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Abstract: This research proposes the Position combined Channel attention module - Residual Unet 

model (PCAM-ResUnet), an enhanced ResUnet++, to improve CT lung nodule segmentation. In the 

paper, the Squeeze-and-Excitation Block is replaced by Channel Attention module (CAM) and 

Position Attention module (PAM) respectively. More importantly, these two modules are combined 

to create the Position combined Channel attention module (PCAM), a new breakthrough in our 

model structure. Through a multi-stage training process, PCAM-ResUnet was evaluated on a test 

dataset comprising 2000 pulmonary nodule samples. The PCAM variant demonstrated outstanding 

performance, achieving an average Dice Similarity Coefficient (DSC) of 85.96%.  It achieved 

'Excellent' segmentation results (cases with a DSC ≥ 80%) in 82.80% of cases, while reducing the 

'Needs Improvement' level (DSC < 40%) to 1.85%. The obtained results emphasize the effectiveness 

of PCAM-ResUnet, affirming its superiority and showcasing its considerable potential for 

widespread clinical applications in the medical field. 

Keywords: PCAM-ResUnet, Pulmonary Nodule Segmentation, CT Scanning, Multi-Stage Training, 

Attention Mechanism.*  
 

 

 

1. Introduction  

Lung cancer, which poses a substantial risk 

of death and is notoriously difficult to detect in 

its early stages [1], is now better comprehended 
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as a result of medical progress; this clarity 

enables us to proactively confront and 

implement efficacious treatments, thus 

increasing our optimism and capacity to combat 

the disease. Commencing with minute lesions 
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referred to as lung nodules, which are less than 3 

mm in diameter, encircled by lung tissue that is 

ambivalent in nature and especially challenging 

to discern when in proximity to or connected to 

blood vessels [2]. While the majority are benign, 

a few may be indicative of lung cancer in its 

nascent stages. Effective management of lung 

nodules is of utmost importance in order to rule 

out the possibility of malignancy, achieve 

prompt treatment, and minimize avoidable 

patient complications [3]. In conjunction with 

the patient's medical history, evaluating the 

location, size, and shape of pulmonary nodules 

assists in determining the most effective 

monitoring or treatment strategy, thereby 

increasing the likelihood of recovery and 

decreasing potential risks. 

Diagnosis in modern medicine is predicated 

on clinical and subclinical symptoms; for this 

reason, diagnostic imaging systems such as X-

rays, CT, and MRI have grown in importance. 

These systems provide accurate images by 

utilizing cutting-edge software and technology. 

These technologies are indispensable 

instruments for the detection of infections and 

pulmonary nodules, in addition to being non-

invasive. Upon obtaining and diagnosing 

patients presenting with ambiguous respiratory 

symptoms, physicians initially utilize X-rays to 

obtain a comprehensive yet restricted level of 

detail. When X-rays detect abnormal signs, 

doctors often turn to CT or MRI for more 

detailed images. In clinical practice, MRI is less 

used for lungs due to low proton density and 

rapid signal decay from the sensitive magnetic 

field. The lung's air-rich structure impedes sharp 

imaging, reducing resolution and contrast, 

making it difficult to detect small abnormalities. 

Noise from natural movements such as breathing 

and heartbeat also degrades image quality [4]. 

CT uses X-rays to create detailed three-

dimensional images of the body, with the air in 

the lungs providing natural contrast, helping to 

clearly detect abnormalities and information 

about tumors. The quick scanning process and 

short breath-hold time also contribute to clearer 

images [5]. 

Imaging tools such as CT scans offer vital 

information, but their interpretation demands 

careful analysis and expertise from clinicians. 

Computer-Aided Diagnosis systems aid 

physicians in assessing medical images, 

highlighting important characteristics and 

potential indicators of sickness to facilitate 

clinical decision-making. Lung computer-aided 

detection systems are developed through a multi-

step process, with each stage serving an 

important function in creating a thorough 

diagnostic system [6, 7]. 

The lung analysis Computer-Aided 

Detection (CADe) system employs a 

comprehensive strategy (see figure 1), wherein 

each component is specifically designed to 

surmount unique challenges associated with the 

identification and classification of lung nodules 

on CT scans. The procedure commences with a 

phase of data collection, during which medical 

images are gathered from various sources, with 

a particular emphasis on CT imaging due to its 

ability to provide detailed insights into lung 

structures [8]. Following this, in the 

preprocessing stage, endeavors to reduce noise 

and improve the quality of the image are 

supplemented by accurate lung segmentation in 

computed tomography scans [9]. 

As the system progresses to the third phase, 

Nodule Detection, its objective is to precisely 

identify prospective sites of lung nodules. This 

process encompasses the identification of 

potential nodules as well as the allocation of 

probabilities to each, denoting the extent to 

which it is likely to be an authentic nodule. 

The process culminates in the fourth stage, 

the False Positive Reduction stage aims to 

minimize the occurrence of false positives 

among the selected candidate sites. This stage 

involves a classification task that aims to 

differentiate between nodules and non-nodules. 
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As a result, it helps to simplify the list of lung 

nodules that need to be addressed. The CADe 

system's painstaking approach showcases its 

advanced ability to negotiate the intricate 

landscape of lung nodule identification and 

categorization, highlighting its substantial 

potential for clinical use [10]. 

 

Figure 1. Four Stages of the CADe Process for 

Pulmonary Nodule Analysis. 

This study largely concentrates on the third 

phase of the CADe system, which involves 

utilizing image segmentation to precisely outline 

pulmonary nodules. We aim to improve the 

accuracy in identifying and evaluating the 

likelihood of possible nodules, thus enhancing 

diagnostic efficiency and aiding in clinical 

decision-making. 

Medical image segmentation is the process 

of breaking an image into discrete segments or 

areas, each representing a unique object or type 

of structure. Image segmentation in the context 

of CT lung nodules involves accurately 

identifying the specific locations of lung nodules 

in computed tomography imaging of the lungs. 

A machine learning model with the ability to 

distinguish between lung nodules and the 

surrounding tissue, as well as adjacent features 

such as blood arteries and the lung itself, is 

necessary for this task. The difficulties in 

precisely dividing lung nodules mostly arise 

from their diminutive dimensions, particularly 

when they are situated at the periphery of the 

lungs or in close proximity to blood veins. The 

method of segmenting lung nodules involves a 

wide variety of architectural designs, image 

preprocessing techniques, and training strategies 

[11]. Several lung nodule segmentation 

approaches based on deep learning employ 

multi-view neural network architectures, while 

others utilize generic neural network structures. 

The method employs a multi-view neural 

network design to incorporate many viewpoints 

of the lung nodule and utilize them as input for 

the neural network. Meanwhile, the generic 

neural network architecture is constructed by 

modifying or incorporating additional blocks 

into existing CNNs. 

The main contribution of this work resides in: 

(1) The innovative Position combined 

Channel Attention Module (PCAM) is the result 

of combining the Channel Attention Module 

(CAM) and the Position Attention Module 

(PAM), both of which are well-established 

attention mechanisms. While PAM is refined to 

analyze and generate spatial features from the 

relationships between pixels, CAM is adjusted to 

exploit the relationships between feature 

channels, thereby capturing important 

information from various perspectives of the 

image. The innovation of PCAM not only comes 

from integrating information from both spatial 

and channel dimensions but also from how these 

two modules are customized to work together 

effectively, bringing benefits from both attention 

mechanisms for more accurate medical image 

segmentation. 

(2) PCAM-ResUNet is an improved iteration 

of the ResUnet++ architecture that is being 

proposed. The primary enhancement of this 

model is the incorporation of the PCAM, which 

functions as a substitute for the SE blocks that 

were previously present in the ResUnet++ 

architecture. We conducted an experiment in 

which we substituted the CAM, PAM, and 

PCAM modules for the SE Block. The resulting 

three primary variants of the model were 

designated with the names of the replacement 

modules: CAM focuses on channel-specific 

features, PAM targets spatial features, and  

PCAM is the complete combination of both 

types of attention. 
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(3) Experiments conducted on the LUNA16 

dataset showed notable enhancements exhibited 

by the novel model in comparison to the initial 

version. These results confirm the potential and 

efficacy of PCAM-ResUNet in facilitating fresh 

possibilities for scientific investigation and 

practical implementation in the domain of 

medical image segmentation. 

Some techniques employed to enhance 

precision encompassed the following: 

(1) The Generalized Center-Based Image 

Cropping (BCBIC) algorithm is introduced to 

enrich data by utilizing a shift factor generating 

technique. This technique facilitates the creation 

of several new images containing lung nodules, 

derived from the original image. 

(2) The two-stage training approach is 

suggested, with the initial stage focused on 

acquiring knowledge of the overall 

characteristics of CT lung images as well as the 

diverse anomalies present in different areas. In 

the second stage, the complex shapes of lung 

nodules are studied in depth. 

The paper is methodically structured into 

sections to offer a coherent and comprehensive 

examination of the topic matter. The literature 

review on lung nodule segmentation in CT scans 

is included in Section 2, where the essay 

discusses typical attention mechanisms and 

neural network integration methodologies. This 

section also explores the history of Unet, the U-

shaped model, and its improvements, with a 

focus on attention mechanisms. Section 3 details 

the core parts of our method. This section 

examines the channel and position attention 

modules, which led to the PCAM. The essential 

components and their roles in the proposed 

model will be explained. Section 4 discusses 

'Experiment Results and Analysis'. We start with 

the LUNA16 public database, which helps us 

validate our experiments. Datasets for testing 

and assessment and data augmentation strategies 

to improve model resilience will be discussed 

next. This study stands out for comparing 

segmentation results from PCAM-ResUnet and 

ResUnet++ models. Segmentation results by 

nodule size and overall are compared to assist 

choose the optimum model configuration. 

Benchmarking against SOTA techniques is 

undertaken. Section 5, 'Discussion', discusses 

our model's improvements and evaluates its 

learned parameter values. 

2. Literature Review 

2.1. Contemporary Models for Segmenting Lung 

Nodules in CT Scans 

Studies have demonstrated that CNN 

topologies can improve the effectiveness of lung 

segmentation methods [12-14] . Out of them, 

segmentation networks such as Fully 

Convolutional Neural Network (FCN) [15] and 

U-Net [16] have been highly acclaimed.  

Expanding upon these networks, some 

segmentation studies have refined and adapted 

their models by utilizing the fundamental CNN 

design or by modifying or incorporating 

additional components into the existing CNN 

structure. As an illustration, Huang et al. [17]  

introduced a system comprising four primary 

modules: utilizing a Faster regional-CNN (R-

CNN) to discover nodule candidates, 

consolidating the candidates, employing a CNN 

to decrease false positives, and segmenting 

nodules using a customized FCN. Their model 

underwent training and validation using the 

LIDC-IDRI dataset, resulting in an average Dice 

Similarity Coefficient (DSC) of 0.793. Tong et 

al. [18] utilized the U-Net architecture to 

perform lung nodule segmentation. Their 

approach improved network performance by 

combining U-Net with a residual block. In 

addition, the lung field was isolated using 

morphological techniques, and the images were 

resized to a dimension of 64 × 64 pixels before 

being fed into their network. The model under 

consideration conducted training and validation 

using the LUNA16 dataset, resulting in a DSC of 
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0.736. Keetha et al. [13] introduced a resource-

efficient U-Det architecture by merging U-Net 

with Bi-FPN, which is implemented in Efficient-

Det. The network was trained and tested on the 

LUNA dataset, achieving an average Dice 

Similarity Coefficient (DSC) of 82.82% and an 

average Sensitivity (SEN) of 92.25%. 

2.2. Attention Mechanism 

Within the human visual perception system, 

we possess an innate capacity to concentrate on 

significant regions and disregard secondary or 

irrelevant data in the surroundings. This 

enhances our aptitude to precisely and 

effectively distinguish and categorize stimuli 

[19]. By imitating this capacity, the attention 

mechanism was established to provide a weight-

based approach for adjusting the focus to various 

parts within an image. This enables neural 

networks to selectively concentrate on relevant 

regions that are connected to the purpose while 

disregarding irrelevant ones. The absorption 

power of this method is exceptionally efficient in 

capturing intricate semantic links in the 

segmentation of medical images. Moreover, the 

attention mechanism is valuable for elucidating 

the correlation between input and output data, 

facilitating the visualization of the model's 

acquired knowledge, thus offering a perceptive 

and clear understanding of the intricate structure 

of neural networks. 

2.2.1. Channel Attention 

Channel attention refers to the process of 

adjusting to individual data channels by 

considering them as distinct representations of 

various objects, as proposed by Chen et al. 

(2017) [37]. The concept of the squeeze-and-

excitation network (SENet) was initially 

introduced by Hu [20] and his research team. 

The squeeze module compresses each channel 

into a singular value via global average pooling, 

while the exciting module generates an attention 

vector using fully connected and nonlinear layers.  

Subsequent endeavors have sought to 

enhance the compression or activation 

procedures. In their study, Qin et al. [21] 

considered global average pooling as a specific 

instance of the discrete cosine transform in the 

squeeze module. They then introduced the 

Frequency Channel Attention Network 

(FcaNet), which is designed to compress 

information. Wang et al. [22] developed an 

Efficient Channel Attention (ECA) block that 

utilizes direct interactions between each channel 

and its k-nearest neighbors to improve the 

excitation module with reduced complexity. Lee 

et al. [23] used style pooling in the squeezing 

phase and added a fully connected per-channel 

layer in the excitation module to decrease 

computing expenses in both stages.  

2.2.2. Spatial Attention 

In the realm of image analysis, we employ 

spatial attention approaches to identify 

significant areas within the image. This is 

accomplished by assigning scores to separate 

spatial regions on the feature map, which are 

calculated based on their width and height.  

Oktay et al. [24] state that the attention gate 

employs a cumulative attention mechanism to 

generate gating coefficients by combining the 

input and gate signal on a global level. The 

outcome is a weight map that focuses on spatial 

attention, resulting in a model that is both 

efficient and impactful by highlighting 

significant regions and disregarding irrelevant 

characteristics. The GENet, as proposed by Hu 

et al. [25], incorporated a spatial recalibration 

function called the gather-excite module. 

2.2.3. The Combination and Position of 

Attention Modules 

The attention mechanism is commonly 

incorporated into deep learning models as an 

additional layer, similar to a "plugin" that may 

be placed at any point inside the network's 
convolutional blocks. The placement of this 

insertion is flexible and is determined by the 

model's needs and the task's features. The 

attention mechanism is commonly used in three 

key areas: the encoder, to help the model focus 

on crucial input features; the decoder, to improve 

output reconstruction by focusing on important 
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encoded information; and skip connections, to 

prevent loss of detailed information across 

layers. A hybrid approach can be used by placing 

the attention mechanism at different positions to 

gather information from both channels and 

spatial features effectively. This enhances the 

model's capability to identify features and 

improves the accuracy of segmentation maps or 

classification. 

The Convolutional Block Attention Module 

(CBAM), introduced by Woo et al. [26], 

computes channel attention and spatial attention 

in a sequential and independent manner. The 

channel attention module utilizes two parallel 

branches with max-pooling and avg-pooling 

operations, whereas the spatial attention module 

employs a convolutional layer with a bigger 

kernel to create the attention map. CBAM can 

prioritize effective routes and strengthen certain 

areas with crucial information. 

The Dual Attention Network (DANet), 

introduced by Fu et al. [27], utilizes self-

attention to independently calculate channel 

attention and spatial attention, which are then 

combined to provide the ultimate outcome. 

DANet collects data from channels and space 

separately and then combines it to build a 

thorough comprehension of the incoming data's 

structure and features. 

2.3. U-shaped Model Incorporating an Attention 

Mechanism 

Long et al. [15] introduced the "skip" 

architecture in fully convolutional networks, a 

significant advancement in image segmentation 

by enabling precise division of images without 

complex post-processing. This approach 

enhances spatial detail recovery lost in 

downsampling and laid the groundwork for 

models like U-Net [16] by Ronneberger, Fischer, 

and Brox. U-Net’s structure includes a 

contracting path for feature extraction and an 

expanding path with skip connections that merge 

multi-level feature information, enhancing pixel-

level segmentation accuracy. Optimized for 

medical applications, U-Net performs well with 

limited data. However, it faces challenges in 

multi-task, complex scenarios and can overfit 

with limited data, performing poorly on new 

data. It also requires substantial processing 

power, especially for high-resolution images, 

limiting its use in resource-constrained 

environments. Consequently, it has been 

enhanced and broadened through several 

iterations as [28, 29]. The versions aim to 

improve feature learning, reduce overfitting, and 

optimize segmentation. ResUnet, an enhanced 

version of U-Net, was developed by Zhang et al. 

[30] to overcome U-Net's constraints by 

incorporating residual connections inspired by 

He et al.'s ResNet model [31]. This enhancement 

enhances the deep learning capability and 

tackles multi-task challenges without 

significantly raising computing resource 

requirements, rendering ResUnet more 

appropriate for contexts with limited resources. 

B. John Jaidhan and Banavathu Sridevi [32] 

created DAH-UNet, a modified UNet 

architecture that combines residual blocks, 

enhanced atrous spatial pyramid pooling 

(ASPP), and depth-wise convolutions. This 

adaptation, together with a boundary-aware 

hybrid loss function, has demonstrated higher 

accuracy on two public datasets than current 

models. 

However, low resolution and contrast in 

pictures, such as in lung CT scans, can reduce the 

ability to differentiate intricate and comparable 

structures. To precisely segment abnormal 

structures like lung nodules or lesions, a model 

must be able to identify and distinguish delicate 

characteristics, a challenge that Residual layers 

may not always effectively address. ResUNet++ 

was created by Debesh Jha et al. [33] to tackle 

these issues with notable enhancements. The 

Squeeze-and-Excitation block (SE block) is a 

significant improvement that assists the model in 

concentrating on distinctive features, hence 

enhancing accuracy and removing unnecessary 

information. ResUNet++ utilizes Atrous Spatial 

Pyramid Pooling (ASPP) [34] to gather input 

from different spatial scales, helping the model 

comprehend and analyze structures of varying 
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sizes more effectively. Additionally, the decoder 

section of ResUNet++ is improved with 

attention modules to help the model concentrate 

on important regions of the image when 

reconstructing the segmentation output. The 

modules allow the model to adapt its focus 

dynamically, enhancing the detection and 

segmentation of items of interest, leading to 

improved accuracy and efficiency in the 

segmentation process. Figure depicts the 

transition from Unet to ResUnet++. 

 

Figure 2. An overview of the distinctions among the 

Unet, ResUnet, and ResUnet++ models.  

SE blocks, utilizing channel filters, do not 

use the interdependence of local image 

attributes. Hence, more advancements 

appropriate for segmentation tasks are required. 

Our research aims to expand and improve the 

model, using the specific details provided in 

Section 3: Proposed Model.  

3. Architecture and Components of the 

Proposed Model 

The model we propose is derived from the 

ResUnet++  model but substitutes the SE block 
with a combination of two modules: channel 

attention and position attention. This section will 

outline the techniques of the key modules and 

emphasize their functions in the model. 

We will now explore the attention 

mechanism in the algorithm, with a specific 

focus on Computing Attention, Feature 

Refinement Using Attention, and Adjusting the 

Impact of Attention. 

3.1.  Channel Attention Module (CAM) 

Deeply comprehending and effectively 

utilizing image feature channels are crucial for 

improving the performance of deep learning 

models in challenging tasks within computer 

vision. The Channel Attention Module (CAM) 

enhances the process by refining feature 

channels to emphasize critical qualities and 

eliminate irrelevant information. We present the 

CAM algorithm (see in figure 3,4,5) and then 

explore the core of the design. We will examine 

the operating principles and evaluate the 

influence of CAM on the efficiency of the 

proposed model. 

 

Figure 3. Pseudocode for the CAM algorithm. 

 

Figure 4. Pseudocode for the NormalizeA algorithm. 
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We simplify the algorithm's function within 

the model by assuming that the batch size (B) is 

1, as depicted in Figure 6. This method aids in 

elucidating each operation and its impact within 

the Channel Attention Module (CAM), 

facilitating the comprehension of the 

fundamental operational process. 

 

Figure 5. Channel Attention Module algorithm 

Architecture. 

a. Attention Calculation Method:  

This algorithm segment is dedicated to 

evaluating the significance of each feature in the 

input data. This approach entails utilizing 

operations like the dot product or comparable 

mechanisms to quantify the association among 

characteristics, resulting in the creation of an 

attention map. The attention map illustrates the 

significance of each piece and is created during 

the initial three steps of the algorithm to clearly 

pinpoint and highlight the regions that need 

concentration in further processing. 

+ Step 1: Feature Map Reshaping 

In this step, the input feature map X, which 

is three-dimensional according to batch size, 

number of channels, height, and width, is 

reshaped to prepare for attention computation: 

• Tensor X is reshaped into matrix A with 

dimensions [B, C, H×W], converting the three-

dimensional tensor into a two-dimensional 

matrix where each row corresponds to a distinct 

vector for each channel in each batch. 

• Tensor X is reshaped into AT, with channels 

and spatial dimensions interchanged, in 

preparation for matrix multiplication with A. 

+ Step 2: Compute Attention Map 

At this step, the attention matrix is 

computed. 

• Ma = A × AT: Matrix multiplication 

between A and AT is performed to generate the 

attention matrix Ma. This multiplication is not 

element-wise but matrix multiplication, where 

each element of Ma represents the degree of 

correlation between feature channels for each 

batch. The result of this multiplication yields a 

matrix containing the correlation values between 

features across the entire feature space.  

+ Step 3: Normalize Attention map 

Each attention matrix Ma in the tensor is 

analyzed individually, corresponding to each 

sample in the batch. We identify the highest 

value in each row of the Ma matrix to generate 

the Mb matrix, where each element is the 

maximum value from the respective row of Ma. 

The tensor Mb, which holds the maximum 

values, is then enlarged to match the size of Ma. 

Subtracting Ma from Mb yields the difference 

tensor Mc. Each value in Ma is compared to the 

maximum value in its respective row, creating a 

difference matrix where the maximum value in 

each row is normalized to 0, and other values 

represent the deviation from that maximum. The 

softmax function is used on Mc to transform the 

difference matrix into a normalized attention 

matrix for each sample in the batch. Within this 

normalized attention matrix, a value of 0 

signifies the utmost attention given to the 

original maximum value, with other values 

indicating varying degrees of attention based on 

their deviation from the maximum. This technique 
improves focus on key features in each batch 

sample and allows the model to evaluate and 

alter attention weights flexibly, enhancing the 

performance of processing multidimensional data. 
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b. Feature refinement is enhanced by 

employing attention up to the fourth step of the 

algorithm. 

+ Step 4: Apply Attention to Features 

Once the attention map Mc is computed, 

feature refinement takes place as follows: 

• Attention Weighting: The attention map Mc 

is normalized using the softmax function to 

create a probability distribution, which is then 

used to weight the feature map A using matrix 

multiplication. The product of this multiplication 

is denoted as F=Mc×A, where each element of 

A is multiplied by its associated coefficient from 

Mc. This technique refines features by assigning 

larger weights to more essential feature channels 

learned through the attention process, and de-

emphasizing less significant ones. 

• Feature Enhancement: This procedure 

identifies significant feature channels and 

adjusts the feature response levels according to 

the model's observations from the data. Refined 

F contains detailed feature information ideal for 

picture segmentation, emphasizing crucial areas. 

• Spatial Consistency: An important point to 

note is that this process maintains the spatial 

structure of the original feature map. Although 

each feature is weighted differently, the overall 

space it occupies is preserved. This ensures that 

the detailed spatial information necessary for 

medical image segmentation is not lost during 

the refinement process. 

c. Adjusting the Impact of Attention is 

carried out through step 5 Combine Attention 

Features with Input  in the algorithm. 

• Feature Integration: The enhanced 

attention feature map Mc is integrated with the 

original feature map X via a weighted addition, 

controlled by a trainable scale factor β. This 

facilitates the incorporation of data from Mc and 

X and also empowers the model to autonomously 

regulate the influence of the attention process 

according to previous computations, resulting in 

an output O= β⋅Mc+X with improved 

characteristics. 

3.2.  Position Attention Module (PAM)  

The Position Attention Module is a spatial 

attention mechanism that aims to improve the 

model's sensitivity to locations that are likely to 

have valuable information about lung nodules. 

Examining spatial concentration levels for each 

position in the image is a crucial element of the 

Position Attention Module. The procedure provides 

detailed and optimized spatial information in a 

refined manner as figure 7 and figure 8: 

 

Figure 6. Pseudocode for the NormalizeAttention 

algorithm. 

 

Figure 7.   Position Attention Module Architecture. 
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a. Attention Calculation Method:  

+ Step 1: Size Normalization 

 Initially, the input image I is spatially 

downsampled through the DownSample 

function to reduce computational complexity 

and focus on more significant information at a 

higher level. This reduced sample size is 

typically much smaller than the original image, 

reducing the spatial dimensions to be processed. 

+ Step 2: Feature Extraction 

The input Xdown is processed through 

convolutional layers to extract spatial feature 

maps. Fb, Fc are extracted via a convolutional 

layer with the output channel number being C/8. 

This layer detects lower-level features that may 

include information about edges, corners, and 

other basic structural characteristics of the 

image. Fd is extracted with the full channel depth 

C, retaining more diverse and complex feature 

information from the downsampled image. Each 

convolutional layer is usually paired with 

normalization methods such as batch 

normalization and activation functions like 

ReLU to enhance the learning process and add 

non-linearity to the model. Convolutional layers 

are typically set up with specific strides and 

padding to regulate the size of the feature map 

output and prevent the loss of important spatial 

features during extraction. 

+ Step 3: Attention Matrix Construction 

The matrix Fb is multiplied by the transpose 

of matrix Fc to generate a spatial correlation 

matrix, which indicates the correlation strength 

between each pair of places in the feature space. 

The softmax function is used to normalize each 
row of the matrix into a probability distribution 

after the multiplication, in order to emphasize 

spots with high correlation levels. 

The purpose of the Attention Matrix is to 

focus on specific elements. The softmax 

normalization step is designed to adapt spatial 

features by assigning a weight to each position 

according to its relationship with other positions. 

Within medical imaging, this allows the model 

to identify crucial locations requiring attention, 

like lung nodules, by concentrating on regions 

with strong correlation in the feature space. The 

attention matrix is more than just a weight map; 

it is the outcome of a sophisticated calculation 

that models spatial correlation. It plays a vital 

role in enhancing the accuracy of medical picture 

segmentation tasks. 

b. Enhancing Features with Attention 

mechanism  

Following the attention matrix Feature 

refining is conducted to improve the quality of 

feature information by using the acquired spatial 

correlations. This phase takes place at step 4 of 

the algorithm using the following techniques: 

• Application of Attention Matrix: The 

feature map Fd, derived from the last 

convolutional layer with the complete channel 

size to preserve varied information, undergoes 

matrix multiplication with the transposed 

attention matrix As. This multiplication involves 

matrix multiplication, where each element of the 

feature map is adjusted according to the relevant 

attention weights. This function either increases 

or decreases the feature signal at each point 

according to the spatial significance identified 

by the attention matrix. 

• Feature Refinement: The outcome is a 

revised feature map Fe, where each feature has 

been modified to represent its significance based 

on both content and spatial aspects. For instance, 

in lung nodule segmentation, features at the 

nodules' location will be highlighted, whereas 

features in the background or unnecessary areas 

may be reduced. 

• Preserving Spatial Information: It is crucial 

that this enhancement does not compromise the 

initial spatial information of the feature map, but 
instead enhances it. This guarantees that the 

intricate spatial data required for medical image 

segmentation is maintained. 

c. Adjusting the Impact of Attention 

In the final part of the Position Attention 

Module, we adjust the impact of attention on the 
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final feature through a technical process 

involving steps 5 and 6 of the algorithm. 

+ Step 5: Size restoration 

Resize the original input Idown using the 

Interpolate function to match the scale of the 

attention feature map Fe before adding them 

together. This maintains spatial information and 

guarantees that the enhanced features are 

consistently implemented throughout the image. 

+ Step 6: Combine Features and Attention 

The end outcome is O, achieved by 

meticulously merging the enhanced feature 

information from attention with the original 

input, following the described method. 

• Combining Feature Maps: The outcome of 

the feature refinement process Fe, in which each 

feature is modified based on the attention matrix, 

is subsequently merged with the downsampled 

original input Xdown. Typically, this process 

involves merging information from Fe and Xup 

through element-wise addition after resizing the 

original input using interpolation. 

• Scaling Coefficient Acquired: In this process, 

a scaling coefficient α is utilized to balance the 

impact of enhanced attention with the original 

information. The coefficient is acquired through 

the network training process and enables the 

model to autonomously regulate the blend of 

attention-based information with the original data. 

3.3. Position Combined Channel Attention 

Module (PCAM) 

We suggest a novel attention module that 

incorporates a multi-Attention technique to 
enhance feature representation capabilities (refer 

to the figure 9, 10 ). The combination of CAM 

and PAM was chosen to leverage the strengths 

of each module: CAM enhances the ability to 

emphasize critical features along the channel 

dimension, while PAM improves focus on 

important spatial regions. This integration 

creates a robust attention map, optimizing both 

spatial and channel dimensions, thereby 

enabling the model to achieve higher 

performance in segmenting complex pulmonary 

nodules. The model consists of three primary 

steps, demonstrating the incorporation of 

theoretical concepts with practical application. 

 

Figure 8.   Pseudocode for the PCAM algorithm. 

 

Figure 9.   PCAM Architecture. 

a. Attention Calculation Method and 

Feature Refinement 

+ Step 1: Module Initialization  

It involves setting up the Position Attention 

Module (PAM) and the Channel Attention 

Module (CAM) to utilize feature information 

from spatial and channel dimensions. This stage 

establishes the foundation for concentrating on 

specific regions of significance within the image. 

+ Step 2: Compute the Attention Modules 

Separately  

Spatial attention mechanism is utilized via 

PAM to generate a spatial attention map, 

highlighting the spatial connections among 

pixels. CAM is utilized to compute a channel 

attention map, which emphasizes the 

significance of relationships between channels. 

+ Step 3: Feature Combination and Refinement 

The results from PAM and CAM are merged 

through element-wise addition to form the 
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combined feature. A convolutional layer is 

employed to enhance and process the data, 

resulting in the final feature map. 

b. Adjusting the Impact of Attention 

While training, the parameters  and  are 

modified to specify the influence levels of PAM 

and CAM on the combined feature map. The 

parameters are fine-tuned according to the 

model's error rate on the training set, enabling 

the model to adapt and concentrate on the crucial 

aspects of the image. 

3.4. Proposed Model 

We introduce a meticulously constructed 

deep neural network model for accurately 

segmenting lung nodules from CT scans by 

effectively handling image characteristics. The 

model is built using a blend of sophisticated 

algorithms and meticulous data processing 

strategies. An extensive examination of each 

component of the model is provided in figure 11. 

• Encoder and Residual Blocks:  

The CT images are initially fed into the 

model using encoder blocks. The Residual Block 

(ResBlock) in this context integrates 

convolutional layers, batch normalization, and 

the ReLU activation function to extract and 

enhance low-level information from the image. 

The convolutional layer aims to retain crucial 

spatial characteristics, whereas residual 

connections aid in reducing the issue of 

disappearing gradients. This guarantees the 

preservation of spatial information and the 

inherent structure of the lungs, which is essential 

for future segmentation procedures. 

• PCAM: The image is processed by the 

encoder blocks and then sent to the PCAM, 

which consists of the Channel Attention Module 

(CAM) and the Position Attention Module 

(PAM). CAM utilizes a self-attention process to 

examine the relationship between channels and 

concentrate on the channel that holds the most 

precise information regarding the lung nodule. 

PAM emphasizes spatial elements and highlights 

significant areas within the image. PCAM is a 

fusion of CAM and PAM, which generates a 

detailed spatial-channel attention map to 

emphasize significant regions and channels that 

hold lung nodule data. 

• ASPP Bridge and Residual Convolution:  

The Residual Convolution Modules improve 

feature representation by combining information 

from previous and current layers, optimizing 

detail and context. The Atrous Spatial Pyramid 

Pooling (ASPP) module expands the receptive 

field using Atrous Convolution, capturing a 

broader area of the input image by adjusting 

dilation rates without increasing parameters. 

This enhances the model's ability to understand 

both contextual and specific object details, 

critical for tasks like medical image 

segmentation. 

In traditional convolution, the value of a 

point in the output feature map (activation map) 

is calculated by applying a filter (kernel) F to the 

input feature map I as follows: 

 

𝑂(𝑥, 𝑦) = (𝐼 ∗ 𝐹)(𝑥, 𝑦) (1) 

= ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗). 𝐹(𝑥, 𝑦)
𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘
 

 
where ∗ denotes the convolution operation, 

O(x,y) is the value at point  (x,y) on the output 

feature map I(x+i,y+j) is the corresponding 

value on the input feature map, and F(i,j) is the 

weight of the filter at position (i,j). In the 

convolution formula, the filter F has a size of 

(2k+1)×(2k+1), where k is defined as the 'radius' 

of the filter, not the full size. This allows the 

filter to cover a specific neighborhood on the 

input feature map to calculate the value for each 

point on the output feature map. (for example, 

for a 3x3 filter, k=1). Atrous convolution extends 

the above formula by adding a dilation parameter 

d, allowing for larger distances between weights 

in the filter: 
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𝑂(𝑥, 𝑦) = (𝐼 ∗𝑑 𝑑𝐹)(𝑥, 𝑦) (2) 

= ∑ ∑ 𝐼(𝑥 + 𝑑. 𝑖, 𝑦 + 𝑑. 𝑗). 𝐹(𝑥, 𝑦)
𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘
 

Here, ∗d denotes the atrous convolution 

operation, and d is the dilation rate, which 

defines the distance between elements in the 

kernel applied to the input. When d=1, atrous 

convolution becomes traditional convolution. 

The Residual Convolution Modules and 

ASPP Bridge process feature maps after PCAM. 

ASPP filters spatial information at many scales. 

Atrous convolution layers with variable dilation 

rates allow the model to evaluate vast receptive 

fields and capture lung nodule details. This 

information combination helps the model 

optimize segmentation, especially for lung 

nodules with diverse sizes, forms, or structures. 

The model can recognize lung nodules of various 

sizes and shapes using this method, enhancing 

segmentation. Concatenating feature maps from 

each ASPP block follows processing. A 

comprehensive feature collection with 

information from several spatial scales results 

from this combination. This technique is crucial 

for synthesizing varied information to show the 

item and its context in the image. 

• Attention Module: 

The Attention module is an important part 

that helps the model focus on the important parts 

of the image by using feature information from 

ASPP and the encoder layers. The feature from 

ASPP, which contains information at various 

spatial scales, is combined with information 

from the encoder layers to create a complete 

picture of the important features that the model 

needs to focus on. This process is carried out 

through a series of convolutional layers and 

ReLU activation functions to effectively process 

and combine this information. 

The calculation formula in the Attention 

module can be represented as follows: 

InterE(x1) = ReLU(BN(Conv(x1))) (3) 

ConvE(x1) = MaxPool(Conv(InterE(x1))) (4) 

ConvD(x2) = Conv(ReLU(BN(Conv (x2)))) (5) 

Output = Conv (ConvE (x1) + 

ConvD(x2))⋅x2 (6) 

MaxPooling reduces feature spatial extent 

after ConvE's initial convolutional layer. The 

formula matches the Attention module's 

sequence of operations. Applying Convolutional 

layers and MaxPooling to the encoder feature, 

Batch Normalization, and ReLU to the decoder 

feature are the next stages. It ensures that the 

Attention module may efficiently alter the 

decoder's feature weight based on the attention 

procedure's relevance. 

• Decoder and UpSampling: 

The model uses UpSampling and 

ConvTranspose2d layers to increase the feature 

space and recreate the image's fine resolution 

during decoding. This process is aided by skip 

connections from the encoder, which combine 

specific spatial information with the decoded 

characteristics to efficiently integrate both 

contextual and spatial detail information. 

Attention modules are reinstated at this point to 

highlight important sections and improve the 

segmentation output. 

• Final Segmentation Result:  

A secondary ASPP module adds spatial 

information processing after the decoder 

integrates and enhances data from Residual 

Convolution, PCAM, ASSP bridge, Attention 

module, and UpSampling. Integrating ASPP 

toward the end of the model, before using the 

sigmoid function, improves spatial data 

collection. This ensures that the final 

segmentation map accurately depicts lung 

nodule location, anatomy, and size. After the 

sigmoid layer, the model creates the lung nodule 

segmentation map, categorizing pixels by their 

chance of being lung nodules. The CT scan lung 

nodule map shows their location and structure.  
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Figure 10. PCAM-ResUnet architecture. 
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4.  Experiment Result and Analysis 

4.1. Datatsets 

4.1.1. LUNA16 

The LUNA16 dataset, a component of the 

LUNA (LUng Nodule analysis) challenge, is 

notable in the realm of medical machine learning 

and CT lung image analysis. LUNA16 is 

released under the Creative Commons 

Attribution 4.0 International License, making it 

transparent and widely accessible, using the 

public LIDC/IDRI database. This dataset 
provides a substantial amount of top-notch CT 

images along with thorough annotations from 

skilled diagnostic radiologists (Setio et al., [35]). 

LUNA16 chooses CT scans from the 

database based on a criterion that the slice 

thickness is no more than 2.5 mm, specifically 

focused on 888 high-quality CT scans. The lung 

nodules were marked and classified in the 

database by a thorough evaluation process 

including four competent diagnostic 

radiologists. Each radiologist participated in 

identifying and categorizing lung nodules to 

create a reference standard for the challenge. 

This standard included lung nodules that were 3 

mm or larger and were agreed upon by at least 

three of the four radiologists. 

The images are saved in the MetaImage 

format (mhd/raw), where each .mhd file is paired 

with a corresponding .raw file that holds pixel 

data. The annotation data is stored in a CSV file, 

providing information on the position and 

dimensions of each lung nodule. There are 1186 

lung nodules documented in the annotation file. 

LUNA16 is a dataset that serves as a 
significant challenge for the development and 

assessment of novel strategies in the detection 

and analysis of lung nodules. This dataset 

encourages researchers to compare the efficacy 

of automated algorithms, fostering 

advancements in medical imaging diagnoses. 

4.1.2. Practical 512x512 Dataset 

We utilized 512x512 original size images, 

consisting of 1186 slice images with lung 

nodules retrieved from the LUNA16 annotation 

file. This dataset will be used for the early stage 

of training the models. 

4.1.3. Practical 64x64 Dataset 

a. Set of Data Image 

We cropped CT scans from the LUNA16 

dataset, which were originally 512x512 pixels, 

into smaller segments of 64x64 pixels. This was 

done based on the center coordinates of lung 
nodules found in the annotation file. This 

decision was based on multiple explicit scientific 
and technological rationales. Cropping the 

image from 512x512 to 64x64 allows for a more 

focused view of the lung nodule and its 

surroundings by removing extraneous image 

components. This approach improves precision 

and effectiveness in examining crucial 

characteristics of lung nodules. The 64x64 pixel 

images strike a mix between image detail and 

quick processing, which optimizes model 

training and testing. Choosing image cropping 

using exact center coordinates guarantees that 

each image segment consistently includes the 

lung nodule and offers the required detailed 

information for precise analysis. 

b. Data Augmentation 

The dataset of images with lung nodules in 

the annotation is helpful but requires enrichment 

to align with the needs of deep learning models, 

particularly in scenarios that demand training 

with extensive and varied datasets to enhance 

accuracy and generalization. 

We introduced the "Generalized Center-

Based Image Cropping" algorithm to address 

this requirement (refer to the figure 12). This 

approach centers on utilizing the midpoint of the 

lung nodule, identified via annotations, as the 

reference point for cropping images. We change 

the center point of each lung nodule in the 

original 512x512 pixel image to crop multiple 

64x64 pixel frames. This method guarantees that 

every cropped image includes the lung nodule 

and displays the variety of the surrounding area. 

In this study, although it was possible to get 

multiple images from each nodule, we decided 
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to generate 10 images for each original image. 

Consequently, we create 10 cropped images 

measuring 64x64 pixels from each original 

image. These cropped images depict the lung 

nodule from various orientations and 

perspectives, thereby enriching the diversity of 

the training data. 

Algorithm: Generalized Center-Based Image 

Cropping  

+ Input: 

• Image (img): The initial image that will 

undergo cropping. This is the fundamental data 

that the algorithm functions on. 

• Annotated Nodule Center Coordinates (Cx, 

Cy): The x and y coordinates denote the central 

point of the pulmonary nodule based on the data 

annotations. The image cropping will be 

determined by these coordinates to keep the 

nodule within the cropped image area. 

• Diameter (D): The diameter of the feature 

around which the image is to be cropped. This 

helps in determining the range for the cropping 

offsets. 

• Crop Region Size (W): A fixed dimension 

that defines the size of the square crop region. 

+ Output: 

• Cropped image region. 

• New center coordinates Cnew. 

 
Figure 11.  Key stages of the Generalized Center-

Based Image Cropping algorithm. 

The algorithm aims to offer a versatile and 

precise method for image processing, 

specifically concentrating on creating 

transformations and randomization in the 

vicinity of the lung nodule. 

The image cropping method starts by 

determining the center coordinates of the lung 

nodule based on annotation data. The Uniform 

distribution is utilized to create random 

deviations from the defined center to ensure each 

cropped image displays a specific variation in 

the position of the lung nodule. 

Utilizing the Uniform distribution is 

essential in this approach to guarantee 

unpredictability in the image cropping process. 

The Uniform distribution is utilized to calculate 

random variations from the established 

midpoint, using the formula provided below: 

𝑃(𝑋 = 𝑥) =  
1

𝑏−𝑎+1
      (7) 

X is a random variable with values between 

a and b, and P(X=x) is the chance of X taking a 

certain value x within this range. The algorithm 

applies the deviation, identifies the cropping 

area, and then crops the image according to the 

given parameters. The cropping area is 

predetermined to ensure that the lung nodule 

stays inside the boundaries of the cropped image. 

The technique outputs a cropped image and the 

updated center coordinates. This variability 

guarantees that each cropped image displays a 

different location of the lung nodule, which is 

essential for enhancing diversity in subsequent 

image analysis and processing (refer to the figure 

13). 

 

Figure 12.  The images generated from the original 

annotated images. 
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c. Dataset Division 

Following the implementation of the image 

data enrichment technique, we acquired 11,847 

photos measuring 64x64 pixels, showcasing 

lung nodules ranging in size from 3mm to over 

10mm. We have standardized the quantity of 

lung nodules in our dataset. The data has been 

categorized into three categories according to the 

size of the lung nodules. Category 1 contains 

lung nodules smaller than 5 mm, Category 2 

consists of lung nodules ranging from 5 to less 

than 10 mm, and Category 3 pertains to lung 

nodules measuring 10 mm or more (refer to the 

Table 1 and figure 14). 

Table 1. The data is divided into three lung nodule 

size groups. 

Categories 
Diameter 

(d) (mm) 

Nodule 

Count 
Train Test 

1 d<5 2700 2330 370 

2 5<=d<10 6330 5320 1010 

3 d>=10 2817 2197 620 

 Total 11,847 9847 2000 

 

 

Figure  13.   Nodule Count by Diameter Chart. 

4.2. Experimental Environment 

• We experimented with four deep learning 

models in the Google Colab Pro environment, a 

robust and versatile cloud computing platform. 

The environment has advanced hardware 

resources, such as around 25 GB of RAM and an 

Nvidia P100 GPU. 

• Optimizer Adam: Adam is a highly 

effective optimization technique commonly 

employed in deep learning models. It merges the 

benefits of Momentum and RMSprop 

optimization approaches. Adam adapts the 

learning rate by utilizing real-time calculations 

of the gradient's first moment (mean) and second 

moment (unbiased variance). This enables the 

model to adjust well to the characteristics of the 

input data and the configuration of the error 

space. 

• Learning Rate Scheduler: decreases the 

learning rate by a factor of 0.1 after every 30 

epochs. Reducing the learning rate enables the 

model to refine its parameters more effectively 

in ideal regions and prevents it from missing 

optimal spots caused by a learning rate that is too 

high. 

4.3. Loss Function 

4.3.1. Binary Cross Entropy Loss (BCE Loss) 

BCE Loss represented by the formula: 

 
(8) 

where N is the number of samples, this loss 

function measures the difference between the 

anticipated value (pi) and the actual label (yi) for 

each pixel, ensuring sensitivity for pixel-level 

distinction. 

The gradient of BCELoss with respect to the 

prediction pi 
𝜕𝐿𝐵𝐶𝐸

𝜕𝑝𝑖
= −

𝑦𝑖

𝑝𝑖
+

1−𝑦𝑖

1−𝑝𝑖
  (9) 

4.3.2. Dice Loss 

Dice Coefficient, a part of Dice Loss, is 

calculated using the formula: 

              𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓 =  
2.∑ 𝑝𝑖𝑦𝑖 + 𝜀𝑁

𝑖=1

∑ 𝑝𝑖+ 𝑁
𝑖=1 ∑ 𝑦𝑖+ 𝑁

𝑖=1 𝜀
  (10) 

𝐿𝐷𝑖𝑐𝑒 =  1 − 𝐷𝑖𝑐𝑒𝐶𝑜𝑒𝑓  (11) 

The gradient of Dice Loss with respect to the 

prediction pi 

𝜕𝐿𝐷𝑖𝑐𝑒

𝜕𝑝𝑖
=

2.(𝑦𝑖 ∑ 𝑝−𝑝𝑖 ∑ 𝑦)−2𝑝𝑖(∑ 𝑦𝑖
𝑁
𝑖=1

𝑁
𝑖=1 𝑝𝑖+ 𝜀)𝑁

𝑖=1

(∑ 𝑝𝑖+ 𝑁
𝑖=1 ∑ 𝑦𝑖+ 𝑁

𝑖=1 𝜀)2  

 (12) 
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where  is a small constant used to ensure 

numerical stability. The Dice Coefficient 

quantifies the similarity between the predicted 

and actual segmentations by focusing on 

optimizing the overlapping region between them. 

4.3.3. BCEDice Loss 

The BCEDice Loss is a composite loss 

function that aims to utilize the advantages of 

Binary Cross-Entropy Loss and Dice Loss in 

training medical image segmentation models. 

𝐵𝐶𝐸𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 𝐵𝐶𝐸𝐿𝑜𝑠𝑠 + 𝐿𝐷𝑖𝑐𝑒 (13) 

The gradient of the combined loss function 

with respect to the prediction will be the sum of 

the gradients from both components. 

𝜕𝐿𝐵𝐶𝐸𝐷𝑖𝑐𝑒

𝜕𝑝𝑖
=

𝜕𝐿𝐵𝐶𝐸
𝜕𝑝𝑖

 + 𝜕𝐿𝐷𝑖𝑐𝑒
𝜕𝑝𝑖

  (14) 

The focus is on reducing loss via BCELoss 

and improving segment overlap using the Dice 

Coefficient. This method allows the combined 

loss function to enhance prediction accuracy at 

the pixel level while also considering the object's 

general structure for segmentation. 

4.3.4. Metric 

The DICE index, also known as the Dice 

Similarity Coefficient, is utilized to assess the 

effectiveness of image segmentation algorithms, 

particularly in the context of medical imagine 

segmentation. 

𝐷𝑆𝐶 =  
2|𝐴∩𝐵|

|𝐴|+|𝐵|
  (15) 

This metric measures the overlap of pixels 

between the segmentation results generated by 

the model (A) and the ground truth (B). A high 

DICE index value signifies a strong resemblance 

between the two segmenters, which is crucial for 

creating a dependable medical picture 

segmentation model. 

4.4. Multi-Stage Training Techniques for CT 

Nodule Segmentation 

We utilized the Multi-Phase Training 

technique on lung nodule CT images during the 

research study. This approach aims to enhance 

the deep learning model's recognition and 

analysis capabilities by undergoing two training 

stages with distinct characteristics and objectives. 

Training commences with CT images of 

512x512 pixels in size. This step aims to enable 

the model to acquire comprehensive knowledge 

of the CT image, encompassing lung structure, 

surrounding context, and many types of 

abnormal regions. Utilizing ResUnet++'s 

pretrain parameter set reduces the time required 

for the model to adjust to the data and promptly 

attain fundamental discrimination capability. 

The second stage involved training the 

model on 64x64 pixels CT images that were 

diced and contained lung nodules. During this 

phase, the model is improved using checkpoints 

from the initial phase to better recognize and 

analyze specific properties of lung nodules. 

Transitioning from a big to a tiny picture size 

enables the model to concentrate on acquiring 

intricate and precise characteristics, hence 

improving the model's accuracy and 

classification capability when examining lung 

nodule images. 

4.4.1 Training Stage 1: Feature Exploration 

in Comprehensive Context 

During the first stage of the Multi-Phase 

Training process, different versions of the 

PCAM-ResUnet model, such as PAM, CAM, 

PCAM, and the original ResUnet++ model, are 

trained using the practical 512x512 dataset. The 

objective is to assess the capacity of each model 

to collect fundamental characteristics from the 

data (refer to the figure 16). The process 

commences with the pretraining parameter set of 

the ResUnet++ model. 

The ResUnet++ model demonstrates a 

consistent and rapid reduction in loss, starting at 
0.6208 and steadily falling to 0.0437 by epoch 

100. This demonstrates the capacity to promptly 

seize. The fundamental features of this paradigm 

are enhanced by the benefits of pretraining. 

PCAM-ResUnet variants, comprising PCAM, 

CAM, and PAM, with initial losses of 0.7532, 

0.8795, and 0.7208, respectively, consistently 

show progress with each epoch. While not as fast 
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as ResUnet++ in reducing loss, all three models 

are progressively adjusting and effectively 

learning from the data's properties, reaching 

losses of 0.1759, 0.1763, and 0.193 

correspondingly by epoch 100. 

 

Figure 14.  Training Loss for Practical 512x512 

Dataset. 

4.4.2. Training Stage 2: Focused Refinement 

on Nodule-Centric Zones 

After training on large-size images in the 

initial phase, we progressed to stage 2 to fine-

tune the models using the Practical 64x64 

dataset. The purpose of this stage is to enhance 

the capacity to identify intricate characteristics 

of lung nodules, crucial for medical diagnosis 

(refer to the figure 16, 17). 

The ResUnet++ model began phase 2 with a 

loss of 0.6208, which rapidly decreased to 

0.2147 after the initial 5 epochs. The model 

demonstrated a notable decrease in loss, 

reaching 0.0437 by the end of the phase, 

showcasing its advanced deep learning capacity 

and efficient optimization. During stage 2, the 

PCAM, CAM, and PAM models showed notable 

convergence and optimization abilities. PCAM 

began with a loss of 0.5508, decreased to 0.215 

after 6 epochs, and finally settled at 0.0504, 

demonstrating consistent convergence. The 

CAM model initially had a loss of 0.5822, 

decreased to 0.2052 after 6 epochs, and further 

improved, demonstrating its adaptability and 

ongoing learning, achieving a final loss of 

0.0552. Unlike the other models, PAM began 

with a low loss of 0.3632 but had a slower 

convergence rate, decreasing to 0.2415 after the 

first 5 epochs and eventually reaching 0.0798, 

falling short of its initial promising performance. 

Each model demonstrated its proficiency in deep 

learning and optimization to different extents, as 

seen by the decrease in loss throughout training. 

 

Figure 15.  Training Loss for Practical 64x64 

Dataset. 

 

Figure 16.  Accuracy for Practical 64x64 Dataset. 

4.5. Experimental Results 

4.5.1  Overall Outcomes 

The table 2 provides a first look at a 
comprehensive comparison of the performance 

of four distinct deep learning models in medical 

image segmentation tasks, as evaluated by their 

respective loss values and the Dice Similarity 

Coefficient (DSC). This overview serves as an 

initial guide to the nuanced capabilities of each 

model within the scope of the study. 
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The ResUnet++ model has superior 

performance with a little loss of 0.044, indicating 

effective learning throughout the training 

process. The model's average Dice Similarity 

Coefficient (DSC) is 83.89%, which is not the 

highest. PCAM, while not having the smallest 

loss, obtains the highest mean DSC at 85.96%. 

Despite a slightly higher loss value of 0.0529, 

PCAM is quite effective in capturing the 

intricacies of medical image segmentation. Its 

highest observed DSC at 99.64% also 

underscores its robust performance in the best-

case scenarios. 

The results table 2 shows a close competition 

amongst the models in terms of complexity, as 

shown by the parameter count. Despite 

incorporating multiple attention modules, 

PCAM experiences just a slight rise in the 

number of parameters compared to the 

individual attention modules when used 

separately. The use of attention mechanisms in a 

model can significantly impact performance 

more than the total number of parameters. The 

ResUnet++ model has superior performance 

with a little loss of 0.044, indicating effective 

learning throughout the training process. The 

model's average Dice Similarity Coefficient 

(DSC) is 83.89%, which is not the highest. 

PCAM, while not having the smallest loss, 

obtains the highest mean DSC at 85.96%. 

The study uses a new method to classify 

medical images into outcomes according to the 

Dice Similarity Coefficient (DSC) into four 

assessment levels: Excellent, Good, Acceptable, 

and Needs Improvement. The levels correspond 

to DSC thresholds of equal to or greater than 

80%, 60-79%, 40-59%, and less than 40%, 

respectively. The "Excellent" score signifies a 

strong correlation between the segmentation 

findings and the reference standard. The "Good" 

rating indicates a high level of accuracy that is 

usually adequate for clinical choices, but there is 

still potential for enhancement. "Acceptable" 

indicates that the segmentation outcomes are not 

perfect but still practical in some situations. 

Results labeled as "Needs Improvement" with a 

DSC below 40% necessitate further evaluation 

and improvement. This method aids in evaluating 

the segmentation results against expectations 

and establishes a structure for comparing and 

enhancing the performance of segmentation 

algorithms (refer to the figure 18, 19). 

The table 3 shows that the PCAM model 

showed excellent performance in capturing 

detailed segmentation, with 82.75% of its results 

achieving the 'Excellent' level out of 2000 test 

samples evaluated. The ResUnet++ model 

achieved a high percentage of 'Excellent' 

outcomes (78.35%) but had a slightly larger 

proportion of results in the 'Needs Improvement' 

category, indicating some cases of lower-quality 

segmentations. The CAM model produced a 

significant amount of 'Excellent' segmentations 

(80.35%) but also had a greater proportion of 

'Needs Improvement' cases (3.80%) than 

PCAM, indicating possible inconsistencies in 

segmentation quality. On the other hand, the 

PAM model received a significant number of 

'Excellent' ratings (77.50%) but also had the 

greatest rate of 'Needs Improvement' results at 

5.15%, suggesting a higher level of variability 

and more instances of inferior segmentation 

quality (refer to the figure 20). 

 

Table 2. Comparative Study of Deep Learning Models for Medical Image Segmentation 

Model Loss Avg DSC Highest DSC Observed Parameters 

PCAM 0.0529 85.96% 99.64% 14,700,802  

CAM 0.0552 84.44% 99.14% 14,479,879  

PAM 0.0804 82.79% 99.41% 14,507,039  

ResUnet++ 0.044 83.89% 99.43% 14,482,564  
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Figure 17. Model Segmentation Visualization Stages with Heatmap Analysis 

(a) Input CT image; (b) Ground truth mask; (c-f) Feature maps from early to deep attention layers. 

(g-h) Residual features from intermediate layers; (i-k) Outputs from dual attention layers. 

(l) ASPP bridge features; (m-o) Decoder outputs at different levels; (p) Enhanced features. 

(q) Final segmentation result; (r) Mask on ground truth; (s) Final overlay. 

 

Prediction Actual Overlay Prediction Actual Overlay Prediction Actual Overlay 
         

         
DSC = 93.47% DSC = 99.64% (The best case) DSC = 92.74% 

   

      

DSC = 78.93% DSC = 77.56% DSC = 71.60% 

         

DSC = 57.31% DSC = 58.82% DSC = 62.74% 

         

DSC = 36.76% DSC = 29.03% DSC = 35.67% 

 

Figure 18.  Sample Cases of Segmentation Outcomes Categorized by Achieved DSC Levels. 
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Figure 19. Distribution of DSC Levels Across Deep Learning Segmentation Models. 

Table 3. Performance Evaluation of Deep Learning Models on  Segmentation Tasks based on DSC Levels 

Level DSC Range 

Sample Count 

Model 

PCAM CAM PAM Res-Unet++ 

Needs 

Improvement 
0%<= DSC <40% 37 76 103 82 

Acceptable 40%<= DSC <60% 58 52 91 64 

Good 60%<= DSC <80% 250 265 256 287 

Excellent 80%<= DSC <=100% 1655 1607 1550 1567 

 Total 2000 2000 2000 2000 
 

4.5.2. Segmentation Accuracy Analysis by 

Nodule Size Categories 

PCAM outperforms in segmentation 

accuracy across all nodule size categories, with 

mDSC scores of 82.82% for nodules smaller 

than 5 mm, 86.64% for nodules between 5 and 

10 mm, and 86.71% for nodules 10 mm or bigger 

in the summarized performance comparison 

(refer to the Table 4). CAM and ResUnet++ both 

achieve high performance in segmenting bigger 

nodules, with CAM scoring 85.34% and 

ResUnet++ scoring 85.67%. PAM demonstrates 

enhanced performance as nodules grow in size, 

achieving its highest mDSC of 84.60% in the 

largest nodule group. The results emphasize 

PCAM's outstanding effectiveness in accurately 

segmenting lung nodules of different sizes. 

a. Segmentation Efficacy for Sub-5mm 

Pulmonary Nodules 

The evaluation of 370 samples, including 

nodules smaller than 5 mm, showed that the 

PCAM variant of PCAM-ResUnet received a 

'Excellent' rating for 71.62% of the samples 

(refer to the figure 21). This showcases the 

model's remarkable ability to accurately segment 

small lung nodules. The sample improvement 

rate is 2.70%, which is lower than the CAM rate 

of 4.32% and the PAM rate of 8.92%. The 
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ResUnet++ model obtained a 64.59% 'Excellent' 

rate and showed an undesirable gain in the 

'Acceptable' rate, with 6.76% of samples falling 

into this category, surpassing PCAM's 1.89%. 

This suggests limitations in the original model's 

ability to deal with smaller and more complex 

lung nodules. 

b. Segmentation Efficacy for 5-10mm 

Pulmonary Nodules 

PCAM outperformed the other models in 

segmenting pulmonary nodules sized between 5 

to 10 mm, achieving 84.26% of instances graded 

as 'Excellent' (refer to the figure 22) by testing 

1010 samples. This variation not only exceeds 

the others but also excels the original ResUnet++ 

model significantly, which achieves a rate of 

77.43% for samples at the same level. 

When examining the 'Needs Improvement' 

category, PCAM has the lowest rate at 1.88%, 

while CAM has 2.67% and ResUnet++ has 

3.86%. PAM has the highest rate in this 

category, standing at 4.16%. Models in the 

'Acceptable' (40% ≤ DSC < 60%) and 'Good' 

(60% ≤ DSC < 80%) categories do not exhibit 

notable distinctions. 

c. Segmentation Efficacy for ≥10mm 

Pulmonary Nodules 

Evaluating 620 test samples of lung nodules 

measuring 10 mm and larger (refer to the figure 

23), PCAM demonstrates good accuracy with 

86.94% of segmentations rated as 'Excellent'. 

CAM and ResUnet++ have a higher proportion 

of 'Excellent' segments in comparison to PCAM. 

The total percentage of 'Good' and 'Excellent' 

segments is 92.26% for CAM and 91.94% for 

ResUnet++. The figures do not surpass the 

combined total of 93.06% for PCAM. The 

'Needs Improvement' rates for CAM and 

ResUnet++ are 5.32% and 5.00%, respectively, 

both higher than PCAM's rate of 1.29%. 

4.5.3. Comparative Analysis of Methods and 

Results 

 Table 5 juxtaposes the efficacy of several 

lung nodule segmentation models from 2018 to 

the present, illustrating progress in the 

incorporation of deep learning architectures and 

attention mechanisms in medical segmentation 

endeavors. Conventional U-Net-based models, 

shown as U-Net (2018) by Tong et al.[18], 

attained an average Dice Similarity Coefficient 

(DSC) of 82.05%, underscoring the constraints 

of U-Net in the absence of attention processes. 

Subsequent research, including U-Det (2020) by 

Keetha et al. [13] and the Bidirectional Feature 

Network (2023) by Sekhara et al. [40], enhanced 

performance, achieving a DSC of 82.82% by the 

utilization of advancements such as Bi-FPN and 

bidirectional topologies. 

Integrating attention modules has resulted in 

substantial enhancements. For example, the 

Dual-branch Network (2021) by Wu et al [36]. 

attained an average DSC of 83.16%, but the Dual 

Encoding Fusion Network (2022) by Xu et al 

[38]. obtained 85.27%, illustrating that the 

integration of attention improves the capacity to 

concentrate on essential characteristics in CT 

images. Additionally, DA-Net (2021) by 

Maqsood et al. [39] employed a dual-attention 

mechanism to enhance both spatial and channel-

wise feature representation. The model achieved 

a DSC of 84.00%, reflecting its effectiveness in 

segmentation tasks. In this investigation, our 

PCAM-ResUnet model attained an average Dice 

Similarity Coefficient of 85.96%, surpassing 

prior methodologies. This outcome distinctly 

demonstrates the efficacy of including Channel 

Attention (CAM) and Position Attention (PAM) 

into ResUnet blocks, allowing the model to fully 

use positional and channel information.
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Figure 20. Segmentation Performance Breakdown for Nodules Under 5 mm in Diameter. 

 

 
 

Figure 21. Segmentation Accuracy Analysis for Nodules with Diameter Between 5 and 10 mm. 

 

 
 

Figure 22. Segmentation Performance Breakdown for Nodules Over 10 mm in Diameter. 
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Table 4. mDSC Scores for Pulmonary Nodule Segmentation Across Size Categories  

 

 Categories 
Diameter (d)  

(mm) 

mDSC of Models 

PCAM CAM PAM ResUnet++ 

1 d<5 82.82% 81.75% 77.95% 80.89% 

2 5<=d<10 86.64% 84.58% 83.44% 84.40% 

3 d>=10 86.71% 85.34% 84.60% 85.67% 
 

Table 5. Comparision of segmentation performance 

 

Authors Model Dataset DSC 

Tong et al., (2018) [18] Unet LIDC 82.05% 

Keetha et al., (2020) [13] U-Det LUNA16 82.82% 

Wu et al., (2021) [36] Dual-branch network LIDC 83.16% 

Chen et al., (2021) [37] Fast Multi-crop Guided Attention network LIDC 81.32% 

Xu et al., (2022) [38] Dual Encoding Fusion Network LIDC 85.27% 

Maqsood et al., (2021) [39] DA-Net LIDC 81.00% 

Sekhara et al., (2023) [40] Bidirectional feature network LUNA-16 82.82% 

Our model PCAM-ResUnet LUNA-16 85.96% 

 

5. Discussion  

5.1. From SEBlocks to PCAM: Enhancements in 

PCAM-ResUNet and Their Impact 

This discussion will compare and evaluate 

two primary attention mechanisms: the Squeeze-

Excite Block (SEB) and PCAM, which 

combines the Channel Attention Module (CAM) 

and Position Attention Module (PAM). The 

investigation aims to explore how these two 

strategies improve the medical image 

segmentation abilities, specifically in 

recognizing pulmonary nodules in CT scans. 

+ Mechanisms and Features of SEB and PCAM 

• SEB concentrates on modifying the 

weights of individual channels by compressing 

and subsequently enlarging the spatial 

information. This is achieved by utilizing a 

pooling layer to compress the spatial information 

and then passing it through a sequence of fully 

connected layers to generate attention weights 

for each channel. 

• PCAM integrates channel attention with 

position attention. CAM uses matrix 

multiplication and softmax to examine and 

improve interactions between feature channels, 

while Position Attention focuses on modeling 

spatial correlations between pixels. This 

combination offers a thorough perspective on the 

image information structure by highlighting 

crucial feature channels and examining pixel 

relationships in space. 

+ Applications in Medical Image Segmentation 

• SEB can enhance accuracy in recognizing 

crucial features but may not be enough in 

precisely determining the location and form of 

critical objects in medical images. 

• PCAM has the capability to accurately 

identify pulmonary nodules in CT images by 

integrating information from both channel and 

position. This combination improves the 

capacity to identify certain characteristics of the 

nodules and also aids in detecting their location 

and spatial interactions with nearby structures. 

5.2.  and  Coefficients  

Studying and analyzing the  and  

coefficients in the PCAM of our network design 

show a sophisticated and structured learning 

mechanism. The coefficients of three PCAM 

modules inside PCAM-ResUnet exhibit a 

consistent pattern (refer to the Table 6): PCAM1 

has a negative  and positive , PCAM2 has 
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both coefficients positive, and PCAM3 has both 

coefficients negative. This illustrates how the 

model learns to identify and enhance 

information from data, as well as how it modifies 

its focus at various stages. 

+ The negative value of alpha and the 

positive value of beta in PCAM1 indicate an 

initial spatial information filtering approach, 

likely aimed at reducing noise and discarding 

less crucial spatial information while preserving 

and highlighting key channel information. This 

could assist in establishing a more precise 

feature recognition in following layers. 

+ PCAM2, with positive coefficients for 

both space and channel, suggests that integrating 

input from both aspects is essential during the 

intermediate phase of the model to capture 

intricate features and their relationships. This 

improvement offers a plethora of valuable data 

to ensure precise segmentation in upcoming 

stages. 

+ Using PCAM3, employing both negative 

coefficients can serve as a final refining 

technique to eliminate unnecessary data, 

emphasize crucial characteristics, and set the 

stage for the ultimate output reconstruction. This 

demonstrates the model's self-adjusting method, 

which involves learning to distinguish useful 

traits while disregarding irrelevant ones. 

We observe that our model learns by 

progressively amassing information and 

adjusting its attention to optimize each stage of 

the learning process. This introduces new 

avenues for research on how to handle 

information synthesis in segmentation models. 

 

Table 6.  and coefficients for PCAM-ResUnet at different checkpoints 

 

Checkpoint ith Coefficient 
Module 

PCAM 1 PCAM 2 PCAM 3 

i = 98 
 -0.1133 0.0547 -0.0575 

 0.1705 0.1724 -0.1745 

i = 99 
 -0.1116 0.0546 -0.0568 

 0.1689 0.1686 -0.1761 

i = 100 
 -0.113 0.0615 -0.0584 

 0.171 0.1685 -0.1769 

 

6. Conclusions  

A pulmonary nodule with a greater diameter 

has an increased probability of progressing into 

a tumor, potentially cancerous. The paper 

presents PCAM-ResUnet, an enhanced iteration 

of ResUnet++, designed to increase the accuracy 

of lung nodule segmentation on CT scans, 

particularly for nodules measuring 5mm and 

larger. This model demonstrates the relevance of 

including various attention modules into the U-

shaped design, highlighting the significance of 

attentive mechanisms in medical image processing. 

PCAM-ResUnet performed exceptionally 

well during the testing stage, achieving an 

average Dice Similarity Coefficient (DSC) of 

85.96% and reaching a peak of 99.64% on the 

LUNA16 dataset. The results confirm the 

model's effectiveness in detecting and 

categorizing potentially tumors and represent a 

significant advancement beyond current cutting-

edge methods. 

Nonetheless, the enhancement compared to 

alternative attention-based techniques is modest, 

indicating potential for more tuning. Future 

research will concentrate on investigating 

attention processes that might dynamically 

improve the model's capacity to collect essential 

spatial and contextual attributes. Furthermore, 
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evaluating the model on datasets with varied 

features and clinical contexts would facilitate the 

assessment of its generalizability and 

adaptability. Expanding the experimental scope 

aims to demonstrate the model's superiority over 

existing approaches, optimize its application for 

medical purposes, and enhance pulmonary 

nodule diagnosis. Additionally, this work strives 

to advance deep learning research in the medical 

field, bridging theoretical advancements with 

practical clinical applications. 
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