
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

 68

Original Article

Stabilizing Techniques for Secure On-chip

Key Generation Based on RO PUF

Van-Toan Tran, Quang-Kien Trinh, Van-Phuc Hoang*

Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, Vietnam

Received 14 November 2021

Revised 25 May 2022; Accepted 02 June 2022

Abstract: Due to intrinsic fluctuation of physical characteristics, response bit-strings of Physically

Unclonable Functions (PUF) of the devices are not suitable to be used directly as seeds for random

number generation or secure keys for data encryption. In order to take advantages of Ring Oscillator

PUF (RO PUF) in hardware security applications, in this work, we propose several techniques and

algorithms to stabilize the response data of a RO PUF scheme to provide a stable and unique output

bit-string. These processes are dynamically evaluated on repeatedly samples the RO frequency

values which do not require additional hardware as well as external physical memory and therefore,

the security of the communication systems can be improved. The proposed methods are verified by

experiments conducted on Xilinx Artix-7 FPGA devices.

Keywords: RO PUF, FPGA, hardware security, key generator.

1. Introduction *

Physically Unclonable Functions (PUF)

have been developed by Suh and Devadah in [1]

based on the fundamental concept about the

Physical One-way Function (POF) that can be

considered as the IC fingerprint of the device.

This promises vast area of security applications

such as device identification and authentication,

intellectual properties protection, secure key

generation, and so on. Several works have been

* Corresponding author.

 E-mail address: phuchv@lqdtu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.306

published to construct the theoretical model

[2-4], proposed particular schemes [5, 6], and

extend the area of applications [7-9]. The

common working principle of different PUF

schemes is utilizing the device mismatches to

derive intrinsic properties. From the

implementation aspect, the FPGA-based Ring

Oscillator PUF (RO PUF) is one of the most

widely used PUF schemes due to its layout’s

consistence against global variations and

mailto:huchv@lqdtu.edu.vn

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

69

operating condition [10], as well as exploit the

advantage of FPGA technology on semi-custom

hardware designs [11, 12].

From application aspect, a PUF-based key

generator may satisfy the following

requirements [13]. First of all, PUFs could offer

a totally true random source due to inherent

manufacturing process variations. Then, since

PUF instance responses are device-primitives,

the generated keys have a significant level of

uniqueness. Finally, since keys are generated

each time the PUF scheme is evaluated, no

external memory is required to store the keys.

The latter lowers the chances of being

intervened, particularly the side-channel attacks.

Many works have been published in the field

of PUF-based key generation that lay the

theoretical framework together with introduce

the key extraction schemes. In [1], the authors

suggested a two-part scheme of initialization and

re-generation, in which procedures of error

correction encode and decode preserve the stable

PUF output though under in unstable operating

conditions. The authors in [9] established a novel

variant of the RO PUF that generates keys via an

entropy accumulator procedure. Therein, the

primary components of the helper data scheme

are Lehmer-Gray order encoding and a resource-

optimized BCH decoder [14, 15]. By replacing

the Hash function output with the syndrome

from the BCH code, the authors in [16] enhanced

the capability of the fuzzy extractor, resulting in

the Hamming distance between keys that adapts

with key size. The majority of the above methods

have been suggested for the traditional RO PUF

that obtains the bit-string by means of the sign

function [1], which is extremely complicated and

ineffective due to the intensive hardware

resources consumption.

In [10, 17], we have introduced an ID

extraction and authentication scheme using RO

PUF and Euclidean metrics. The design is based

on Suh and Devadas’s conventional RO PUF [1],

where nominal ID of the device has the form of

a vector with coordinates are differential

frequencies (dfs) of two successive identical in

physical layout ROs, 1i i idf f f += − , 1, 1i n= − ,

where n is the number of ROs in an RO array. In

the form of bit-string, the extracted ID is the

combination of the binary presentation of

differential frequencies. This method retains

only the local variation while effectively

removes the global variations impacts. As a

result, the extracted IDs are distinguishable and

steady with global factors such as ambient

temperature, operating voltages, and so on. This

also suggests using ID samples from ID

extraction based on RO PUF scheme to coin

stable and unique bit-string that can served as a

seed for key generation. However, the

instantaneous measured ID, on the other hand,

shows a small fluctuation, which is caused by the

unstable RO frequencies. Even though the df

sample values are tightly distributed around the

mean df value, their bit-string presentations are

extremely fluctuated, particularly at least

significant bits. Otherwise, we can not use the

stable nominal ID from the ID database since

this method may create a security leak. Figure 1

depicts the overall key extraction procedure. The

difference frequencies are derived on-chip from

absolute RO frequencies. A stabilizer is required

to keep the output bit-string stable and unique.

Finally, from the resulted bit-strings, a Hash

function is used to produce the final random and

secure key. This paper focuses on algorithms and

techniques for stabilizing the output bit-string of

an RO PUF scheme.

RO
 a

rr
ay

 (n
 R

O
s)

m bits

...

...

...

...

+

-

+

-

+

-

...
...

...

#

STABILIZER HASHPUF CIRCUIT

KEYS

Figure 1. Key generation from PUF data

and Hash function.

In [18], we have developed some techniques

and methods to extract stable and unique bit-

strings from RO PUF design. However, there is

still an issue of hardware implementation to

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

70

examine the efficient of on-chip bit-string

extraction. Therefore, in this paper, we present

more particular approach that consist of

additional algorithms and details of

implementation of the designs on FPGA. 18 The

rest of the paper is structured as follows. After

providing a brief introduction of RO PUF

procedures and key generation using RO PUF

designs in Section 1, we discuss algorithms and

additional techniques to extracting stable and

unique bit-strings as well as solutions to improve

their efficiency in Section 2. Next, we present

some detail implemented schemes respected to

proposed methods in Section 3. Finally, Section

4 summarizes the paper.

2. Extracting Stable Keys and Additional

Techniques

In this section, we introduce multiple

methods and examine their efficiency in

stabilizing the df samples in order to extract the

unique bit-string. The input data was obtained by

evaluating 5 different devices of Xilinx Artix-7

XC7A35T at the room temperature. The physical

layout of the design is kept highly symmetric by

regularly arranging the ROs within the same

clock region. The absolute frequency of the RO

yielded from count number of the system clock

in a time interval with high accuracy. In [17], we

have shown that the maximum absolute error in

determining the RO frequency is inversely

proportional to the time interval measurement

(50 Hz corresponding to the period of 20 ms in

our experiments). The relative error and

accuracy of the measurement are 0.002% and

99.998% , respectively.

In this work, we propose the main

approaches to solve the above problem as

follows:

- Extracting the stable bit-string by cutting

off the fixed number of variation bits in df

sample value,

- Extracting the stable bit-string by using

adaptive data mask,

- Extracting the most repeated element from

statistical distribution, and an additional

technique to improve the proposed method’s

efficiency, that is sample averaging technique as

presented in the next subsection.

2.1. Stabilizing Bit-string by Averaging Method

Since of the high randomness in RO df

values, it is not practical to use the df sample

values directly, especially for the case that there

are some outliers. In contrast, we use the averaging

values of differential frequencies, that are extracted

from number of df samples as follows.

Assume nominal differential RO frequency

of jRO is j0df , 1, 1ringj n= − , where ringn is a

number of ring oscillators. The differential

frequency jRO of the i − sample is:

ij j0 ijdf df = + (1)

where ij is the discrepancy of differential

frequency of the respective sample. So, the

average differential jRO frequency is:

,

samplen

mean j ij

i 1sample

1
df df

n =

= 

samplen

j0 ij

i 1sample

1
df

n


=

= + 

(2)

where samplen is the number of samples.

The maximum of
1

1 samplen

ij

isamplen


=

 for all RO

pairs determines the number of excluded bits to

obtain the unique key sample.

In order to prevent the overflow, the

algorithm is modified as presented in Table 1.

The number of sample essentially is chosen to be

a power of 2 (e.g. 1024, 2048), hence, the

division is simplified to be a bit-shifting

operation, which inherently reduces the

hardware cost. The simulation results of the

method with input data retrieved from the

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

71

a)

b)

Figure 2. The bitmap image illustrating

differential frequency samples (a) and errors

to respected mean frequencies.

Table 1. Algorithm to calculate the averaging values

of RO differential frequencies

Step Task

1 Evaluate the RO array

2 Accumulate the df data

3 Assign
j0 1 jdf df=

4 Calculate
i ij j0df df = − , 1, samplei n=

5

Calculate
sample samplen n

i ij sample j0

i 1 i 1

df n df
= =

 =  = − 

6

Calculate

,

samplen

mean j ij j0

i 1sample sample

1
df df df

n n=


= = +

7
Eliminate the variation part in step 6 to

retrieve the averaging value ,mean jdf .

experiment are shown in Figure 2, where the last

line in the bitmap figure is the average df

values, and the below plot is the errors between

mean dfs which are arithmetic average values,

and corresponding values extracted by the

algorithm. These absolute error values less than

1, so confirm the accuracy of the method.

Obviously, the averaging method needs an extra

data processing unit to evaluate the algorithm in

Table 1, which consumes more hardware resource.

In addition, this technique also requires an interval

of time to accumulate and process the data, which

let the device be affected by external factors.

2.2. Extracting Stable Bit-string by Excluding

Variation Bits in df Sample Values

The simplest way to extract the stable bits is

excluding the variation portion of a RO

differential frequencies. All the dfs data will be

cut off toward the least significant bits by the

length of the longest variation portion, denoted

as EXN , i.e. correspond to the worst case.

The bit-string is formed by concatenation the

invariant parts of RO dfs (Figure 3). In fact, the

length of fluctuated data in each df component

are not the same. This irregularity is

fundamentally the nature of process variations.

The maximum and minimum deviations for the

IC are 31.37 10 and 30.15 10 , respectively,

correspond to the unstable portion from different

df values alters from 9 to 13 bits.

df1

df2

dfn

a)

Data to form bit-string

df1

df2

dfn

b)

Fluctuated bits

...

...

Data to form bit-string

Figure 3. Method for obtaining the stable bit-string

from invariant parts of dfs .

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

72

NEX = 14

NEX = 15

NEX = 10

NEX = 11

NEX = 12

NEX = 13

NEX = 16

Figure 4. The bitmap image depicts the relationship

between bit-string stability and the number of

excluded bits.

EXN could be theoretically approximated

using the statistical parameters of df data [18]:

()  ,maxlog
meanEX 2 dfN 6 13 bit = =

 

We evaluate the stability of the bit-string

using MATLAB simulation with different EXN

with results presented in Figure 4. This figure

shows that, the stability of the bit-string

increases when the number of excluded bits is

increased, i.e the remaining df bit-string is

decreased, so that the total length of the output

bit-string is reduced. This method, evidently, is

easy and low hardware resource consumption,

but also has disadvantages. Firstly, it is

inefficient in terms of information exploitation

caused of the irregularity of df data fluctuation

in practice. For df values that highly stable, i.e

have a small fluctuation in bit-string, the amount

of cut bits may be greater than the length of

invariant portions. In contrast, for less stable

values, a supposed excluding data may not be

sufficient, particularly in the case of occurred

outliers within the data that increase the bit-

string disorder. Secondly, limiting values to a set

of quantized values alters device ID vectors,

which in turn affects PUF inter- and intra-

distances. This issue results in the reliability of

device authentication. Table 2 depicts this

problem by simulation for 5 ICs with varying

numbers of excluding bits. As a result, when

increasing EXN to the critical value of 17EXN = ,

the minimum Euclidean distance between IC’s

nominal ID is reduced to 0, implying that

extracted bit-strings cannot be discriminated. So

the values of EXN have the upper bound

16EXN = . For EXN in the range of

13 16EXN  the minimum inter distances are

still exceeding the threshold of 31.4 10thrd −=  ,

which is equal to six times of the greatest value

Table 2. Distances between nominal IDs 310   of devices for different values of EXN

 13EXN = 14EXN = 15EXN =

 IC2 IC3 IC4 IC5 IC2 IC3 IC4 IC5 IC2 IC3 IC4 IC5

IC1 16.8 21.7 23.3 22.8 18.6 22.5 23.8 24.5 27.5 33.7 27.5 27.5

IC2 23.1 25.9 21.7 25.7 28.1 21.0 37.2 31.8 27.5

IC3 28.5 19.4 28.6 23.1 33.7 29.7

IC4 23.3 25.7 27.5

 16EXN = 17EXN = 18EXN =

 IC2 IC3 IC4 IC5 IC2 IC3 IC4 IC5 IC2 IC3 IC4 IC5

IC1 31.8 22.5 38.9 22.5 0 0 63.5 0 89.8 0 0 0

IC2 38.9 38.9 22.5 44.9 77.8 44.9 89.8 89.8 89.8

IC3 44.9 31.8 63.5 0 0 0

IC4 31.8 63.5 0

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

73

NEX = 14

NEX = 15

NEX = 10

NEX = 11

NEX = 12

NEX = 13

NEX = 16

Figure 5. The bitmap image illustrating the

simulation result for combination averaging df

sample and bit-cutting method.

of the maximum intra distance’s standard

deviation plus the greatest value of the maximum

intra distance’s mean [17]. This is able to afford

the success in device authentication. The length

of the output bit-string is determined by the value

of EXN . The larger EXN to be chosen, the sorter

output bit-string to be obtained, and vice versa.

Due to outliers occurred during the operating

process, the efficiency of them is scaled down.

In the first step to improve the bit-cutting

method, we add the data averaging stage before

the main algorithms. The simulation of this

method is presented in Figure 5, where the input

of the process is mean df values instead of

absolute df values. In comparison to the results

in Figure 4, the output bit-string are more stable.

The general bit-string is the combination of the

partial bit-strings.

2.3. Extracting Stable Bit-string by Using

Adaptive Data Mask

The major concept behind this approach is

that since df sample values differ by the amount

1 This means that all intermediate values within the

variation data range will be removed.

of least significant bits, we can obtain the

invariant bit-string by applying the data mask to

the df sample values.

Table 3 shows the algorithm used to create

the data mask. The stable partial bit-string is

updated from sample to sample by combining

the value j0df , , ringj 1 n 1= − and the mask

through a procedure called the key extraction:

, ,

,

,

j0 k ij k

ij k

ij k

df if mask 1
key0

0 if mask 0

=
= 

=

(3)

Therefore, ,ij kmask is kth bit of the partial

mask ijmask respected to ith sample of jRO

differential frequency. The concatenation of the

partial bit-strings results in the overall bit-string.

Table 3. Algorithm to create the data mask adapted

to input differential frequency data

Step Task

1 Evaluate the RO array

2
Accumulate the df data, which in form

() ()sample ringn n 1
df

 −

3

For each jRO , assign the first df

sample 1 jdf to the reference value, in bit-

string form:

j0 1 jdf df=

4
For each ijdf sample, calculate:

_xor ij ij j0df df df= 

5

Calculate the temporary masks:

__ , ,
n

j xor ij ring

i 1

mask temp df j 1 n 1
=

= = −

Filter out all the ‘0’ bits in the maximum

range limited by ‘1’ bits1 of

_ jmask temp to receive

_ jmask temp1 .

6
Invert the _ jmask temp1 to receive

partial mask respected to jRO .

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

74

a) nsample = 32

b) nsample = 200

Figure 6. The bitmap image illustrating the

convergence of ICs' raw bit-string to stable bit-string

using dynamic masking method.

IC1

IC2

IC3

IC4

IC5

Figure 7. The bitmap image illustrating the

simulation result of data masking process when

integrating the averaging technique.

The main simulation results are presented in

Figure 6 where each cycle of differential

frequency averaging is assigned to a single row.

The bit-string constructed by appending all of dfs

contemporary stable parts converges to a single bit-

string known as raw bit-string raw bit-string (the

last row in the bitmap image). Because of raw bit-

string contains a rightmost zero bit-string formed

by the masking process, a number of intended bits

are appended to the raw bit-string data to separate

the required stable bit-string. We can take some

brief reviews from the bit-string extraction

progress shown in Figure 6 as below. Firstly, the

algorithm used to form the mask adapts to the

individual variations of dfs , allowing it to

exploit more information than the previous

method, which assumed that dfs had the same

number of variation bits. Secondly, the scheme

is extremely sensitive to outlier data. Any

change in df data, even if it is only one bit, can

affect the order of the last bit-string. This

disadvantage will be overcome by combination

this algorithm with averaging method and bit

cut-off method. We integrate the averaging

technique to the algorithm in Table 3 to

condition the input data as presented in Table 4.

The data masking process now is more stable as

simulation results in Figure 7.

Table 4. Modification of the data masking algorithm

Step Task

1 Evaluate the RO array

2

Accumulate the df data, which in form

() ()_key sample ring samplen n 1 n
df

 − 

3
Calculate meandf for all the RO pairs of all

key samples

4

For each
jRO , assume the first

, ,1 mean jdf

sample (respective to the first key_sample

variable) is the reference value, in bit-

string form:

_ , , ,mean 0 j 1 mean jdf df=

5

For each
, ,k mean jdf sample,

_, key samplek 1 n= , calculate:

, , , , _ ,xork mean j k mean j mean 0 jdf df df= 

6

Calculate the temporary masks:

, ,_
xor

n

j k mean j

i 1

mask temp df
=

=

Filter out all the ‘0’ bit in the maximum

range limited by ‘1’ bits of _ jmask temp

to receive _ jmask temp1 .

7

Invert the _ jmask temp1 to receive partial

mask respected to jRO .

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

75

To further improve the efficiency of the

adaptive data masking algorithm, we integrate

the averaging technique and bit-cutting

algorithm into it. The algorithm of this

combination method is presented as follows.

After step 3 of the algorithm as presented in

Table 4, we add the step 3a: Cut rightmost bits in

meandf bit-string data by a number of excluded

bits EXN . The remaining steps are identical to the

steps as in Table 4. The simulation of this

combination variant is presented in Figure 8. As

we can see, the convergence process to the

unique bit-string is fast and more stable. This

also makes the design more complicated and

require higher resource usage.

NEX = 14

NEX = 15

NEX = 10

NEX = 11

NEX = 12

NEX = 13

NEX = 16

Figure 8. The bitmap image illustrating the

simulation result for combination averaging df

sample, bit-cutting and data-masking method.

2.4. Extracting Most Repeated Element from

Statistical Distribution

This method is to prevent an emergence

phenomenon in df value, which occur when the

numbers of excluded bits are not large enough.

The df values are cardinal numbers in natural,

so any emergence df value will raise the bit-

string changes, especially at boundary of power-

by-2 values, e.g.  0111 and  1000 . This

method is not suitable for applying to absolute

df sample values because they are finite values

that different normally. Instead of this, we apply

this method to average values of dfs after

cutting off the variation bits. The number of

excluded bits is evaluated from experiment to

gain more information, especially in the cases of

small fluctuated dfs . These values fall into a

limited set of contemporary stable value

samples. The most repeated sample is

determined by analyzing the frequency

distribution of the elements. The algorithm

presented in Table 5, where icn , _key samplen , and

samplen are the number of ICs, the number of key

samples, and the number of samples, respectively.

The remaining averaging df samples are

combined to form the unique bit-string.

Table 5. Algorithm to extract the unique bit-string

from the most repeated elements

Step Task

1 Evaluate the RO array

2

for i = 1 to
icn

 for j = 1 to
_key samplen

 for k = 1 to
samplen

 Calculate the
meandf from df

sample values.

 end;

Extract ,1 meandf bit-string from

meandf by cutting off bits, write

,1 meandf to RAM.

 end;

end;

3
Calculate the frequency distributions of

,1 meandf .

4
Extract the ,1 meandf samples that occur

most, note as
,2 meandf .

5
Concatenate

,2 meandf elements to form

the key.

In order to investigate the efficiency of the

algorithm, we simulate it with experimental data

on Matlab software. The simulation results are

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

76

presented in Figure 9, in which the output raw

key is the last row of the image. This obviously

indicates the convergence of the data to the value

that occurred most frequently. Hence, we can

take some notations about the method. Firstly,

the number of data bins in the constructed

histogram increase when we reduce the assumed

number of unstable bits, and vice versa. This

leads to large required df samples to exactly

determine the most frequent value. An

encryption or decryption protocol using the key

extracted directly from this may repeat many

times to prevent the wrong value in frequency

distribution when the number of samples is not

large enough.

IC1

IC2

IC3

IC4

IC5

Figure 9. The bitmap image illustrating the key

extraction by concatenation the most frequent

elements of average df values.

The error occurred when there is a

fluctuation in the practical data and the number

of samples is not large enough, not by the

algorithm itself. Secondly, when limiting the

number of elements to achieve the more exact

frequency distribution, the information may be

lost so that the efficiency of the method is

reduced. So the assumed number of unstable bits

is trade-off between: i) The security of the

extracted key, the required key length, device-

primitive features; and ii) The evaluation time,

hardware resource cost, and the implementation

complexity.

NEX = 14

NEX = 15

NEX = 10

NEX = 11

NEX = 12

NEX = 13

NEX = 16

Figure 10. The bitmap image illustrating the

simulation result for combination statistical

distribution and bit-cutting methods.

When integrating the statistical distribution

algorithm with bit-cutting method, the accuracy

of the bit-string extraction is improved caused by

the fact that the bins contain only values among

the limited set of quantized values. The bit-

cutting method similar to the quantization

process, where df sample values are distributed

to quantized levels. As we can see from

simulation results in Figure 10, the disturbances

occurred are eliminated to extract the stable bit-

string (the last line in bitmap image).

3. Implementation of Stabilized Techniques

on FPGA Device

The methods and techniques presented in the

previous section work with RO PUF data that

retrieved from experiments. However, for the

purpose of on-chip examination, we need to

implement the designs that perform stabilized

methods and algorithms. We have preliminary

implemented following techniques on FPGA

Artix-7.

- Bit-cutting combined with sample

averaging method,

- Data masking method.

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

77

Figure 11. Layout of output bit-string stabilized

design by data masking method on FPGA Artix-7.

Table 6. Hardware resource consumption of

stabilized design by bit-cutting combined with

sample averaging method, implemented on FPGA

Xilinx Artix-7 XC7A35T

Resource Utilization Available
Utilization

(%)

LUT 980 20,800 4.71

FF 630 41,600 1.51

BRAM 1 50 2.00

IO 9 170 5.29

RO arrays are similar to differential

frequencies circuit from ID extraction scheme in

[17]. Layout of data masking design is presented

on Figure 11, and hardware resource

consumption of the designs are presented on

Table 6 and Table 7, respectively.

Table 7. Hardware resource consumption of

stabilized design by data masking method,

implemented on FPGA Xilinx Artix-7 XC7A35T

Resource Utilization Available
Utilization

(%)

LUT 10,608 20,800 51.00

FF 10,480 41,600 25.19

BRAM 256 50 2.67

IO 8 170 4.71

Output bit-strings retrieved from multiple

times of hardware evaluation are very stable

while maintain high uniqueness, which can be

used for further security applications.

4. Conclusion

In terms of implementation, FPGA-based

RO PUFs have gained popularity due to benefits

such as reasonable complexity, resource

efficiency, and so on. RO PUFs consist of self-

oscillating schematics whose output frequency is

primarily determined by the non-identical delays

of logical components due to the inherent

mismatch of physical devices from

manufacturing process. These fluctuations are

device-primitive and satisfy many PUF

prerequisites, including unpredictability,

uniqueness, and reliability. As a follow-up to our

previous work on using FPGA-based RO PUFs

to extract a device’s ID, we focused on using

techniques to extract unique and stable bit-

strings that could be used in secure key

generation for cryptographic systems.

In this work, we have proposed some

algorithms and techniques for dynamically

extracting unique and stable bit-strings from

differential frequencies data of RO PUFs. The

algorithms are validated using MATLAB

simulation and implemented on Artix-7 FPGA

devices. The advantages as well as the

drawbacks of each scheme have been examined.

In addition, the implemented designs that

combine methods work consistently and

efficiently. Since the extracted bit-strings are

unique, unpredictable, and do not require a

V. T. Tran et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 1 (2023) 68-78

78

mechanism for storage and distribution, they can

be used in secure cryptographic systems as well

as other specific hardware security applications.

Acknowledgements

This research is funded by Vietnam National

Foundation for Science and Technology

Development (NAFOSTED) under grant

number 102.02-2020.14.

This work was partly presented at the ICTC

2021 conference [18].

References

[1] G. E. Suh, S. Devadas, Physical Unclonable

Functions for Device Authentication and Secret

Key Generation, 44th ACM/IEEE Design

Automation Conference, 2007, pp. 9-14.

[2] R. Maes, Physically Unclonable Functions:

Constructions, Properties and Applications,

Springer Science & Business Media, 2013.

[3] V. Vivekraja, L. Nazhandali, Circuit-Level

Techniques for Reliable Physically Uncloneable

Functions, 2009 IEEE International Workshop on

Hardware-Oriented Security and Trust, 2009,

pp. 30-35.

[4] A. Maiti, P. Schaumont, Improved Ring Oscillator

PUF: An FPGA-Friendly Secure Primitive, Journal

of cryptology, Vol. 24, No. 2, 2011, pp. 375-397.

[5] M. Gao, K. Lai, G. Qu, A Highly Flexible Ring

Oscillator PUF, Proceedings of the 51st Annual

Design Automation Conference, 2014, pp. 1-6.

[6] F. Kodýtek, R. Lórencz, J. Buček, Improved Ring

Oscillator PUF on FPGA and Its

Properties, Microprocessors and Microsystems,

Vol. 47, 2016, pp. 55-63.

[7] C. Bösch, J. Guajardo, A. R. Sadeghi,

J. Shokrollahi, P. Tuyls, Efficient Helper Data Key

Extractor on FPGAs, International Workshop on

Cryptographic Hardware and Embedded

Systems, 2008, pp. 181-197.

[8] Z. Paral, S. Devadas, Reliable and Efficient PUF-

Based Key Generation Using Pattern Matching,

2011 IEEE International Symposium on Hardware-

Oriented Security and Trust, 2011, pp. 128-133.

[9] R. Maes, A. V. Herrewege, I. Verbauwhede,

PUFKY: A Fully Functional PUF-Based

Cryptographic Key Generator, International

Workshop on Cryptographic Hardware and

Embedded Systems, 2012, pp. 302-319.

[10] V. T. Tran, Q. K. Trinh, V. P. Hoang, Enhanced ID

Authentication Scheme Using FPGA-Based Ring

Oscillator PUF, IEEE 13th International

Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSoC), 2019, pp. 320-327.

[11] N. H. Weste, D. Harris, CMOS VLSI Design: A

Circuits and Systems Perspective, Pearson

Education, India, 2015.

[12] O. Mencer, D. Allison, E. Blatt, M. Cummings, M. J.

Flynn, J. Harris, S. Shirazi, The History, Status, and

Future of FPGAs: Hitting A Nerve with Field-

Programmable Gate Arrays, Queue, Vol. 18, No. 3,

2020, pp. 71-82.

[13] W. Stallings, Cryptography and Network Security

Principles and Practices, 4th Edition, Pearson

Education, London, 2006.

[14] J. Delvaux, D. Gu, D. Schellekens, I.

Verbauwhede, Helper Data Algorithms for PUF-

Based Key Generation: Overview and Analysis,

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 34, No. 6,

2015, pp. 889-902.

[15] J. Delvaux, Security Analysis of PUF-Based Key

Generation and Entity Authentication, Shanghai

Jiao Tong University, China, 2017.

[16] H. Kang, Y. Hori, T. Katashita, M. Hagiwara,

K. Iwamura, Cryptographic Key Generation from

PUF Data Using Efficient Fuzzy Extractors, 16th

International Conference on Advanced

Communication Technology, 2014, pp. 23-26.

[17] V. T. Tran, Q. K. Trinh, V. P. Hoang, A Robust

Euclidean Metric Based ID Extraction Method

Using RO-PUFs in FPGA. Integration, Vol. 82,

2022, pp. 37-47.

[18] V. T. Tran, Q. K. Trinh, V. P. Hoang, Stabilizing

On-chip Secure Key Generation Using RO-PUF,

2021 International Conference on Information and

Communication Technology Convergence (ICTC),

2021, pp. 805-809.

