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Abstract: The paper presents a new approach to the speed control of a switched reluctance motors 

(SRM) is that using a back-stepping controller combining with an artificial neuron network based 

flux estimator. The nonlinear mathematical model of switched reluctance motor (SRM) is 

established and the back-stepping control strategy is applied to control SRM. The ANN will be used 

to estimate the flux of the motor instead of approximated model or experimental values. The ANN 

flux estimator was trained off-line using backpropagation algorithm. The stability of the closed-loop 

control system was analyzed and proved according to the Lyapunov stability criteria. The simulation 

is carried out with both traditional back-stepping controller and the back-stepping controller 

combining with ANN based flux estimator. The numerical simulation results confirmed quality of 

the back-stepping controller as well as the feasibility of using ANN in the flux estimator. 

Keywords: Switched Reluctance Motor (SRM), Back-stepping Control, Flux Estimator, Artificial 

Neural Networks (ANN), Backpropogation Algorithm. 

1. Introduction* 

The switched reluctance motors (SRMs) is 

more and more widely used in variable speed 

drives thanks to many advantages such as control 

flexibility, simple structure, lower cost and high 

________ 
* Corresponding author. 

   E-mail address: nlnguyen@vnu.edu.vn 

   https://doi.org/10.25073/2588-1086/vnucsce.261 

efficiency, etc. The rotor has no wire allow it 

withstand high temperature as well as is suitable 

for extremely high speed application. However, 

SRM has non-linear characteristic due to 

magnetic saturation, which makes it difficult to 

control its torque [1, 5, 7]. Control of SRM 
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therefore is a challenging problem and depends 

much on the mathematic model of SRM. Many 

studies have tried to establish the nonlinear 

mathematical model of SRMs [1-6, 8, 13-14]. 

Some mathematical models have been 

developed, however, their coefficients are 

difficult to determine (because depending on the 

type of SRM, the size of SRM...[1, 8]. In [5], 

author introduced a non-linear model of SRM 

and did a linearization after that. Besides, one of 

the most important components in SRM’s 

model, used in controller design, is the motor’s 

magnetic flux. Some methods have been 

proposed to estimate motor’s flux of SRMs 

based on the experimental results or using an 

approximately mathematical model [4, 14] 

However, these methods usually have 

difficulties in reality and sometimes can make a 

large error. To overcome this drawback, in this 

research, we will use an artificial neuron 

network (ANN) to estimate the flux of SRMs. 

Accordingly, non-linear model of the 

switched reluctance motor, which including the 

phase switch and the dynamics of the SRMs, has 

been established and been used to synthesize the 

back-stepping controller. In this model, motor’s 

flux will be estimated by ANN based flux 

estimator instead of using approximate model or 

measured data. This ANN is trained offline 

based on the experimental data and can continue 

automatically be trained in the future.. In order 

to verify the efficiency and feasibility of 

proposed method, several simulations are 

implemented both for back-stepping control 

(BTP) with traditional model of SRM and back-

stepping control with the model using the ANN 

based flux estimator (BTP - ANN flux 

estimator). Conclusions and some future works 

are pointed out in final. 

2. Mathematic Model of the SRMS 

Mathematical model of the m-phase SRMs 

is constructed from the basic machine equations 

including armature voltage equation, electro-

magnetic torque equation and mechanical 

equation (1): 
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in which j = 1, 2, …, m 

 uj is voltage of phase j 

 R is resistor of phase j 

 ij is current of phase j 

 ѱj is flux of phase j 

 Te is torque of phase 

 Tl is torque of load 

 J is moment of inertia 

'W j  is the electro-magnetic energy 

which is determined in (2): 

'

0

W ( , ) ( , )   = 
ji

j j j j ji i di                    (2) 

Electrical torque in SRM is a nonlinear 

function of only current if the magnetic circuit is 

linear. 

The total torque produced is equal to the sum 

of the moments in the phases: 

1 2

1

( , , ,..., ) ( , ) 
=

=
m

e m j j

j

T i i i T i            (3) 

To control the SRMs, we need to determine 

the magnetic flux characteristic ѱj (θ, ij) as 

accurately as possible. For convenience in the 

process of research and development of control 

algorithms, the function of magnetic flux 

characteristic in [4] will be used: 

( )
( , ) (1 )


  

−
= − j ji f

j j si e                   (4) 

with j = 1, 2, …, m; ѱs is saturation flux. 
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If we ignore the higher order components in 

the Fourier series, we have a function fj(θ): 

2
( ) sin[ ( 1) ]


 = + − −j rf a b N j

m
        (5) 

Nr is number of rotor’s pole. 

Torque of phase j is represented as follows: 

( )

2
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( , ) {1 [1 ( )] }
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= − + j ji fjs
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f d
(6) 

The state-space model of the SRMs can be 

obtained from the following equations:  

1
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Considering the switched reluctance motor 

with m = 4 phases, the state vector is 

1 2 3 4 1 2 3 4 5 6[ , , , , , ] [ , , , , , ] = =T Tx i i i i x x x x x x . The 

state-space equations of motor [13]: 
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In (9), we set: 
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Equation (9) can be rewritten as follows: 
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Differentiating equation (16), we have: 
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Rewritten equations from (10) to (13) as 

follows: 
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Substituting (17) to (16), we have: 
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The switched reluctance motor works with 

the principle of voltage supply for each phase. If 

the number of phases is 4, we have =j ju k u , 

with j=1, 2, 3, 4); kj  is a phase transition key, so 

it can only take 2 values, 0 or 1. Equation (18) 

can be represented as follows: 
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We have another expression of equation 

(19) as follows: 
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We have: 

2 ( ) ( )= +x f x g x u                     (22) 

Setting 2 1=x z , we have the state model of 

the SRMs as presented in (23): 

( ) ( )
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2

=

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z z

z f x g x u
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with ( ) ( ),f x g x
 
is defined in equation (21). 

This is a second order tight backpropagation 

model. Model in (23) is perfectly suitable using 

back-stepping technique to design the controller. 

3. Design a Back-Stepping Controller 

Combining with ANN based Flux 

Estimator for SRM 

3.1. The Back-stepping Controller 

As mention above, the model of SRM in 

(23) is a second order tight backpropagation 

type. According to the back-stepping 

technique, we perform two design steps for 

this system [14][15]. 

Step 1: Considering the error tracking 

reference velocity =d dz  is 1e , we have: 

1 1= − de z z                            (24) 

Differentiating 1e  over time, we have: 

1 1 2= − = −d de z z z z        (25) 

Considering 2 2 1= −e z  where 1  is virtual 

control signal for the first subsystem.
 

Substitution to (25), we have:
 

1 1 2 2 1= − = − = + −d d de z z z z e z
       (26) 

To determine the virtual control signal to 

ensure
 

1 0→e
 
we choose Lyapunov function:

 

2
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1

2
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Differentiating 1V  over time, we have: 

( ) 2

1 1 1 1 2 1 1 1 1 2= = + − = − +dV e e e e z c e e e (28) 

In order to have (30), the virtual control 

signal has a following form: 

1 1 1 = − + dc e z                      (29) 

in which 1c  is positive constant. To 1 0→e
 

then 2 0→e . 

Step 2: 2 2 1= −e z                     (30) 

Differentiating 2e over time, we have: 
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2 2 1= −e z            (31) 

From (25) we have: 

( ) ( )2 2 1 1 = − = + −e z f x g x u         (32) 

To determine control signal u  to ensure 
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2 1 2 2= +V V e e              (34) 

Substituting equations (28) and (33) to (34), 

we have: 

( ) ( )2

2 1 1 1 2 2 1= − + +  + −  V c e e e e f x g x u (35) 

Selecting the control signal of system from 

(35): 

( )

( )
2 2 1 1− − −  −  

=
c e e f x

u
g x

          (36) 

with 2c  is positive constant.  

Theorem: The SRM has been represented in 

state-space model (23) controlled by a back-

stepping controller defined in (36) where are 

positive constants to ensure a stable Lyapunov 

closed system. 

Proof: We choose the Lyapunov function for 

closed loop system has a following form:  

( )2 2 2

1 2 1 2 2

1 1

2 2
= + = + =V e e V e V          (37) 

Differential V  over time, we have: 

( ) ( )2

1 1 1 2 2 1= − + +  + −  V c e e e e f x g x u (38) 

Substituting u
 
from equation (36) to (38), 

we have:  

( )

( )

2 2 12

1 1 1 2 2

1 1

2 2

1 1 2 2 0

 

 − − 
= − + +  

−  −  −   

= − − 

f x c e e
V c e e e e

f x

V c e c e

(39) 

→QED.

 3.2. ANN Based Flux Estimator for SRM 

Based on magnetic flux equation (4) of 

SRM, we will approximate function fj(θ) by an 

ANN The structure of ANN is illustrated in 

Figure 1 [10]. Inputs of the network are the 

current in stator and position of rotor, and 

outputs are fj(θ) and ( )
^

 j . The network 

includes 5 layers , , ,f f f fP R S T , Uf with the 

letters representing the relative number of 

neurons in respective layers f (forward) is in 

every variable of the network. 

i) Feedforward algorithm of the estimator 

In every layer, x is the input and y is the 

output of each neuron. Signal propagation and 

activation function is illustrated. 

 

Figure 1. Neuron network structure of the system. 
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Layer fP : neuron p has input and output 

presented: 

=f

px  and ( ) =f f f

p p py x x                   (40) 

with 0=p . Activation function equals to 1 

in this layer. 

Layer fR : Each neuron r in this layer has 

input and output presented: 

.w=f f f

r p prx y  and 

2

exp


  −
 = − 
   

f f
f r r

r f

r

x c
y (41) 

with 0=p  and 0...= fr R . In which f

rc  and  f

r
 

are center and range of Gaussian Activation 

function. w f

pr is the weight between 2 layers fP

and fR . 

Layer fS : s  neurons are in this layer. Inputs 

and outputs are calculated: 

0

.w
=

=
fR

f f f

s r rs

r

x y                     (42) 

and 

2

exp


  −
 = − 
   

f f
f s s

s f

s

x c
y                 (43) 

with 0...= fr R  and 0...= fs S . In which f

sc  and 

 f

s
 are center and range of Gaussian Activation 

function. w f

rs
 is the weight between 2 layers fR

and fS . 

Layer fT : Function ( )jf  is the output of 

this layer. For each neuron t in this layer is 

determined as: 

0

.w
=

=
fR

f f f

t s st

r

x y  and ( )= =f f

t t jy x f    (44) 

with 0...= fs S  and 0=t . 

Layer Uf : Magnetic flux and torque of each 

phase are determined in this layer. After 

obtaining ( )jf  and ( )ja  from the output of 

fT , approximated magnetic flux function 

( ) 


j  and approximated torque function 

ˆ ( , )j jT i  are calculated in layer fU  according to 

the  formula: 

=f f

u t jx y i  and ( )1 e  


−
= − =

f
uxf

juy      (45) 

with 0=u . In which 
ji  is the current in stator 

windings. 

Electro-magnetic torque is approximated as:  

( )

2

( )
ˆ ( , ) [1 (1 ( )) ]

( )


 

 

−
= − + j ji fj

j j j j

j

df
T i i f e

f d
(46) 

In above formulas, we do not need to 

consider the saturation of flux  s  because ANN 

has adaptive structure through weights and 

activation functions. To train the ANN, 

backpropagation algorithm is used. 

ii). Backpropagation algorithm  

In ANN, the main purpose of network 

training is to update the network’s weights 

(Figure 2). The algorithm for training the ANN 

with the forward model is error backpropagation 

algorithm. Flowchart of training algorithm is 

presented in Figure 3. 

 

Figure 2. Neural network training process 
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Weights of the network are trained to 

minimize an objective function: 

( )( )
21

2
=f fE e k  with 1,...,= fk K      (47) 

in which fK  is the number of the input and 

output and fe is the error between approximated 

value of magnetic flux 


j  and actual value  j
. 

 

Figure 3. Diagram of neural network training 

algorithm 

( ) ( ) 


= −f

jje k k  with 1,...,= fk K           (48) 

Layer −f fU T : Because weights between 

layers are uniform, fe is directly fed into fT in 

chain rule. Therefore, error  f

t
determined: 


 

= −
 

f f
f f u t

t j f f

u t

y y
e i

x x
                               (49) 

Layer −f fT S : In this layer, the weights 

change: 

w
w

  
 

 = − = 
 

f
f f f f f

st st st t sf

st

E
y                (50) 

in which  f

st
 is the learning coefficient of the 

weight between. 

Layer −f fS R : Error fe is directly fed fS

by chain rule. Therefore, error  f

s
is determined: 

w 


=


f
f f f s

s s st f

s

y

x
                  (51) 

In this layer, the change of the weight is: 

w
w

  
 

 = − = 
 

f
f f f f f

rs rs rs s rf

rs

E
y         (52) 

in which  f

rs
 is the learning coefficient of the 

weight between 2 layers. 

Layer −f fR P : Error fe is directly fed fS

by chain rule. Therefore, error  f

r
 is 

determined: 

0

w 
=


=



ff S

f f fr
r s rsf

sr

y

x
                (53) 

In this layer, the change of the weight is: 

w
w

  
 

 = − = 
 

f
f f f f f

pr rs pr r pf

rs

E
y          (54) 

in which  f

pr  is the learning coefficient of the 

weight between 2 layers. 

Weights w f

pr , w f

rs
 and w f

st
 are updated 

through energy function fE . The change in 

weights w , w , w  f f f

st rs pr  will be added to 

weights in the ANN as in (55): 
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( ) ( )

( ) ( )

( ) ( )

w 1 w w

w 1 w w

w 1 w w

+ = + 

+ = + 

+ = + 

f f f

st st st

f f f

rs rs rs

f f f

pr pr pr

k k

k k

k k

            (55) 

with 1,...,= fk K . 

The back-stepping controller proposed is 

only possible when the state variables of the 

SRM are provided. The flux state variable with 

parameters that are difficult to determine is 

provided from the estimator in section 3.2. Back-

stepping control technique (36) for SRM that 

combines magnetic flux estimator by neural 

network is proposed. The neural network, after 

being trained offline, is fed to the controller as 

shown in Figure 4. 

 

Figure 4. The back-stepping controller combined 

with ANN based flux estimator. 

4. Simulation Result 

The proposed control system in the paper is 

verified by the simulation results carried out 

through Matlab/SIMULINK software. 

The design criteria for this problem are: 

o No static error. 

o Overshoot less than 5%. 

o Settling time less than 0.5s. 

The parameters of the neural network after 

being trained, the SRM parameters and the 

selected parameters of the controller in Table 1. 

Training neural network parameters of flux 

estimator: 

20= =f fR S , 200=fK , 

( )5,5, = −f f

r linspace R , 

( )5,5, = −f f

s linspace S , 0.1= =f f

r sc c , 

0.02  = = =f f f

st rs pr  

Table 1. Parameters of SRM and controller: 

6=rN  
1 2=c

 

( )3 26.8 10 /= J kg m  
2 0.1=c

 

( )0.05= R
 

100 =
 

( )31.5 10−= a H  0.025=T
 

( )31.364 10−= b H  1 100=l
 

0.2=B  2 2500=l  

( )2=l m   

Simulation results of the performance of the 

proposed control system are shown in Figure 5, 

Figure 6, Figure 7 and Figure 8 

In Figure 5, the approximated magnetic flux 

from the ANN based flux estimator is compared 

with its values calculated by approximated 

mathematic model (Figure 5a). The error of the 

two values is shown in Figure 5b. It can be seen 

that, the value of the error is nearly zero. It is 

proved that the ANN work well. 

In Figure 6, the electromagnetic torque of 

SRM is presented. It is clearly that the ripple still 

exists. This problem usually appears with SRM 

and need to be improve in this research. 
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We continue considering the performance of 

control system. According to this, the back-

stepping controller (BTP) and the back-stepping 

controller using ANN based flux estimator 

(BTP-ANN flux estimator) are used to control 

the speed for the SRM (Figures 7, 8) with the 

same conditions.  

In Figure 7, we consider the response of 

system at a fixed set point at 10 rad/s. The 

performance of the two simulations is compared 

and summarized in Table 2. In Figure 8, we 

continue verifying the performance of system 

when the system has been change in operation. 

In detail, at time t = 1s, the set point change from 

15 rad/s to 20 rad/s. We can see that, system still 

tracks the set point. 

Table 2. Control performance between 

BTP and BTP-ANN flux estimator: 

 BTP 
BTP-ANN 

flux estimator 

Static error 

(rad/s) 
410−

 
410−

 

Setting time 

(s) 
0.45 0.45 

Overshoot (%) 0 0 

 

 

Figure 5. Magnetic flux characteristic. 

 

Figure 6. Torque characteristic. 
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Figure 7. Speed response and error in case of 10 

rad/s set point. 

 

 

Figure 8. Speed response and the error in case of 

changing the set point 

Simulation results of the SRM control 

system using the back-stepping controller 

combined with the magnetic flux estimator by 

the neural network achieves the desired qualities. 

The flux approximation error quickly converges 

to near zero, since the neural network flux 

estimator has been trained off-line with high 

accuracy (10-5 of SE). When the neural network 

flux estimator is combined with the back-

stepping controller, the control system gives 

good quality, fast response to set speed with 

static error almost zero. Torque characteristic 

(Figure 6) is not good because the logic control 

of the switches is not optimal in time. 

5. Conclusions 

This study demonstrates a new approach in 

SRM control system. In that, a back-stepping 

controller is combined with ANN based flux 

estimator. The flux estimator based on artificial 

neural network has been trained offline and been 

used to overcome the difficulties in calculating 

or measuring the motor flux. The simulation 

results show the effectiveness of back-stepping 

controller combined with ANN based flux 

estimator. The ANN could have successfully 

replaced a mathematic flux models (their 

coefficients are difficult to determine and 

depends on the type of SRM, each SRM size,...) 

as well as experimental values (difficult to 

measuring) with high accuracy estimation. 

Besides, the control performance still is 

guaranteed compared with traditional back-

stepping controller. All characteristics of the 

response satisfy the design criteria such as: 

steady state static error, settling time, and 

percentage overshoot. 
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