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Abstract: Automatic speech recognition (ASR) is gaining huge advances with the arrival of End-

to-End architectures. Semi-supervised learning methods, which can utilize unlabeled data, have 

largely contributed to the success of ASR systems, giving them the ability to surpass human 

performance. However, most of the researches focus on developing these techniques for English 

speech recognition, which raises concern about their performance in other languages, especially in 

low-resource scenarios. In this paper, we aim at proposing a Vietnamese ASR system for 

participating in the VLSP 2021 Automatic Speech Recognition Shared Task. The system is based 

on the Wav2vec 2.0 framework, along with the application of self-training and several data 

augmentation techniques. Experimental results show that on the ASR-T1 test set of the shared task, 

our proposed model achieved a remarkable result, ranked as the second place with a Syllable Error 

Rate (SyER) of 11.08%. 
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1. Introduction1  

Automatic speech recognition is a task 

which takes a speech segment as an input and 

generates the corresponding written format. In 

recent years, deep learning approaches have 

enabled ASR systems to gain huge advances 

and surpass human-level performance [1]. 

With the arrival of End-to-End 

architectures, ASR has become a much more 
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active field. Semi-supervised learning 

methodology, which has the ability to utilize 

unlabeled data in training, is now one of the 

most popular methods in speech recognition. 

Pioneering works include Wav2vec 2.0 [2] and 

HuBERT [3]. These frameworks come with 

effective pre-training techniques which can 

learn speech representations from unlabeled 

speech, followed by fine-tuning the model with 

labeled data. Wav2vec 2.0 has shown superior 

 

   



P.V. Thanh et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 38, No. 1 (2022) 30-36 

 

31 

performance on Librispeech [4] compared to 

the previous state-of-the-art while using a 

much smaller amount of labeled data. 

Although these systems achieve quite 

remarkable results on English datasets, it 

cannot be guaranteed that they can reach the 

equivalent performance on other languages. In 

some languages, there are only a few labeled 

datasets, and obtaining unlabeled data of the 

same domain can be very time-consuming. In 

the case of the Vietnamese language, there 

have been several public datasets released over 

the years, such as VLSP 2020 and VIVOS. 

However, these datasets are relatively small 

compared to English datasets, and thus semi-

supervised learning may not be the best option. 

In this paper, we propose an ASR system 

participating in the Automatic Speech 

Recognition Shared Task of VLSP 2021 [5]. 

The system is based on the Wav2vec 2.0 

framework, along with the application of 

several data augmentation techniques. 

Additionally, self-training is used to utilize the 

unlabeled in-domain data. The final system is 

the combination of these techniques via an 

ensemble mechanism. 

The remaining of this paper is organized as 

follows. The related works are described in 

Section 2, with our methodology given in 

Section 3. In Section 4, we discuss the 

experimental setup and Section 5 shows the 

results of the system. Finally, conclusions are 

drawn in Section 6. 

2. Related works 

Previous works have shown the efficiency 

of semi-supervised models on various tasks. 

Wav2vec 2.0 and HuBERT, with the ability to 

learn speech representations from unlabeled 

data, have been applied to achieve state-of-the-

art results on several speech processing tasks 

other than speech recognition. The authors of 

[6] show that remarkable results can be 

obtained by fine-tuning Wav2vec 2.0 and 

HuBERT on downstream tasks, including 

speech emotion recognition, speaker 

verification and spoken language 

understanding. Other works include assessing 

the self-supervised architecture in French [7], 

or using Wav2vec 2.0 for End-to-End speech 

translation [8]. With these above-mentioned 

researches, we can be certain that speech 

representations learning is going to be much 

more developed and advanced over the next 

few years. 

As being an approach to efficiently use 

unlabeled data, self-training has appeared 

frequently in speech recognition papers, along 

with its variants. [9] discusses adapting and 

improving noisy student training for ASR. In 

[10], the authors propose several methods for 

data-filtering for ASR self-training. The 

combination of self-training and unsupervised 

pre-training has proven to be effective for 

improving speech recognition performance, 

according to [11]. Overall, self-training is an 

efficient way for leveraging untranscribed data 

in the speech recognition task. 

3. Methodology 

3.1. Data Pre-processing 

3.1.1. VLSP 2021 ASR Datasets 

For the participation in the ASR-T1 task, 

we only use the datasets provided by the 

competition organizers. There are 3 training 

datasets, along with 1 development set. Table 

1 shows the total duration of each dataset. 

The general domain training set contributes 

215.6 hours of speech. The two in-domain 

training sets consist of audios collected from 

online lectures, with one dataset having no 

transcriptions. Lastly, the in-domain 

development set contains only 2.5 hours of 

speech. This dataset is used for hyperparameter 

tuning. 

Table 1. VLSP 2021 ASR Datasets: 

Dataset Hours 

General domain training set 215.6 

In-domain training set 23.0 

Untranscribed in-domain training set 360.7 

In-domain development set 2.5 
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3.1.2. Data pre-processing 

As the datasets can contain some noises and 

errors, several pre-processing steps need to be 

done. The overall pipeline is illustrated in 

Figure 1. The first step is removing noisy audio 

samples from the data. For this step, we 

calculate the signal-to-noise ratio (SNR) for 

each audio using the WADA-SNR [12] 

algorithm. All audio samples having an SNR 

below 5.0 dB are removed from the training 

sets. The reason for choosing this value is 

because we found that in most audio samples 

with SNR below 5.0 dB, the volume of 

background noise starts to get higher than the 

volume of speech. Keeping these samples in 

the training set may result in lower model 

performance. 

Another problem is that because the 

datasets are manually labeled, there can be 

errors in the transcriptions, such as typing 

errors or spelling mistakes. After looking 

through the transcriptions, we found that most 

errors come from the in-domain training set 

and in-domain development set. We then 

performed validation on the transcriptions of 

these two datasets. About over 5,000 samples 

with transcriptions mistakes are corrected 

manually. 

 
Figure 1. Overall data pre-processing pipeline. 

Finally, after the validation step, the 

transcriptions are normalized. Numbers, 

abbreviations and loanwords are transformed 

into their spoken formats at this step. Numbers 

are normalized with a simple rule-based 

algorithm. In the case of loanwords and 

abbreviations, we use a dictionary which 

contains exactly one spoken format for each 

word. 

3.2. Wav2vec 2.0 

With a large amount of untranscribed 

training data, a semi-supervised architecture is 

preferable to a pure supervised one. In this 

section, we briefly discuss the architecture and 

the training phases of the chosen framework - 

Wav2vec 2.0 [2]. The architecture of Wav2vec 

2.0 includes three main parts: the feature 

encoder, the context network and the 

quantization module. The feature encoder is a 

convolutional neural network (CNN), and its 

job is to take the raw waveform as input and 

output the latent speech representation. The 

context network then learns the contextualized 

representation from the latent speech 

representation. This context network follows 

the Transformer architecture [13]. Finally, the 

quantization module is used to generate 

quantized representation from the output of the 

feature encoder. The module is applied only in 

the pre-training phase. 

3.2.1. Pre-training Phase 

In the pre-training phase, the model learns 

contextualized representations of speech from 

unlabeled data. A portion of the feature 

encoder outputs is masked randomly before 

being fed to the context network. The final 

speech representation is learned by solving a 

contrastive task which is to identify the true 

quantized representation for a masked time 

step among a set of representations from the 

other masked time steps. 

3.2.2. Fine-tuning Phase 

For fine-tuning the model on downstream 

tasks, additional layers can be placed on top of 

the pre-trained model. In the case of ASR, a 

linear layer is added to map the contextualized 

speech representations learned from the pre-

training process into a readable sentence. 
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Connectionist temporal classification (CTC) 

loss [14] is used to optimize the model during 

the fine-tuning phase. 

3.3. Self-training Approach 

To further utilize the untranscribed in-

domain training set, we opt for a self-training 

strategy similar to [15]. The overall process is 

as follows: 

 • Training an acoustic model and a 

language model with the labeled training 

datasets. 

• Using the trained acoustic model and 

language model to label the unlabeled data. 

This step is called pseudo-labeling. 

• Filtering out bad transcriptions from 

pseudo-labeled data by using the perplexity 

values produced by the language model. Only 

the transcriptions with low perplexity are kept. 

• Training a new acoustic model with 

the original training data and the pseudo-

labeled training data. 

Although iterative pseudo-labeling could be 

used for better modeling quality [16], we 

perform only 1 iteration to save computational 

cost. 

3.4. Data Augmentation Techniques 

We only apply 2 data augmentation 

techniques during the training process. The 

first one is time masking, which simply makes 

a random part of the audio silent. The second 

technique is manipulating the speed of the 

audio signal, called speed perturbation [17]. 

3.5. Loanwords and Abbreviations Handling 

Table 2. Spoken formats of loanwords and 

abbreviations: 

Original word Spoken formats 

adn ây đi en, a đê nờ 

keyword ki guất, ki guật, ki guốt, ki guộc 

alpha an pha 

cm xen ti mét, xăng ti mét 

 

As mentioned above, transcriptions are 

normalized before the training process. Thus, 

the spoken formats of the loanwords and 

abbreviations output by the system have to be 

converted to their original forms. We handle 

this by creating a list of spoken formats for 

loanwords and abbreviations and performing 

matching with the transcriptions. The original 

words can have multiple spoken. 

4. Experimental Setup 

4.1. Wav2vec 2.0 Pre-training 

We chose to use the Wav2vec 2.0 Base 

architecture in all experiments. The Wav2vec 

2.0 Base configuration includes 12 transformer 

blocks in the context network, with model 

dimension 768, inner dimension 3,072 and 8 

attention heads. The feature encoder contains 

seven blocks of CNN and in each block the 

convolutional layers have 512 channels with 

strides (5,2,2,2,2,2,2) and kernel widths 

(10,3,3,3,3,2,2). Overall, the size of the model 

is about 95 million parameters. 

In the pre-training phase, fairseq [18] model 

implementation is applied. We use all of the 

available training sets for pre-training, 

including the general domain training set, the 

in-domain training set and the untranscribed in-

domain training set. The input to the model is 

raw waveform, with a sampling rate of 16,000 

Hz. Adam is chosen as the optimization 

algorithm during the training process. We run 

the pre-training phase using an NVIDIA Tesla 

V100 for about 15 days, with a batch size of 4. 

An initial learning rate of 5 × 10−4 is used and 

decayed linearly. 

4.2. Wav2vec 2.0 Fine-Tuning 

To perform ensemble modeling for the final 

system, we do several fine-tuning experiments 

to obtain a set of base models. The fine-tuning 

process is implemented using the 

Huggingface’s transformers library [19]. All 

the models are fine-tuned using the same pre-

trained Wav2vec 2.0, and a randomly 

initialized linear layer is added to predict 

sequences of characters. Each model is fine-

tuned for 25 epochs with Adam optimization. 

We use a batch size of 4 and an initial learning 

rate of 2 × 10−4 with linear decay. The only 

difference among the models is the training 
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data. Each model listed below takes about 3 

days to converge. 

Model 1. The first model is fine-tuned with 

the in-domain training set and general domain 

training set. 

 

Model 2. Self-training is applied for the 

second model. Firstly, to pseudo-label the 

unlabeled in-domain training set, we combine 

Model 1 and a language model (LM) with the 

strategy described in Section 4.3. Then the 

samples with LM perplexity values higher than 

70.0 are removed. Now we fine-tune Model 2 

with the original labeled datasets and the 

filtered pseudo-labeled data. 

Model 3. Before training Model 3, we first 

apply the above-mentioned data augmentation 

techniques to the in-domain training set. For 

time masking, a random segment of 200-

300ms is masked in each audio sample. In the 

case of speed perturbation, 2 copies of the 

original data are generated with speed factors 

of 0.9 and 1.1, with the original speed factor 

being 1.0. Model 3 is now fine-tuned with the 

two original labeled training sets and the 

augmented in-domain training set. 

4.3. Language Modeling 

For the combination of the acoustic model 

and language model, we use a 6-gram language 

model trained on the transcriptions of the two 

labeled training datasets. The combination is 

done via a beam-search decoding algorithm 

[20] with a beam size of 200, language model 

weight of 0.5 and word insertion penalty of 5.0. 

4.4. Final ASR system 

The final system is an ensemble model of 

the three base models described previously in 

Section 4.2. First, we take an average of the 

outputs produced by the base models. This 

average output is then decoded with the 

language model described in Section 4.3. 

Finally, we process the loanwords and 

abbreviations with the above-mentioned 

technique to obtain the final output. 

5. Evaluation Results 

5.1. Evaluation protocol 

In VLSP 2021 ASR Shared Tasks, the 

quality of the systems will be assessed using 

Syllable Error Rate (SyER). The evaluation 

metric is as follows: 

SyER = 
𝑆+𝐷+𝐼

𝑁
   (1) 

In (1), S , D and I represent the number of 

substitutions, deletions and insertions, 

respectively. With C being the number of 

correct syllables, N is the number of syllables 

in the reference (N = S + D + C). 

5.2. Experimental Results 

5.2.1. Modeling Experiment 

Table 3. Results of the fine-tuned models and the 

final system on the development set: 

Model SyER 

No pre-training 16.95 

Model 1 7.37 

Model 2 7.87 

Model 3 8.36 

Final system 7.01 

 

Table 3 shows the results of the experiments 

on the provided development set. Firstly, to 

assess the performance of the semi-supervised 

strategy, we train a model without the pre-

training step. For the comparison, the labeled 

data used for this model will be the same as 

Model 1. As shown in the table, the SyER 

significantly improves when pre-training is 

applied. Secondly, to assess the performance of 

the ensemble mechanism, we compare the 

results of the base models with the final 

system. The results show that among the base 

models, Model 1 has the best performance 

while Model 3 does not perform as well as its 

counterparts. A possible reason is that the 

augmented data may harm the model 

performance by creating unrealistic speech. 

Compared to the base models, the ensemble 

model has the optimal result, achieving a SyER 

of 7.01%. 

5.2.2. VLSP 2021 Experimental Results 

The organizers of VLSP announce 2 private 

test sets: the ASR-T1 test set contains 993 
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audio segments of lecture speech, while the 

ASR-T2 test set includes 900 segments of 

spontaneous speech from different domains. 

Table 4 describes the results of ASR 

systems on the ASR-T1 test set. The model we 

submitted was the ensemble model described 

above. Our system achieved a SyER of 

11.08%, taking second place in the task as 

announced by the VLSP organizers. The 

results show that our proposed method only 

performs slightly better than that of the third 

team, while the first team achieves an 

outstanding result - SyER of 8.28%. 
Table 4. Results of the systems  

on the ASR-T1 test set: 

Team SyER 

Lightning 8.28 

LAB-914-ASR (ours) 11.08 

SMARTCALL 12.00 

VC-Tus 12.41 

VB_ASR 16.68 

6. Conclusions 

In this paper, we presented our solution for 

data pre-processing and validation for 

participating in VLSP 2021 ASR shared task. 

The overall process includes noisy audio 

removal, transcript validation and transcript 

normalization. 

We have proposed an ASR system based on 

semi-supervised learning and ensemble model. 

The Wav2vec 2.0 framework is used in all 

experiments. With the pre-training phase, the 

model can learn speech representations, thus 

can make use of the provided unlabeled 

training data. While creating base models for 

ensemble modeling, 2 data augmentation 

methods were used, namely time masking and 

speed perturbation. To further utilize the 

unlabeled in-domain dataset, we apply a self-

training method for generating additional 

labeled training data, which includes pseudo-

labeling the unlabeled data and filtering out 

bad transcriptions. In our experiments, we 

found that with the use of the ensemble 

mechanism, the final system outperforms all 

the base models. In the ASR-T1 task 

evaluation, our system was ranked second 

place with a SyER of 11.08%. 

Possible improvements for future works can 

be changing the base architecture and the 

ensemble mechanism. We will consider 

training with different architectures other than 

Wav2vec 2.0 in the condition of limited labeled 

data. We will also try to find a better ensemble 

approach, such as applying a new data 

sampling algorithm. 
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