{
x ∈ ∆I | ∀y

(
〈x, y〉 ∈ AI implies y ∈ CI

)}
(〈A〉C)I =

{
x ∈ ∆I | ∃y

(
〈x, y〉 ∈ AI and y ∈ CI

)}
.

For a finite automaton A over R, let the components
of A be denoted as in the following:

A = 〈R,QA, qA, δA, FA〉.

If q is a state of a finite automaton A then by Aq we
denote the finite automaton obtained from A by replac-
ing the initial state by q.

Lemma 1. Let I be a model of a regular RBox R, A be
the RIA-automaton-specification of R, C be a concept,
and R ∈ R. Then:

1. (∀R.C)I = ([AR]C)I,
2. (∃R.C)I = (〈AR〉C)I,
3. CI ⊆ ([AR]〈AR〉C)I,
4. CI ⊆ ([AR]∃R.C)I.

Proof: The first assertion holds because the follow-
ing conditions are equivalent:

• x ∈ (∀R.C)I;

• for all y ∈ ∆I, if 〈x, y〉 ∈ RI then y ∈ CI;

• for all y ∈ ∆I, if 〈x, y〉 ∈ (AR)I then y ∈ CI;

• x ∈ ([AR]C)I.

Analogously, the second assertion holds.
Consider the third assertion and suppose x ∈ CI. We

show that x ∈ ([AR]〈AR〉C)I. Let y be an arbitrary el-
ement of ∆I such that 〈x, y〉 ∈ (AR)I. By definition,
there exist a word R1 . . .Rk accepted by AR and elements
x0 = x, x1, . . . , xk = y of ∆I such that 〈xi−1, xi〉 ∈ RIi for
all 1 ≤ i ≤ k. Observe that the word Rk . . .R1 is accepted
by AR. Since x ∈ CI, xk = y, x0 = x and 〈xi, xi−1〉 ∈ R

I

i
for all k ≥ i ≥ 1, we have that y ∈ (〈AR〉C)I. Therefore,
x ∈ ([AR]〈AR〉C)I.

The fourth assertion directly follows from the third
and second assertions. C

3. The Horn-RegI Fragment

Let ∀∃R.C stand for ∀R.C u ∃R.C. Left-hand-side
Horn-RegI concepts, called LHS Horn-RegI concepts
for short, are defined by the following grammar, where
A ∈ C and R ∈ R:

C ::= > | A | C uC | C tC | ∀∃R.C | ∃R.C

Right-hand-side Horn-RegI concepts, called RHS
Horn-RegI concepts for short, are defined by the fol-
lowing BNF grammar, where A ∈ C, D is an LHS
Horn-RegI concept, and R ∈ R:

C ::= > | ⊥ | A | ¬D | C uC | ¬D tC | ∀R.C | ∃R.C

A Horn-RegI TBox axiom, is an expression of the
form C v D, where C is an LHS Horn-RegI concept
and D is an RHS Horn-RegI concept.

A Horn-RegI TBox is a finite set of Horn-RegI TBox
axioms.

A Horn-RegI clause is a Horn-RegI TBox axiom of
the form C1 u . . . uCk v D or > v D, where:
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• each Ci is of the form A, ∀∃R.A or ∃R.A,

• D is of the form ⊥, A, ∀R.A or ∃R.A,

• k ≥ 1, A ∈ C and R ∈ R.

A clausal Horn-RegI TBox is a TBox consisting of
Horn-RegI clauses.

A Horn-RegI ABox is a finite set of assertions of the
form C(a) or r(a, b), where C is an RHS Horn-RegI con-
cept. A reduced ABox is a finite set of assertions of the
form A(a) or r(a, b).

A knowledge base 〈R,T ,A〉 is called a Horn-RegI

knowledge base if T is a Horn-RegI TBox and A is
a Horn-RegI ABox. When T is a clausal Horn-RegI

TBox and A is a reduced ABox, we call such a knowl-
edge base a clausal Horn-RegI knowledge base.

Example 2. This example is about Web pages. Let
R+ = {link, path} and let R be the regular RBox con-
sisting of the following role axioms:

link v path, link v path,

link ◦ path v path, path ◦ link v path.

This RBox “defines” path to be the transitive closure
of link. As the RIA-automaton-specification of R we
can take the mapping A such that:

Alink = 〈R, {1, 2}, 1, {〈1, link, 2〉}, {2}〉,

Alink = 〈R, {1, 2}, 2, {〈2, link, 1〉}, {1}〉,
Apath = 〈R, {1, 2}, 1,

{〈1, link, 1〉, 〈1, link, 2〉, 〈1, path, 2〉}, {2}〉,
Apath = 〈R, {1, 2}, 2,

{〈1, link, 1〉, 〈2, link, 1〉, 〈2, path, 1〉}, {1}〉.

Let T be the TBox consisting of the following pro-
gram clauses:

perfect v interesting u ∀path.interesting
interesting u ∀∃path.interesting v perfect
interesting t ∀∃link.interesting v worth surfing.

LetA be the ABox specified by the concept assertion
perfect(b) and the following role assertions of link:

a

��

��

b

�� ��
c

��

e

��

f

��
g h i

kk

Then KB = 〈R,T ,A〉 is a Horn-RegI knowl-
edge base. (Ignoring link and path, which are not
essential in this example, KB can be treated as a
Horn-Reg knowledge base.) It can be seen that b, e,
f , i are instances of the concepts perfect, interesting,
worth surfing w.r.t. KB. Furthermore, h is also an in-
stance of the concept interesting w.r.t. KB. C

The length of a concept, an assertion or an axiom ϕ
is the number of symbols occurring in ϕ. The size of
an ABox is the sum of the lengths of its assertions. The
size of a TBox is the sum of the lengths of its axioms.

The data complexity class of Horn-RegI is defined
to be the complexity class of the problem of checking
satisfiability of a Horn-RegI knowledge base 〈R,T ,A〉,
measured in the size ofA when assuming that R and T
are fixed andA is a reduced ABox.

Proposition 2. Let KB = 〈R,T ,A〉 be a Horn-RegI

knowledge base.

1. If C is an LHS Horn-RegI concept then KB |= C(a)
iff the Horn-RegI knowledge base 〈R, T ∪{C v A},
A∪ {¬A(a)}〉 is unsatisfiable, where A is a fresh
concept name.

2. KB can be converted in polynomial time in the
sizes of T and A to a Horn-RegI knowledge base
KB′ = 〈R,T ′,A′〉 with A′ being a reduced ABox
such that KB is satisfiable iff KB′ is satisfiable.

3. KB can be converted in polynomial time in the
size of T to a Horn-RegI knowledge base KB′ =

〈R,T ′,A〉 with T ′ being a clausal Horn-RegI

TBox such that KB is satisfiable iff KB′ is satis-
fiable.

Proof: The first assertion is clear. For the second
assertion, we start with T ′ := T and A′ := A and then
modify them as follows: for each C(a) ∈ A′ where C is
not a concept name, replace C(a) in A′ by A(a), where
A is a fresh concept name, and add to T ′ the axiom
A v C. It is easy to check that the resulting Horn-RegI

knowledge base KB′ = 〈R,T ′,A′〉 is satisfiable iff KB
is satisfiable.

For the third assertion, we apply the technique that
replaces complex concepts by fresh concept names. For
example, if ∀∃R.C v ∃S .D is an axiom of T , where
C and D are complex concepts, then we replace it by
axioms C v AC , ∀∃R.AC v ∃S .AD and AD v D, where
AC and AD are fresh concept names. C

Corollary 3. Every Horn-RegI knowledge base KB =

〈R,T ,A〉 can be converted in polynomial time in the
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sizes of T and A to a clausal Horn-RegI knowledge
base KB′ = 〈R,T ′,A′〉 such that KB is satisfiable iff
KB′ is satisfiable.

Proof: This corollary follows from the second and
third assertions of Proposition 2. In particular, we first
apply the conversion mentioned in the second assertion
of Proposition 2 to KB to obtain KB2, and then apply the
conversion mentioned in the third assertion of Proposi-
tion 2 to KB2 to obtain KB′. C

4. Checking Satisfiability of Horn-RegI Knowledge
Bases

In this section we present an algorithm that, given a
clausal Horn-RegI knowledge base 〈R,T ,A〉 together
with the RIA-automaton-specification A of R, checks
whether the knowledge base is satisfiable. The algo-
rithm has PTime data complexity.

We will treat each TBox axiom C v D from T as a
concept standing for a global assumption. That is, C v
D is logically equivalent to ¬C t D, and it is a global
assumption for an interpretation I if (¬C t D)I = ∆I.

Let X be a set of concepts. The saturation of X (w.r.t.
A and T ), denoted by Satr(X), is defined to be the least
extension of X such that:

1. if ∀R.C ∈ Satr(X) then [AR]C ∈ Satr(X),
2. if [A]C ∈ Satr(X) and qA ∈ FA then C ∈ Satr(X),
3. if ∀∃R.A occurs in T for some A then [AR]∃R.> ∈

Satr(X),
4. if A ∈ Satr(X) and ∃R.A occurs at the left hand

side of v in some clause of T then [AR]〈AR〉A ∈
Satr(X).

Notice the third item in the above list. It is used
for dealing with non-seriality and the concept con-
structor ∀∃R.A. Another treatment for the problem
of non-seriality and ∀∃R.A is the step 5 of Func-
tion CheckPremise (used in our algorithm). It will be
explained later.

For R ∈ R, the transfer of X through R is

Trans(X,R) = {[Aq]C | [A]C ∈ X and 〈qA,R, q〉 ∈ δA}.

Our algorithm for checking satisfiability of 〈R,T ,A〉
uses the data structure 〈∆0,∆,Label,Next〉, which is
called a Horn-RegI graph, where:

• ∆0 : the set of all individual names occurring inA,

• ∆ : a set of objects including ∆0,

• Label : a function mapping each x ∈ ∆ to a set of
concepts,

(∀i) if r(a, b) ∈ A then ExtendLabel(b,Trans(Label(a), r));

(∀) if x is reachable from ∆0 and Next(x,∃R.C) = y then
Next(x, ∃R.C) :=

Find(Label(y) ∪ Satr(Trans(Label(x), R)));

(∀I) if x is reachable from ∆0 and 〈x,R, y〉 ∈ Edges then
ExtendLabel(x,Trans(Label(y), R));

(∃) if x is reachable from ∆0, ∃R.C ∈ Label(x), R ∈ R and
Next(x,∃R.C) is not defined then Next(x, ∃R.C) :=

Find(Satr({C} ∪ Trans(Label(x), R)) ∪ T ′);
(v) if x is reachable from ∆0, (C v D) ∈ Label(x) and

CheckPremise(x,C) then ExtendLabel(x, {D});

Table 1: Expansion rules for Horn-RegI graphs.

Function Find(X)

1 if there exists z ∈ ∆ \∆0 with Label(z) = X then
2 return z
3 else
4 add a new element z to ∆ with Label(z) := X;
5 return z

Procedure ExtendLabel(z,X)

1 if X ⊆ Label(z) then return;
2 if z ∈ ∆0 then Label(z) := Label(z) ∪ Satr(X)
3 else
4 z∗ := Find(Label(z) ∪ Satr(X));
5 foreach y, R, C such that Next(y,∃R.C) = z do
6 Next(y,∃R.C) := z∗

Function CheckPremise(x,C)

1 if C = > then return true
2 else let C = C1 u . . . u Ck;
3 foreach 1 ≤ i ≤ k do
4 if Ci = A and A /∈ Label(x) then return false
5 else if Ci = ∀∃R.A and (∃R.> /∈ Label(x) or

Next(x,∃R.>) is not defined or
A /∈ Label(Next(x,∃R.>))) then

6 return false
7 else if Ci = ∃R.A and 〈AR〉A /∈ Label(x) then
8 return false

9 return true

Algorithm 1: checking satisfiability in Horn-RegI

Input: a clausal Horn-RegI knowledge base 〈R, T ,A〉
and the RIA-automaton-specification A of R.

Output: true if 〈R, T ,A〉 is satisfiable,
or false otherwise.

1 let ∆0 be the set of all individuals occurring in A;
2 if ∆0 = ∅ then ∆0 := {τ};
3 ∆ := ∆0, T ′ := Satr(T ), empty the mapping Next ;
4 foreach a ∈ ∆0 do
5 Label(a) := Satr({A | A(a) ∈ A}) ∪ T ′

6 while some rule in Table 1 can make changes do
7 choose such a rule and execute it;

// any strategy can be used

8 if there exists x ∈ ∆ such that ⊥ ∈ Label(x) then
9 return false

10 return true

1
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• Next : ∆ × {∃R.>,∃R.A | R ∈ R, A ∈ C} → ∆ is a
partial mapping.

For x ∈ ∆, Label(x) is called the label of x. A fact
Next(x,∃R.C) = y means that ∃R.C ∈ Label(x), C ∈
Label(y), and ∃R.C is “realized” at x by going to
y. When defined, Next(x,∃R.>) denotes the “logically
smallest R-successor of x”.

Define

Edges = {〈x,R, y〉 | R(x, y) ∈ A or Next(x,∃R.C) = y
for some C}.

We say that x ∈ ∆ is reachable from ∆0 if there exist
x0, . . . , xk ∈ ∆ and elements R1, . . . ,Rk of R such that
k ≥ 0, x0 ∈ ∆0, xk = x and 〈xi−1,Ri, xi〉 ∈ Edges for all
1 ≤ i ≤ k.

Algorithm 1 attempts to construct a model of
〈R,T ,A〉 by initializing a Horn-RegI graph and then
expanding it by the rules in Table 1. The intended model
extends A with disjoint trees rooted at the named in-
dividuals occurring in A. The trees may be infinite.
However, we represent such a semi-forest as a graph
with global caching: if two nodes that are not named
individuals occur in a tree or in different trees and have
the same label, then they should be merged. In other
words, for every finite set X of concepts, the graph con-
tains at most one node z ∈ ∆ \ ∆0 such that Label(z) =

X. The function Find(X) returns such a node z if it
exists, or creates such a node z otherwise. A tuple
〈x,R, y〉 ∈ Edges represents an edge 〈x, y〉 with label R
of the graph. The notions of predecessor and successor
are defined as usual.

For each x ∈ ∆, Label(x) is a set of requirements to be
“realized” at x. To realize such requirements at nodes,
sometimes we have to extend their labels. Suppose we
want to extend the label of z ∈ ∆ with a set X of con-
cepts. Consider the following cases:

• Case z ∈ ∆0 (i.e., z is a named individual occurring
in A): as z is “fixed” by the ABox A, we have no
choice but to extend Label(z) directly with Satr(X).

• Case z < ∆0 and the requirements X are directly
caused by z itself or its successors: if we directly
extend the label of z (with Satr(X)) then z will pos-
sibly have the same label as another node not be-
longing to ∆0 and global caching is not fulfilled.
Hence, we “simulate” changing the label of z by
using z∗ := Find(Label(z) ∪ Satr(X)) for playing
the role of z. In particular, for each y, R and C such
that Next(y,∃R.C) = z, we set Next(y,∃R.C) := z∗.

Extending the label of z for the above two cases is done
by Procedure ExtendLabel(z, X). The third case is
considered below.

Suppose that Next(x,∃R.C) = y. Then, to realize the
requirements at x, the label of y should be extended
with X = Satr(Trans(Label(x),R)). How can we real-
ize such an extension? Recall that we intend to con-
struct a forest-like model for 〈R,T ,A〉, but use global
caching to guarantee termination. There may exist an-
other Next(x′,∃R′.C′) = y with x′ , x. That is, we may
use y as a successor for two different nodes x and x′,
but the intention is to put x and x′ into disjoint trees.
If we directly modify the label of y to realize the re-
quirements of x, such a modification may affect x′. The
solution is to delete the edge 〈x,R, y〉 and reconnect x to
y∗ := Find(Label(y)∪X) by setting Next(x,∃R.C) := y∗.
The extension is formally realized by the expansion rule
(∀) (in Table 1).

Consider the other expansion rules (in Table 1):

• (∀i): If r(a, b) ∈ A then we extend Label(b) with
Satr(Trans(Label(a),R)).

• (∀I): If 〈x,R, y〉 ∈ Edges then we extend the label
of x with Trans(Label(y),R) by using the proce-
dure ExtendLabel discussed earlier.

• (∃): If ∃R.C ∈ Label(x) and Next(x,∃R.C) is not
defined yet then to realize the requirement ∃R.C
at x we connect x via R to a node with label
X = Satr({C} ∪ Trans(Label(x),R) ∪ T ) by setting
Next(x,∃R.C) := Find(X).

• (v): If (C v D) ∈ Label(x) and C “holds” at x
then we extend the label of x with {D} by using the
procedure ExtendLabel discussed earlier. Sup-
pose C = C1 u . . . uCk. How to check whether C
“holds” at x? It “holds” at x if Ci “holds” at x for
each 1 ≤ i ≤ k. There are the following cases:

– Case Ci = A : Ci “holds” at x if A ∈ Label(x).

– Case Ci = ∀∃R.A : Ci “holds” at x if both
∀R.A and ∃R.> “hold” at x. If ∃R.> “holds”
at x by the evidence of a path connecting
x to a node z with (forward or backward)
“edges” labeled by S 1, . . . , S k such that the
word S 1 . . . S k is accepted by the automaton
A = AR, that is:

∗ there exist nodes x0, . . . , xk such that
x0 = x, xk = z and, for 1 ≤ j ≤ k, either
〈x j−1, S j, x j〉 ∈ Edges or 〈x j, S j, x j−1〉 ∈

Edges,
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∗ there exist states q0, . . . , qk of A such that
q0 = qA, qk ∈ QA and, for 1 ≤ j ≤ k,
〈q j−1, S j, q j〉 ∈ δA,

then, with A = AR, we have that:

∗ since Label(z) is saturated, [AR]∃R.> ∈
Label(z), i.e. [Aqk ]∃R.> ∈ Label(xk),

∗ by the rules (∀i), (∀) and (∀I) (listed in
Table 1 and used in Algorithm 1), for
each j from k − 1 to 0, we can expect
that [Aq j ]∃R.> ∈ Label(x j),

∗ consequently, since q0 = qA ∈ QA,
due to the saturation we can expect that
∃R.> ∈ Label(x0).

That is, we can expect that ∃R.> ∈ Label(x)
and Next(x,∃R.>) is defined. To check
whether Ci “holds” at x we just check
whether ∃R.> ∈ Label(x), Next(x,∃R.>) is
defined and A ∈ Label(Next(x,∃R.>)). The
intuition is that, y = Next(x,∃R.>) is the
“least R-successor” of x, and if A ∈ Label(y)
then A will occur in all R-successors of x.

– Case Ci = ∃R.A : If ∃R.A “holds” at x by the
evidence of a path connecting x to a node z
with (forward or backward) “edges” labeled
by S 1, . . . , S k such that the word S 1 . . . S k is
accepted by AR and A ∈ Label(z) then, since
[AR]〈AR〉A is included in Label(z) by satura-
tion, we can expect that 〈AR〉A ∈ Label(x).
To check whether Ci = ∃R.A “holds” at x,
we just check whether 〈AR〉A ∈ Label(x).
(Semantically, 〈AR〉A is equivalent to ∃R.A.)
The reason for using this technique is due to
the use of global caching (in order to guaran-
tee termination).

We do global caching to represent a possibly infi-
nite semi-forest by a finite graph possibly with cycles.
As a side effect, direct checking “realization” of ex-
istential automaton-modal operators is not safe. Fur-
thermore, we cannot allow universal modal operators to
“run” along such cycles. “Running” universal modal
operators backward along an edge is safe, but “run-
ning” universal modal operators forward along an edge
is done using a special technique, which may replace
the edge by another one as in the rule (∀) (specified in
Table 1). Formally, checking whether the premise C of
a Horn-RegI clause C v D “holds” at x is done by Func-
tion CheckPremise(x,C).

Expansions by modifying the label of a node and/or
setting the mapping Next are done only for nodes that

are reachable from ∆0. Note that, when a node z is sim-
ulated by z∗ as in Procedure ExtendLabel, the node z
becomes unreachable from ∆0. We do not delete such
nodes z because they may be reused later.

When some x ∈ ∆ has Label(x) containing ⊥, Algo-
rithm 1 returns false, which means that the knowledge
base 〈R,T ,A〉 is unsatisfiable. When the graph cannot
be expanded any more, the algorithm terminates in the
normal mode with result true, which means 〈R,T ,A〉
is satisfiable.

Theorem 4. Algorithm 1 correctly checks satisfiability
of clausal Horn-RegI knowledge bases and has PTime
data complexity.

This theorem follows from Lemmas 6, 7 and Corol-
lary 9, which are given and proved in the next section.
The following corollary follows from this theorem and
Proposition 2.

Corollary 5. The problem of checking satisfiability of
Horn-RegI knowledge bases has PTime data complexity.

Example 3. Let R+ = {r}, C = {A, B, C, D, E},
I = {a, b}, R = {r ◦ r v r, r ◦ r v r}, and let T be
the TBox consisting of the following axioms:

A v ∃r.C (1)
C v ∀r.D (2)
D v C (3)

A u ∀∃r.C v E (4)
A u ∃r.B v E (5)

E v ⊥. (6)

As discussed in Example 1, R is a regular RBox with
the following RIA-automaton-specification:

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉

Ar = 〈R, {0, 1, 2}, 0, {〈0, r, 1〉, 〈0, r, 2〉, 〈2, r, 2〉,
〈2, r, 2〉, 〈2, r, 1〉}, {1}〉.

Note that Ar = (Ar)0 and Ar = (Ar)0.
Consider the Horn-RegI knowledge base KB =

〈R,T ,A〉 withA = {A(a), B(a), A(b), r(a, b)}.
Figure 1 illustrates the Horn-RegI graph constructed

by Algorithm 1 for KB. The nodes of the graph are
a, b, u, u′, v, v′, where ∆0 = {a, b}. In each node, we
display the concepts of the label of the node. The main
steps of the run of the algorithm are numbered from 0
to 13. In the table representing a node x ∈ {a, b}, the
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5 : u
C,T ,

[Ar]∃r.>,
[(Ar)1]∃r.>,
∃r.>,

[(Ar)2]∃r.>

7 : u′

C,T ,
[Ar]∃r.>,

[(Ar)1]∃r.>,
∃r.>,

[(Ar)2]∃r.>,
∀r.D, [Ar]D

a
0 A, B,T , [Ar]∃r.>,

[Ar]〈Ar〉B,
1 ∃r.C,
3 [(Ar)1]∃r.>,∃r.>,

[(Ar)2]∃r.>,
8 [(Ar)1]D,D,

[(Ar)2]D
12 E,
13 ⊥

r //

5 :∃r.C 7 : deleted

OO

7 :∃r.C

CC

10 :∃r.> 11 : deleted

��

11 :∃r.>

��

b
0 A,T ,

[Ar]∃r.>,
2 ∃r.C,
4 [(Ar)1]∃r.>,

∃r.>,
[(Ar)2]∃r.>,

9 [(Ar)1]D,
D,

[(Ar)2]D

6 :∃r.C
7 : deleted

[[

7 :∃r.C

OO

10 : v
>,T ,

[Ar]∃r.>,
[(Ar)1]∃r.>,
∃r.>,

[(Ar)2]∃r.>,
[(Ar)1]D,D,

[(Ar)2]D

11 : v′

>,T ,
[Ar]∃r.>,

[(Ar)1]∃r.>,
∃r.>,

[(Ar)2]∃r.>,
[(Ar)1]D,D,
[(Ar)2]D,C

Figure 1. An illustration for Example 3.

number in the left cell in a row denotes the step at which
the concepts in the right cell were added to the label of
the node. For a node not belonging to ∆0 = {a, b}, the
number before the name of the node denotes the step
at which the node was created. A label n : ∃r.ϕ dis-
played for an edge from a node x to a node y means that
Next(x,∃r.ϕ) = y and the edge was created at the step n.
A label n : deleted beside a dashed edge means that the
edge was deleted at the step n.

The steps of running Algorithm 1 for KB are as fol-
lows:

0: Initialization.

1: Applying the expansion rule (v) to the node x = a
using the clause (1).

2: Applying (v) to x = b using the clause (1).
3: Applying (∀I) to the nodes x = a and y = b.
4: Applying (∀i) to the nodes a and b.
5: Applying (∃) to x = a and the concept ∃r.C.
6: Applying (∃) to x = b and the concept ∃r.C.
7: Applying (v) to x = u using the clause (2).
8: Applying (∀I) to the nodes x = a and y = u′.
9: Applying (∀I) to the nodes x = b and y = u′.

10: Applying (∃) to x = a and the concept ∃r.>.
11: Applying (v) to x = v using the clause (3).
12: Applying (v) to x = a using the clause (4).
13: Applying (v) to x = a using the clause (6).

Since ⊥ was added to Label(a), Algorithm 1 returns
false, and by Corollary 9, the knowledge base KB is un-
satisfiable.

5. Proofs

Define closureA(T ) to be the smallest set of formulas
such that:

• concepts and subconcepts occurring in T belong to
closureA(T ),

• subconcepts occurring in closureA(T ) also belong
to closureA(T ),

• if ∀R.C ∈ closureA(T ) then [AR]C ∈ closureA(T ),

• if [A]C ∈ closureA(T ) and q ∈ QA

then [Aq]C ∈ closureA(T ),

• {[AR]∃R.> | R ∈ R} ⊆ closureA(T ),

• if A ∈ closureA(T ) and R ∈ R
then [AR]〈AR〉A ∈ closureA(T ).

Observe that closureA(T ) is finite.

Lemma 6. Algorithm 1 runs in polynomial time in the
size ofA (when assuming that R and T are fixed).

Proof: We will refer to the data structures used in
Algorithm 1. Let n be the size ofA. Since R and T are
fixed, the size of closureA(T ) is bounded by a constant.
Observe that, for x ∈ ∆ \ ∆0, Label(x) ⊆ closureA(T ),
and for a ∈ ∆0, Label(a)\{A | A(a) ∈ A} ⊆ closureA(T ).
Hence the sizes of these two sets are also bounded
by a constant. Since each x ∈ ∆ \ ∆0 has a unique
Label(x) ⊆ closureA(T ), the set ∆ \ ∆0 contains only
O(1) elements. Hence, the size of ∆ is of rank O(n).
Observe that:
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• function Find(X) for X ⊆ closureA(T ) runs in con-
stant time,

• procedure CheckPremise(x,C) runs in O(n) steps
(C does not depend onA),

• procedure ExtendLabel(z, X) runs in O(n) steps
for X ⊆ closureA(T ),

• each iteration of the “while” loop in Algorithm 1
runs in O(n2) steps.

An iteration of the “while” loop in Algorithm 1 makes
changes only when some of the following occur:

1. Label(a) for some a ∈ ∆0 is extended by a subset
of closureA(T ),

2. a new node x is added into ∆,
3. some Next(x,∃R.C) is defined the first time to be

some y ∈ ∆ \ ∆0,
4. some Next(x,∃R.C) changes value from y to some

y∗ ∈ ∆ \ ∆0 with Label(y) ( Label(y∗).

As the sizes of closureA(T ), ∆ \ ∆0 and Label(y) for
y ∈ ∆ \ ∆0 are bounded by a constant, the “while” loop
in Algorithm 1 executes only O(n) iterations. Therefore,
the “while” loop in Algorithm 1 and hence the whole
Algorithm 1 run in time O(n3). C

Lemma 7. If Algorithm 1 returns true then the knowl-
edge base 〈R,T ,A〉 is satisfiable.

Proof: Suppose Algorithm 1 returns true for
〈R,T ,A〉. We will refer to the data structures used
by that run of Algorithm 1. A model for 〈R,T ,A〉
will be constructed by starting from ∆0, then unfolding
the remaining part of the graph constructed by Algo-
rithm 1, and then completing the interpretation of roles
R ∈ R. For that we define ∆′ and Edges′ as counter parts
of ∆ and Edges, respectively, together with a mapping
f : ∆′ → ∆ and a queue unresolved of elements of ∆′ as
follows:

• ∆′ := ∆0;

• Edges′ := {〈a, r, b〉 | r(a, b) ∈ A};

• for each a ∈ ∆0, f (a) := a;

• add the elements of ∆0 into unresolved;

• while unresolved is not empty:

– extract an element u from unresolved;

– for each ∃R.C and each y such that
Next( f (u),∃R.C) = y :

∗ add a new element v into ∆′ and
unresolved;

∗ f (v) := y;
∗ add 〈u,R, v〉 to Edges′.

The resulting data structures can be infinite. Let I be
the interpretation with ∆I = ∆′, specified by:

• for each A ∈ C, AI = {u ∈ ∆′ | A ∈ Label( f (u))};

• for all R ∈ R, RI are the least relations satisfying
the following conditions:

– (R
I

)−1 ⊆ RI,

– if 〈u,R, v〉 ∈ Edges′ then 〈u, v〉 ∈ RI,

– for every word S 1 . . . S k accepted by AR,
S I1 ◦ · · · ◦ S Ik ⊆ RI.

We show that I is a model of 〈R,T ,A〉. For this it
suffices to prove that, for every u ∈ ∆′ and every ϕ ∈
Label( f (u)), u ∈ ϕI. We prove this by induction on the
structure of ϕ. Let u ∈ ∆′ and suppose ϕ ∈ Label( f (u)).

• Case ϕ = A is trivial.

• Case ϕ = ∃R.C : Since ϕ ∈ Label( f (u)),
there exists v ∈ ∆I such that 〈u, v〉 ∈ RI and
Next( f (u),∃R.C) = f (v). We have that C ∈

Label( f (v)). By the inductive assumption, v ∈ CI,
and hence u ∈ ϕI.

• Case ϕ = ∀R.A : Let v be any element of ∆I such
that 〈u, v〉 ∈ RI. We show that v ∈ AI. Since
〈u, v〉 ∈ RI, there exist a word S 1 . . . S k accepted
by AR and elements u0 = u, u1, . . . , uk−1, uk = v
such that, for every 1 ≤ i ≤ k, 〈ui−1, ui〉 ∈ S Ii , and
〈ui−1, S i, ui〉 ∈ Edges′ or 〈ui, S i, ui−1〉 ∈ Edges′. Let
A = AR. Since S 1 . . . S k is accepted by A, there
exist states q0 = qA, q1, . . . , qk such that qk ∈ FA

and 〈qi−1, S i, qi〉 ∈ δA for every 1 ≤ i ≤ k. Since
ϕ ∈ Label( f (u)) and ϕ = ∀R.A, by saturation,
we have that [AR]A ∈ Label( f (u)), which means
[A]A ∈ Label( f (u)) and [Aq0 ]A ∈ Label( f (u0)).
For each i from 1 to k, since 〈ui−1, S i, ui〉 ∈ Edges′

or 〈ui, S i, ui−1〉 ∈ Edges′, it follows that [Aqi ]A ∈
Label( f (ui)). Since qk ∈ FA and uk = v, it fol-
lows that A ∈ Label( f (v)). Hence, by the inductive
assumption, v ∈ AI.

• Case ϕ = (C v D) and C = C1u . . .uCk : Suppose
u ∈ CI. We prove that u ∈ DI. The last call
CheckPremise( f (u),C) returned true because the
following observations hold for every 1 ≤ i ≤ k:
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– Case Ci = A : Since u ∈ CIi , we have that
A ∈ Label( f (u)).

– Case Ci = ∃R.A : Since u ∈ CIi , there
exist a word S 1 . . . S k accepted by AR and
elements u0 = u, u1, . . . , uk−1, uk such that
uk ∈ AI and, for every 1 ≤ i ≤ k,
〈ui−1, ui〉 ∈ S Ii , and 〈ui−1, S i, ui〉 ∈ Edges′ or
〈ui, S i, ui−1〉 ∈ Edges′. Let A = AR. Since
S k . . . S 1 is accepted by A, there exist states
qk = qA, qk−1, . . . , q0 such that q0 ∈ FA and
〈qi, S i, qi−1〉 ∈ δA for every k ≥ i ≥ 1. Since
uk ∈ AI, we have that A ∈ Label( f (uk)) and,
by saturation, [AR]〈AR〉A ∈ Label( f (uk)),
which means [Aqk ]〈AR〉A ∈ Label( f (uk)).
For each i from k to 1, since 〈ui, S i, ui−1〉 ∈

Edges′ or 〈ui−1, S i, ui〉 ∈ Edges′, it follows
that [Aqi−1 ]〈AR〉A ∈ Label( f (ui−1)). Since
q0 ∈ FA and u0 = u, it follows that 〈AR〉A ∈
Label( f (u)).

– Case Ci = ∀∃R.A : Since u ∈ CIi , we have
that u ∈ (∀R.A)I and u ∈ (∃R.>)I. Thus,
there exist a word S 1 . . . S k accepted by AR

and elements u0 = u, u1, . . . , uk−1, uk such
that, for every 1 ≤ i ≤ k, 〈ui−1, ui〉 ∈ S Ii ,
and 〈ui−1, S i, ui〉 ∈ Edges′ or 〈ui, S i, ui−1〉 ∈

Edges′. Let A = AR. Since S k . . . S 1
is accepted by A, there exist states qk =

qA, qk−1, . . . , q0 such that q0 ∈ FA and
〈qi, S i, qi−1〉 ∈ δA for every k ≥ i ≥ 1. By
saturation, [AR]∃R.> ∈ Label( f (uk)), which
means [Aqk ]∃R.> ∈ Label( f (uk)). For each
i from k to 1, since 〈ui, S i, ui−1〉 ∈ Edges′

or 〈ui−1, S i, ui〉 ∈ Edges′, it follows that
[Aqi−1 ]∃R.> ∈ Label( f (ui−1)). Since q0 ∈

FA and u0 = u, it follows that ∃R.> ∈

Label( f (u)). Therefore, Next( f (u),∃R.>) is
defined and there exists v′ ∈ ∆I with f (v′) =

Next( f (u),∃R.>). We have that 〈u, v′〉 ∈ RI.
Since u ∈ (∀R.A)I, it follows that v′ ∈ AI

and hence A ∈ Label( f (v′)), which means
A ∈ Label(Next( f (u),∃R.>)).

We have shown that CheckPremise( f (u),C) re-
turned true. It follows that D ∈ Label( f (u)), and
by the inductive assumption, u ∈ DI. C

Given an interpretation I, for ϕ = (C v D), define
ϕI = (¬C t D)I, and for a set X consisting of concepts
and TBox axioms, define XI =

⋂
{ϕI | ϕ ∈ X}.

As Algorithm 1 tries to derive ⊥ at some node of the
constructed graph, Lemma 7 given above is in fact an

assertion about the completeness of the procedure. It re-
mains to show the soundness: if ⊥ is added to Label(x)
for some x ∈ ∆ (which causes the algorithm to return
false), then the knowledge base KB = 〈R,T ,A〉 is un-
satisfiable. It is sufficient to show that every change
made to the graph constructed by Algorithm 1 is “justi-
fiable”. An informal justification for this has been given
in the discussion about the algorithm. For a formal justi-
fication, we consider the contrapositive assertion: if KB
is satisfiable then Algorithm 1 returns true for it. By as-
suming that KB is satisfiable and using any fixed model
I of KB, every change made to the constructed graph
can be justified by I. In particular, ⊥ cannot be added
to the label of any node of the graph. This is formalized
by the following lemma.

Lemma 8. Let KB = 〈R,T ,A〉 be a clausal Horn-RegI

knowledge base. Suppose KB is satisfiable and I is a
model of KB. Consider an execution of Algorithm 1 for
KB and any moment after executing the step 7 of that
execution. Let r = {〈x, u〉 ∈ ∆ × ∆I | u ∈ (Label(x))I}.
Then:

1. for every a ∈ I occurring inA, r(a, aI) holds;
2. for every x, y ∈ ∆, u, v ∈ ∆I and ∃R.C such that

Next(x,∃R.C) = y, if r(x, u) holds, RI(u, v) holds
and v ∈ CI, then r(y, v) holds;

3. for every x ∈ ∆, there exists u ∈ ∆I such that r(x, u)
holds.

Note that if r(x, u) holds then u ∈ (Label(x))I, which
means Label(x) is satisfied at (and hence “justified by”)
u in I. The second assertion of the lemma implies that if
Next(x,∃R.>) = y, r(x, u) and RI(u, v) hold then r(y, v)
holds. The first two assertions of this lemma can be
proved by induction on the number of executed steps
in a way similar to the proof of [24, Lemma 3.5]. The
last assertion follows from the previous ones, because
every x ∈ ∆ is/was at some step reachable from ∆0 and
Label(x) was never changed.

Corollary 9. If KB = 〈R,T ,A〉 is a satisfiable clausal
Horn-RegI knowledge base then Algorithm 1 returns
true for it.

Proof sketch: By the last assertion of Lemma 8, ⊥
was never added to Label(x) for any x ∈ ∆. This means
that Algorithm 1 does not return false. As it always ter-
minates (by Lemma 6), it must return true. C
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6. Conclusions and Future Work

We have explained our technique of dealing with non-
seriality that leads to a solution for the important issue
of allowing the concept constructor ∀∃R.C to appear
at the left hand side of v in terminological inclusion
axioms. We have developed an algorithm with PTime
data complexity for checking satisfiability of Horn-RegI

knowledge bases. This shows that both Horn-Reg and
Horn-RegI have PTime data complexity, solving an open
problem of [12].

Recently, in [26] we have introduced Horn-DL as a
generalization of Horn-RegI that still has PTime data
complexity. The full manuscript on Horn-DL [27] is
to be improved and not published yet. As future work,
we intend to develop efficient methods for evaluating
queries to Horn-RegI and Horn-DL knowledge bases.
As Horn-RegI is a restricted version of Horn-DL, we
expect to have more optimization techniques for query
evaluation in Horn-RegI .
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[9] M. Krötzsch, S. Rudolph, P. Hitzler, Conjunctive queries for a
tractable fragment of OWL 1.1, in: Proceedings of ISWC’2007
+ ASWC’2007, LNCS 4825, Springer, 2007, pp. 310–323.

[10] R. Rosati, On conjunctive query answering in EL, in: Proceed-
ings of DL’2007, pp. 451–458.

[11] T. Eiter, G. Gottlob, M. Ortiz, M. Simkus, Query answering in
the description logic horn-shiq, in: Proceedings of JELIA’2008,
Vol. 5293 of LNCS, Springer, 2008, pp. 166–179.

[12] L. Nguyen, Horn knowledge bases in regular description logics
with PTime data complexity, Fundamenta Informaticae 104 (4)
(2010) 349–384.

[13] M. Ortiz, S. Rudolph, M. Simkus, Query answering in the Horn
fragments of the description logics SHOIQ and SROIQ, in:
T. Walsh (Ed.), Proceedings of IJCAI 2011, 2011, pp. 1039–
1044.
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