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Abstract: Phylogenomics, or evolutionary inference based on genome alignment, is becoming 
prominent thanks to next-generation sequencing technologies. In model-based phylogenomics, the 
partition scheme has a significant impact on inference performance, both in terms of log-likelihoods 
and computation time. Therefore, finding an optimal partition scheme, or partitioning, is critical in 
a phylogenomic inference pipeline. To accomplish this, one needs to divide the alignment sites into 
disjoint partitions so that the sites of similar evolutionary models are in the same partition. 
Computational partitioning is a recent approach of increasing interest due to its capability of 
modeling the site-rate heterogeneity within a single gene. State-of-the-art computational partitioning 
methods, such as mPartition or RatePartition, are, however, ineffective on long alignments of 
millions of sites. In this paper, we introduce gPartition, a new computational partitioning method 
leveraging both the site rate and the best-fit substitution model. We conducted experiments on 
recently published alignments to compare gPartition with mPartition and RatePartition. gPartition 
was orders of magnitude faster than other methods. The AIC score demonstrated that gPartition 
produced partition schemes that were better or comparable to mPartition. gPartition outperformed 
RatePartition on all examined alignments. We implemented our proposed method in the gPartition 
program to help researchers partition genome alignments with millions of sites more efficiently. 
Availability: The gPartition program is written in Python and freely available at 
https://github.com/thulekm/gPartition for both Linux and Windows users. 
Keywords: Rate heterogeneity, alignment partitioning method, genome datasets.*  
 

 
 

1. Introduction  

The maximum likelihood (ML) method is 
one of the most common methods to infer 
phylogenetic trees from nucleotide alignments 
[1].  The ML method requires nucleotide 
substitution models to calculate the likelihood of 

_______ 
 

phylogenies [2], [3]. Determining proper 
substitution models for an alignment under the 
study is a challenging task in phylogenetic 
inferences.  This task is becoming more 
imperative because long or even whole-genome 
alignments are now easily created thanks to the 
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advantages of next-generation sequencing 
technologies. 

It is well known that the nucleotide 
substitution processes vary among sites in the 
alignment [4], therefore, using one substitution 
model for all sites might lead to incorrect trees. 
A number of approaches have been proposed to 
handle the heterogeneity of evolutionary 
processes among sites [5]–[9]. Among these, 
mixture models [7], [9] and alignment 
partitioning [5], [10], [11] are the most popular 
approaches in practice. The mixture model 
approach uses multiple models to describe the 
evolutionary processes of the alignment. The 
likelihood of each site in the alignment is 
estimated as the weighted sum of likelihood 
values derived with the models. We note that the 
mixture model approach is computationally 
expensive because it has to compute likelihood 
values with different models, and not applicable 
for long alignments. 

An alignment partitioning method classifies 
sites in the alignment into disjoint subsets 
(referred to as a partition scheme) such that all 
sites in a subset are assumed to evolve under the 
same evolutionary process that might be 
different between subsets. The simplest 
alignment partitioning method uses gene 
boundaries to divide the alignment into a list of 
loci. However, several studies have shown that 
partitioning by gene boundaries is not good 
enough because sites in the same gene might 
evolve under different evolutionary processes 
[12]–[14]. 

The site rate-based partitioning method, 
notably RatePartition, classifies sites into 
subsets based on their evolutionary rates such 
that sites in the same subset have similar 
evolutionary rates [10], [11]. The evolutionary 
rates of sites are normally calculated by the 
TIGER algorithm [12]. The complexity of 
TIGER increases quadratically with the 
alignment length, thus inapplicable to long 

alignments.  The assumption that sites with 
similar evolutionary rates evolve under the same 
evolutionary process is not biologically realistic. 
Another pitfall of site rate-based methods is that 
they group all invariant sites into one subset that 
might increase the likelihood of trees but lead to 
biased trees [11], [15]. 

The model-based partitioning method that 
employs both evolutionary rates and best-fit 
substitution models of sites to divide alignments 
has been proposed to improve the site rate-based 
method [16]. Although the model-based method 
is better than both the gene boundary-based and 
the site rate-based methods in building 
maximum likelihood trees, its hierarchical top-
down partitioning approach is computationally 
expensive and infeasible for long alignments. 

We design gPartition algorithm to overcome 
the computational burden of the existing 
methods in order to analyze long or even whole-
genome alignments. The gPartition method 
combines the fastTIGER [17] algorithm to 
rapidly approximate the evolutionary rates of 
sites and a new model-based partition scheme to 
efficiently divide long alignments. 

2. Methods 

2.1 Likelihood estimation 

Let 𝐴𝐴 = {𝐴𝐴𝑥𝑥𝑥𝑥} denote an alignment of 𝑛𝑛 
nucleotide sequences and 𝑙𝑙 sites  where 𝐴𝐴𝑥𝑥𝑥𝑥 is 
the nucleotide of sequence 𝑥𝑥 at site 𝑖𝑖. The ML 
phylogenetic tree inference searches for an 
unrooted binary tree 𝑇𝑇 with 𝑛𝑛 leaves (i.e., 
describing the relationships among 𝑛𝑛 sequences) 
and a nucleotide substitution model M (i.e., 
representing substitution rates between 
nucleotides during the evolution) that maximize 
the likelihood value 𝐿𝐿(𝑇𝑇,𝑀𝑀;𝐴𝐴).  The model M is 
typically characterized by a time-homogeneous, 
time-continuous, and time-reversible Markov 
process [1], [18]. 
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To avoid computational complexity, we 
assume that the evolutionary processes 
among sites are independent. Accordingly, 
the likelihood value 𝐿𝐿(𝑇𝑇,𝑀𝑀;𝐴𝐴) can be 
calculated from individual sites as follows: 

𝐿𝐿(𝑇𝑇,𝑀𝑀;𝐴𝐴) =  �𝐿𝐿(𝑇𝑇,𝑀𝑀;𝐴𝐴𝑥𝑥)
𝑙𝑙

𝑥𝑥=1

 

                      =  �𝑃𝑃(𝐴𝐴𝑥𝑥| 𝑇𝑇,𝑀𝑀)
𝑙𝑙

𝑥𝑥=1

 

where 𝐴𝐴𝑥𝑥 is the nucleotide data at site 𝑖𝑖 of 𝐴𝐴. 
The likelihood value 𝐿𝐿(𝑇𝑇,𝑀𝑀;𝐴𝐴𝑥𝑥) can be 
calculated by the conditional probability 
𝑃𝑃(𝐴𝐴𝑥𝑥|𝑇𝑇,𝑀𝑀) of data 𝐴𝐴𝑥𝑥 given tree T and 
substitution model M. 

The alignment partitioning methods divide 
the 𝑙𝑙 sites of 𝐴𝐴 into k disjoint subsets 𝐏𝐏 =
(𝑃𝑃1, … ,𝑃𝑃𝑘𝑘) such that all sites of subset  𝑃𝑃𝑥𝑥 ∈ 𝐏𝐏  
follow the same evolutionary model 𝑀𝑀𝑥𝑥. Given a 
partition scheme P, the maximum likelihood 
(ML) phylogenetic inference determines a tree 𝑇𝑇 
together with a set of evolutionary models 𝐌𝐌 =
(𝑀𝑀1, … ,𝑀𝑀𝑘𝑘) to maximize the conditional 
probability value 𝑃𝑃(𝐏𝐏|𝑇𝑇,𝐌𝐌). Technically, the 
likelihood value 𝐿𝐿(𝑇𝑇,𝐌𝐌;𝐏𝐏) can now be 
calculated as follows: 

 𝐿𝐿(𝑇𝑇,𝐌𝐌;𝐏𝐏) = ∏ ∏ 𝐿𝐿�𝑇𝑇,𝑀𝑀𝑥𝑥;𝑃𝑃𝑥𝑥𝑖𝑖�
𝑙𝑙𝑖𝑖
𝑖𝑖=1

𝑘𝑘
𝑥𝑥=1  

where 𝑙𝑙𝑥𝑥 is the size of subset 𝑃𝑃𝑥𝑥  and 𝑃𝑃𝑥𝑥𝑖𝑖 is the 
data at site 𝑗𝑗𝑡𝑡ℎ  of subset 𝑃𝑃𝑥𝑥.  

The information-theoretic metrics such as 
the Akaike information criterion (AIC) [19] or 
the Bayesian information criterion (BIC) [20] 
are commonly used to compare the fitness 
among partition schemes because they 
compromise the likelihood values and the 
number of free parameters of partition schemes. 

2.2 Fast evolutionary rate estimation  

The TIGER algorithm 

The evolutionary rates of sites provide useful 
information for classifying sites for both site 
rate-based and model-based methods. Normally, 
the site rates are estimated by the TIGER 
algorithm by analyzing the sequence similarity 
among sites [12]. Note that the TIGER method 
does not require any tree so it avoids the tree-bias 
in estimating the site rates.  For each site 𝑖𝑖, the 
TIGER method initializes a sequence group G(i) 
of subgroups, each containing sequences with 
the same nucleotide at site 𝑖𝑖. The sequence 
groups are used to measure the similarity among 
sites.  

The rate 𝑟𝑟𝑥𝑥 for the site 𝑖𝑖 (𝑖𝑖 = 1 … 𝑙𝑙) is defined 
as: 

𝑟𝑟𝑥𝑥 =
∑ 𝑔𝑔(𝑥𝑥,𝑖𝑖)𝑗𝑗≠𝑖𝑖

𝑛𝑛−1
 

where g(i, j) is “agreement score” between two 
sequence groups G(i) and G(j) and calculated as 
follows: 

𝑔𝑔(𝑖𝑖, 𝑗𝑗) =
∑ 𝑎𝑎�𝑋𝑋,𝐺𝐺(𝑖𝑖)�𝑋𝑋∈𝐺𝐺(𝑖𝑖)

|𝐺𝐺(𝑗𝑗)|  

where  a�X, G(i)� = �1 if ∃Y ∈ G(i) | X ⊆ Y
0 otherwise

 
 
The 𝑟𝑟𝑥𝑥 score ranges from 0 (the fastest rate) 

to 1 (the slowest rate). 
The complexity of the TIGER algorithm is  

O(nl2). It increases quadratically with the length 
of the alignment and only applicable for 
alignments with at most several thousand of 
sites. 

The fastTIGER algorithm 
We have introduced a rapid algorithm of the 

so-called fastTIGER to approximately estimate 
the evolutionary rates of sites by analyzing the 
similarity between sequences instead of between 
sites [17]. Intuitively, if two sequences are 
highly similar, their nucleotides should be the 
same at slowly evolving sites. Oppositely, if the 
nucleotides of two highly similar sequences are 
different at site 𝑖𝑖, the evolutionary rate 𝑟𝑟𝑥𝑥 at site 
𝑖𝑖 should be high. The similarity 𝑑𝑑(𝑥𝑥,𝑦𝑦) between 
two sequences 𝑥𝑥 and 𝑦𝑦  is calculated by the 
number of sites with the same nucleotides 
between two sequences. Our fastTIGER 
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algorithm approximately estimates the site rate 
𝑟𝑟𝑥𝑥 as follows: 

𝑟𝑟𝑥𝑥 = 1 −
∑ 𝑑𝑑(𝑥𝑥, 𝑦𝑦)A𝑥𝑥𝑖𝑖=A𝑦𝑦𝑖𝑖
∑ 𝑑𝑑(𝑥𝑥,𝑦𝑦)𝑥𝑥<𝑦𝑦

 

The rate 𝑟𝑟𝑥𝑥 ranges from 0 (the slowest rate) 
to 1 (the fastest rate). The complexity of 
fastTIGER is  O(n2l) and linear with the length 
of the alignment. 

Consider an alignment 𝐴𝐴 of 3 sequences and 
9 sites as in Table 1, the fastTIGER algorithm 
first calculates the pairwise sequence similarity, 
i.e.,  d(1,2) = 5; d(1,3) = 3; 𝑑𝑑(2,3) = 6; 
therefore the sum 𝑑𝑑(1,2) + 𝑑𝑑(1,3) +
𝑑𝑑(2,3) = 14. 

Table 1:  An alignment of 3 sequences with 9 sites. 
𝑨𝑨𝟏𝟏 𝑨𝑨𝟐𝟐 𝑨𝑨𝟑𝟑 𝑨𝑨𝟒𝟒 𝑨𝑨𝟓𝟓 𝑨𝑨𝟔𝟔 𝑨𝑨𝟕𝟕 𝑨𝑨𝟖𝟖 𝑨𝑨𝟗𝟗 

A A C T G A T C T 

T G C G G T T C T 

T G C A A T A C T 

The rates of 9 sites are calculated as follows: 

- Site A1 = 'ATT': sequence 2 and 3 have 
the same nucleotide T, therefore  

𝑟𝑟1 = 1 −
𝑑𝑑(2, 3)

14
= 1 −

6
14

=
8

14
 

- Site 𝐴𝐴2 = ′AGG′: sequence 2 and 3 have 
the same nucleotide G, therefore 

𝑟𝑟2 = 1 −
𝑑𝑑(2, 3)

14
= 1 −

6
14

=
8

14
 

- Site A3 = 'CCC', Site 𝐴𝐴8 = ′CCC′, Site 
A9 = 'TTT': all sequences have the same 
nucleotides, therefore 

r3 = r8 = r9 =
                                                      

= 1-
d(1, 2) + d(1, 3) + d(1,4)

14
= 0 

- Site 𝐴𝐴4 = ′TGA′: all sequences have 
different nucleotides, therefore 

𝑟𝑟4 = 1 −
0

14
= 0 

- Site 𝐴𝐴5 = ′GGA′ and 𝐴𝐴7 = ′TTA′: 
sequences 1 and 2 have the same 
nucleotide, therefore 

𝑟𝑟5 = 𝑟𝑟7 = 1 −
𝑑𝑑(1, 2)

14
= 1 −

5
14

=
9

14
 

- Site 𝐴𝐴6 = ′ATT′: sequence 2 and 3 have 
the same nucleotide T, therefore 

𝑟𝑟6 = 1 −
𝑑𝑑(2, 3)

14
=

8
14

 

2.3 Model-based partitioning method 

We have previously proposed a model-based 
partitioning algorithm, mPartition, to 
considerably overcome the limitations of the 
gene-based and site rate-based algorithms [16]. 
The mPartition method follows a top-down 
clustering scheme to partition sites. It uses 
evolutionary rates to classify sites into slow, 
medium, and fast evolving subsets, then 
rearranges sites among the subsets based on their 
best-fit substitution models to increase the 
likelihood value. The subsets are repeatedly 
divided into smaller subsets to maximize the 
likelihood value. The iterative strategy of 
mPartition for selecting best-fit substitution 
models and rearranging sites is computationally 
expensive.  

In this paper, we design the gPartition 
algorithm to handle long alignments. To this end, 
gPartition employs a clustering algorithm with 
three key steps: the seed partitioning step divides 
all sites into seed-subsets, each containing a 
small number of sites based on the similarity of 
their site rates; the model unifying step combines 
seed-subsets with similar substitution models to 
obtain larger subsets; and finally, the site 
repartitioning step rearranges the sites among 
subsets based on their best-fit substitution 
models to increase the likelihood value. Note 
that the gPartition algorithm clusters all sites into 
subsets only once, instead of many times as in 
the mPartition algorithm. Moreover, the 



 

 

5 

gPartition method uses fastTIGER instead of 
TIGER in the mPartition method to estimate the 
evolutionary rates of sites. 

The gPartition method is specifically 
described as follows (also see Figure 1): 

The gPartition method 

- Rate estimation step: Estimate 
evolutionary rates for all sites using the 
fastTIGER algorithm. 

- Seed partitioning step: Partition all sites 
into 𝑘𝑘 seed-subsets based on the 
similarity of site rates such that on 
average each seed-subset contains about 
100 variant sites, i.e., k = lv/100 where 
lv is the number of variant sites.  
Precisely, the variant site 𝑖𝑖 with rate 𝑟𝑟𝑥𝑥 is 
classified into the Sth subset if  S-1

k
≤

ri < S
k
.  If the 𝑆𝑆𝑡𝑡ℎ subset contains fewer 

than 50 sites, merge it with the (S + 1)th 
subset to avoid small subsets [16].  

- Model unifying step: Determine the best 
substitution models M for the seed-
subsets using the IQ-TREE software 
[21]. Two seed-subsets with nearly 
identical substitution models (i.e., the 
Pearson correlation is greater than 
0.9999) are merged to create larger 
subsets. 

- Site repartitioning step: Select from M 
the best-fit substitution model for each 
variant site. Reclassify variant site i  into 
subset 𝑆𝑆 if its best-fit substitution model 
is the substitution model of 𝑆𝑆 . 

Note that the numbers of invariant sites 
distributed to subsets are proportional to the 
corresponding subset likelihood values. This 
helps overcome the pitfall of grouping all 
invariant sites into one subset, causing biased 
trees [16]. 

 

Figure 1 The gPartition algorithm to partition long 
even whole genome alignments 

3. Experiments and results 

We examined the performance of gPartition, 
the site rate-based method RatePartition [11], 
and the model-based method mPartition on 10 
long alignments with lengths ranging from 5998 
to 1296042 sites extracted from 10 published 
genome datasets (Table 2). The partition 
schemes generated from the methods were used 
to construct ML trees using the IQ-TREE 
software. The Akaike information criterion 
(AIC) scores [19] based on the ML trees were 
used to compare the partition schemes, i.e., the 
smaller AIC score indicates the better partition 
scheme. The running time of the partitioning 
methods was measured on a workstation with a 
2.3 GHz 18-core processor. 

The running time of the fastTIGER, TIGER, 
RatePartition, mPartition, and gPartition 
algorithms on the test alignments is summarized 
in  Figure 2.  It is obvious that fastTIGER is 
orders of magnitudes faster than the TIGER 
algorithm. The TIGER algorithm could not 
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accomplish three large alignments (Aculeata, 
Neoaves, and Spermatophyta) after three days, 
while the fastTIGER algorithm required less 
than 13 minutes for the large alignments. It is 
obvious that the gPartition method was much 
faster than the mPartition method, e.g., 

gPartition took only 3 minutes (0.3 minute from 
fastTIGER) to divide the Xenopsminutus 
alignment with 825804 sites while mPartition 
required 425 minutes (235.2 minutes from 
TIGER) for the alignment. 

Table 2: The alignments used for examining partitioning methods 

 Datasets #sequences #sites #Loci Paper 
1 Geometridae. 164 5998 8 (Sihvonen et al. 2011) 
2 Pieridae 110 6247 8 (Penz, Devries, and Wahlberg 2012) 
3 Osteichthyes 61 19997 61 (Broughton et al. 2013) 
4 Vertebrata 110 25919 168 (Fong et al. 2012) 
5 Actinopterygii 27 149366 491 (Faircloth et al. 2013) 
6 Aculeata  187 183747 807 (Branstetter et al. 2017) 
7 Neoaves 33 539526 1541 (McCormack et al. 2013) 
8 Phasianidae 18 614159 1501 (Meiklejohn et al. 2016) 
9 Xenopsminutus 8 825804 1366 (Smith et al. 2013) 
10 Spermatophyta 32 1296042 3924 (Ran et al. 2018) 

 

 

Figure 2 The running times (in minutes) of the site rate estimation methods (i.e., fastTIGER, TIGER algorithms), 
site rate-based partitioning method (i.e, RatePartition), and model-based partitioning methods (i.e., mPartition and 
gPartition). As the TIGER method could not analyze the three large datasets (i.e., Aculeata, and Spermatophyta 
and Neoaves), the running time of TIGER, RatePartition, and mPartition was not available for these datasets. 
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Table 3 The performance of gPartition, mPartition, and RatePartition with divide factor d = 4 methods on 10 
alignments. n: the number of sequences; l: the number of sites; NA: Not Available.  

The best AIC values are in bold. 

Datasets 
Size AIC per site 

𝑛𝑛 𝑙𝑙 gPartition mPartition RatePartition 
Geometridae 164 5998 60.7 62.5 62.9 
Pieridae 110 6247 41.3 42.8 43.4 
Osteichthyes 61 19997 29.3 31.4 32.0 
Vertebrata 110 25919 20.4 21.9 21.1 
Actinopterygii 27 149366 8.3 7.8 9.6 
Aculeata  187 183747 93.3 NA NA 
Neoaves 33 539526 4.8 NA NA 
Phasianidae 18 614159 3.7 3.4 3.9 
Xenopsminutus 8 825804 2.78 2.76 2.81 
Spermatophyta 38 1296042 29.4 NA NA 

 
The performance of partitioning algorithms 

is summarized in Table 3. Note that both 
mPartition and RatePartition methods employed 
the TIGER algorithm to estimate site rates, 
therefore, their results were not available for the 
three large alignments.  The AIC scores 
indicated that gPartition outperformed 
RatePartition for all alignments. It was better 
than mPartition on 4 out of 7 alignments and 
worse on 3 alignments. The average sizes of 
subsets generated from gPartition and mPartition 
are 5314 and 4551 sites, respectively.  

4. Conclusions 

Partitioning alignments into subsets such 
that sites in the same subset follow similar 
evolutionary processes is the first crucial step in 
phylogenetic analyses. The increase in 
alignment length might add phylogenetic 
information. Unfortunately, the existing 
alignment partitioning methods are not designed 
to analyze long alignments.  We described the 
gPartition algorithm to divide long alignments 
based on evolutionary rates and best-fit 
substitution models of sites. The gPartition 
program was orders of magnitude faster than the 
existing partitioning programs and was able to 
partition genome alignments with millions of 
sites. Our experiments on biological datasets 
showed that the partition schemes generated 
from gPartition yielded better species trees in 

maximum likelihood analyses. We strongly 
recommend researchers use gPartition to handle 
the heterogeneity of evolutionary processes 
among sites in genome analyses. 
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