
VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41

 22

Original Article

A Hybrid Method for Test Data Generation

for Unit Testing of C/C++ Projects

Tran Nguyen Huong1,2, Do Minh Kha1, Hoang-Viet Tran1,*, Pham Ngoc Hung1

1VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
2National College for Education, 387 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Received 04 March 2022

Revised 24 June 2022; Accepted 12 August 2022

Abstract: In recent years, automated test data generation from source code has gained a significant

popularity in software testing. This paper proposes a method, named Hybrid, to generate test data

for unit testing C/C++ projects. The method is a combination of two test data generation methods

named IIBVTG and WCFT. In IBVTG method, the source code is analyzed to find simple

conditions. Then, bases on these conditions, IBVTG generates test data for boundary values without

having to solve test paths constraints. This makes the method faster than BVTG method when

generating test data. In Hybrid method, while generating test data using WCFT, simple conditions

are collected for boundary values test data generation. Test data generated by Hybrid are able to

ensure both high source code coverage and error detection ability. In addition, Hybrid is capable of

finding infeasible execution paths and dead code. Experimental results with some popular unit

functions show that Hybrid outperforms STCFG method in terms of test data generation time and

boundary values related error detection. IBVTG is superior to BVTG in term of test data generation

time whilst its boundary values related error detection ability depends on the number of simple

conditions inside each unit function.

Keywords: Unit testing, test data generation, concolic testing, weighted CFG, boundary value analysis.

1. Introduction*

Software testing is important to enhance the

quality and reliability of software products.

There are two main approaches for this purpose

which are black-box and white-box testing.

* Corresponding author.

 E-mail address: thv@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.354

Black-box testing does not rely on the

internal structure of the unit under test. It relies

on the unit requirement to generate test data and

expected outputs. On the other hand, white-box

testing bases on the internal structure of the unit

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 23

under test to generate test data. Currently,

automated test data generation has been

considered a standard approach for software

quality assurance thanks to its fully automated

testing ability. There are two approaches in

automated test data generation known as static

testing and dynamic testing. Both approaches

use the symbolic execution method [1-2] to

generate test data by solving the constraint

expressions using an SMT-Solver. Static testing

uses the analysis of the source code to generate

test data. This paper focuses on dynamic testing

which is the combination of source code analysis

and program execution [3-7]. One of the well-

known dynamic testing methods is concolic

testing whose idea was firstly mentioned in

DART [6]. The name concolic testing was firstly

proposed in CREST [3], CUTE [8]. Later,

concolic testing was improved in PathCrawler

[7], CAUT [9] and SDART [10]. The main idea

of concolic testing is to generate a new test data

based on the previous test data execution

information.

To generate test data, concolic testing

follows steps below. The source code of the unit

under test is converted to a control flow graph

(CFG). Then, the method finds execution paths

from this CFG. At the beginning, some random

test data are generated and executed to find

initial test paths coverage information. From this

coverage information, we can find test paths

which are not covered. In the next iteration, a

new test data which covers one uncovered test

path is generated using SMT-Solver and

executed to retrieve the new coverage

information. The process is repeated until no

new test data can be generated. Although

concolic testing gains high coverage result, it is a

slow process due to the high usage of SMT-Solver.

To improve the speed of the test data

generation process, many methods have been

proposed. These methods focus on improving

compilation process [3, 6, 10]; symbolic

execution [8, 9, 11-13]; constraints optimization

[4, 5, 8, 9, 14]; SMT-Solver selection and

optimization [4, 5, 15]; path selection strategies

[3, 6-10, 16].

In 2016, Nguyen et al., proposed a method

(hereby named STCFG) to improve the existing

methods [17]. However, the speed of test data

generation is still slow when running with large

scale projects. In our previous paper, we

proposed a method named WCFT which based

on a weighted control flow graph for faster test

data generation process [18]. The initial

experimental results show that WCFT

significantly improved the test data generation

time in comparison with STCFG method.

In addition to a high source code coverage

and a fast test data generation process, when

testing software projects in practice, the error

detection ability of test data is of high

importance. One of the well-known testing

methods for this purpose is the boundary values

testing. The reason is that errors often come from

boundary related values where software testers

tend to forget when testing the application.

There are three main approaches for

generating boundary values test data. The first

approach is to analyze the relationship between

input parameters [19-21]. Initially, the method is

done by a sequence algorithm. Later, a function

tree method was proposed which can be applied

to functions with more than two parameters. The

second approach is to use mutants for

comparison predicates and apply combinatorial

testing [22]. This method can cover all types of

boundary values and reduce the number of test

data. The third approach is named Boundary

Value Exploration (BVE). This method can deal

with functions whose specifications are not

complete, inconsistent, not clear, or even not

exists [23]. However, the above approaches have

high cost due to the fact that they all employ

SMT solvers.

In our previous paper, we proposed a method

(named BVTG) which generates boundary

values related test data based on the CFG of the

unit under test [18]. From another view point,

boundary values should come from business

definition of the software requirements. These

values reside in simple conditions implemented

inside source code of the unit under test. As a

result, boundary values should come from

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 24

simple conditions, not from the whole test path

solutions. This can make the boundary values

test data generation process much faster than the

method which bases on test paths constraints

solving process.

This paper proposes a hybrid test data

generation method (named Hybrid) which

combines WCFT and the new boundary value

test data generation method mentioned above

(named IBVTG). This new method has a higher

error detection ability while maintaining a fast

test data generation time in comparison with

STCFG. The key idea of the method is to use the

weighted CFG of the unit under test to generate

test data. In this process, a new test data is

generated for the uncovered test path with the

greatest weight. While the CFG is traversed to

find test paths, simple conditions are collected

and the corresponding boundary values test data

are generated. For this method of generating test

data, Hybrid can generate test data in an almost

the same speed as WCFT method while having

higher error detection ability. We have

implemented Hybrid method in a tool named

HybridCFT4Cpp to evaluate the effectiveness of

Hybrid method.

The rest of this paper is organized as follows.

At first, Section 2 gives the background concepts

about test data generation. Then, Section 3

presents the method to generate test data from

weighted control flow graph (WCFT method).

Next, Section 4 shows IBVTG method to

generate test data from boundary values. After

that, Section 5 explains Hybrid method in detail.

We give an example about the Hybrid method in

Section 6. This example demonstrates the test

data generation process of IBVTG and WCFT

methods. Then, Section 7 presents the

experimental results and discussions about the

proposed methods. Related works to our

methods are presented in Section 8. Finally, we

conclude the paper in Section 9.

2. Background

In this section, we present some basic

concepts which will be used in this paper.

Definition 1 (Control Flow Graph - CFG).

Given a unit function, we have its corresponding

CFG. This is a directed graph G = (V, E). In

which, V = {v0, v1 , .., vn} is a set of vertices

representing the set of statements of the unit.

E = {(vi ,vj) | (vi, vj) V} is a set of directed

edges. Each edge (vI , vj) denotes the

corresponding state from vi to vj.

Test path is an important concept which is a

sequence of vertices from the first vertex to the end

vertex of a CFG. Formally, it is defined as follows.

Definition 2 (Test path). Given a CFG

G = (V, E), a test path is a path

{v0, v1,.., vn | (vi, vi+1)  E}, where 0  i  n - 1,

v0 and vn are corresponding to the initial vertex

and end vertex of the given CFG.

Path is another important concept which is

used in this paper. Path is a part of a test path in

which all of its vertices are adjacent to each other.

Definition 3 (Path). Given a CFG G=(V, E),

a path is a sequence of vertices

{vp,vp+1, ..,vp+k | (vi ,vi+1)  E, 0  p < k  n},

where n is the number of vertices of G.

The existence of dead code often means that

the project is not implemented well. However,

finding dead code in a given project is a hard

problem in software engineering. In this paper,

we propose a method that can find dead code

whilst generating test data for a given unit.

Formally, a dead path and a dead code is

defined as follows.

Definition 4 (Dead path). For a given CFG,

a dead path is a path which cannot be covered

by any test data.

Definition 5 (Dead code). A dead code is a

part of source code which cannot be covered by

any test data.

In this paper, we use simple conditions to

generate boundary values related test data. For

example, the following two conditions x > 5,

x <= 10 are simple conditions. Formally, a

simple condition is defined as follows.

Definition 6 (Simple condition). A simple

condition is an expression of the form x  k,

where  {>;>=;<; <=; ==, !=} is a relational

operation, x is one input parameter of a function

and k, called boundary value, is a specific value.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 25

In addition to simple condition, a condition

which contains two or more input parameters is

called a complex condition. For example, to

check if the given three numbers a, b, c are valid

values for three edges of a triangle, we use the

expression a+b >c && a+c >b && c+b>a. This

expression and its partial expressions

a+b>c, a+c>b, and c+b>a are complex

conditions.

Let F(x1, .., xn) be a unit function which

takes n primitive input parameters x1 , .., xn. In

addition, xi has a valid value range represented

by following value ranges: ai  xi  bi where ai ,

bi are domain related values (1  i  n). We call

ai and bi boundary values of xi . In the test data

generation for boundary values, we use another

predefined number called step to specify the

upper boundary and lower boundary values.

Normally, for integer boundary values, we use

step = 1. For float or double boundary values,

step depends on the need of the project under

test. For each boundary value a of one input

variable x which has the maximum (max) and

minimum (min) domain valid values, the

corresponding upper boundary and lower

boundary values of a are a + step and a - step,

respectively. When generating test data for

boundary values, we generate the following test

values for x: min, min + step, a - step, a, a + step,

max - step and max. In addition to these values,

we have a special value called norm for x for

combining with values of other variables to

create test data for F. These values are shown in

Figure 1.

For example, consider the case where the

function F has two input parameters, x1 and x2.

Domain values of x1 is [min1, max1] and the

domain values of x2 is [min2, max2]. Let a1, b1,

and norm1 be test values for x1 and a2 , b2 , and

norm2 be test values for x2. We generate

following test data set for F: {(min1, norm2);

(a1, norm2); (b1, norm2); (max1, norm2);

(norm1, min2); (norm1, a2); (norm1, b2)}

3. Generate Test Data from Weighted Control

Flow Graph

This section presents WCFT method which

generates test data based on weighted control

flow graph [18]. The key idea of the method is

that to generate test data which cover statement

coverage (denoted by C1), branch coverage

(denoted by C2), or sub-conditions (or modified

condition/decision coverage - MC/DC) coverage

(denoted by C3), we can use the CFG of the unit

under test. From the CFG, we can generate a test

data by solving the corresponding test path

constraints which follow a predefined test

coverage standard. However, the process of

solving the test path constraints is a slow process

due to the test path constraints solving time.

Furthermore, there are test paths in which some

of the statements cannot be covered because the

corresponding test path constraints do not have

any satisfied solution. In this case, we call these

statements dead code. We proposed a method

named WCFT which can improve the speed of

the test data generation process and find out dead

code in a given CFG[18]. The overview of

WCFT method is shown in Figure 2.

Given a unit function and a coverage criteria,

WCFT starts by generating the corresponding

CFG using the method proposed by Nguyen et

al., [17] (step 1). Then, the method initializes the

weight for the generated CFG and marks all test

paths to be not visited (step 2). In step 3, the

method checks if there is any test path which is

not visited. If the test path does not exist, the

method comes to step 8. Otherwise, it continues

with step 4. In step 4, the method chooses the test

path which has the greatest weight to process.

Then, the method generates test data by solving

the corresponding test path constraints by using

an SMT-Solver named Z3 and marks the test

path to be visited (step 5). If the corresponding

solution exists (step 6), the method stores the

solution and updates weights of the CFG

(step 7). After that, the method comes back to

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 26

step 3 and starts the process again. In step 8, we

have the weight updated CFG (UCFG). From

this UCFG, we can find dead paths as follows.

The first vertex of a dead path is a condition

statement of the CFG which makes the test path

not feasible. The remaining vertices (except the

last one) of the test path are corresponding to

dead code. Details of WCFT method are shown

in sections below.

Figure 2. An overview of WCFT method.

3.1. Generate CFG for a Given Unit Function

The first step in WCFT method is to generate

the CFG of the unit under test. Details of the step

are shown in Algorithm 1. The algorithm accepts

an abstract syntax tree (AST) block of a function

(currentBlockAST), the required CFG (CFG),

and a coverage criterion (t) as its inputs. Its

output is the needed CFG. At the beginning

(before calling the algorithm), CFG and

currentBlockAST are assigned the block of AST

corresponding to the function under test. The

algorithm recursively breaks currentBlockAST

into smaller blocks (until each block represents a

statement) while CFG contains the result.

Initially, partial_AST is the corresponding AST

of currentBlockAST (line 1); B is the list of

blocks of partial_AST (line 2); link_blocks is the

graph which is created by linking all blocks in B

to each other (line 3). The algorithm updates

CFG by replacing currentBlockAST with

link_blocks (line 4). For each block M in B, the

algorithm recursively calls Algorithm 1 to divide

M to smaller blocks (line 5 to line 9).

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 27

3.2. Generate Test Paths from a CFG

From the CFG generated from Algorithm 1,

we can find test paths. Details of this process are

presented in Algorithm 2. The algorithm takes

three inputs which are the first vertex (v) of the

CFG, the number of a loop included in the test

path (depth), and a global variable (path)

containing a test path being generated from the

algorithm. The output of the algorithm is the list

of all feasible test paths which are stored in P.

The algorithm checks if v is NULL or the end

vertex (line 1). If yes, it adds path to P (line 2).

Otherwise, it checks if the number of

occurrences of v in path is less than or equals to

depth (line 3). If yes, it adds v to the end of path

(line 4). After that, for all adjacent vertices u of

v, the algorithm recursively calls Algorithm 2 to

find all remaining vertices of the test path path

(line 5 to 7). Line 8 is to make sure we do not

add the last vertex twice to path.

3.3. Update Weight for a CFG and Generate

Test Data

After having the CFG and test paths from

previous algorithms, the key steps of WCFT

method is to update weight for the CFG and

generate required test data. This step is

performed in Algorithm 3. The algorithm takes a

CFG (CFG) and the list of generated test paths

(TestPaths) as inputs and generates the list of test

data (S) as its output. The weight updated CFG

(UCFG) is the second output of the algorithm.

At the beginning, all edges of CFG are

initialized with the weight of 1 and all test paths

are marked as not visited (line 1). While there

exists a test path which is not visited, the

algorithm chooses a test path t which has the

greatest sum of weights and is not visited

(line 3). Then, the algorithm finds the solution

(solution) for the constraints corresponding to t

(line 4 to line 5). If solution exists, the algorithm

generates a test data from solution and adds it to

S (line 7) and updates t by adding 1 to every edge

(line 8). After that, it marks t as visited and

comes back to line 2 to consider other test paths.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 28

When the algorithm finishes, CFG is the updated

CFG (UCFG) (line 12).

3.4. Collect Dead Paths

As shown in Section 3.3, whenever

Algorithm 3 can generate a test data for a test

path, all its edges weights are added by 1. As a

result, if there is any edge of the UCFG which

has weight of 1, its related source code is a dead

code. Its corresponding path is called dead path.

The algorithm to collect dead paths is shown in

Algorithm 4. In this algorithm, we use dot

notation (“.”) to call a method of an edge or a

path. The algorithm checks all test paths

(testPath) of the UCFG (line 1) to find

corresponding partial path (deadPath) which has

all its edges of weight 1 (line 3 to 12). If

deadPath is not empty, it is added to paths

(line 13 to 15). When the algorithm stops, paths

contains all possible dead paths of a given UCFG.

4. Generate Test Data from Boundary Values

In this section, we present IBVTG method

which generates test data for unit functions from

boundary values of simple conditions inside a

given CFG. This is different from BVTG

presented in our previous paper [18] in which

test path constraints solution was employed to

get boundary values. The key idea of this change

is that these simple conditions from source code

always include conditions defined in the

requirements of the software. As a result, there is

no need to solve the test path constraints to get

list of boundary values for test data generation.

In this paper, we only focus on primitive data

types such as short, int, long, f loat, double, etc.

In regards to bool data type, it is the fact that this

type has only two values (true, false). For this

reason, we do not generate boundary value for

bool data type. Each numeric data type has a

predefined range of valid values. However, for

each system requirement, there is a valid range

of value which is not necessarily the same as the

range of the data type. In this paper, we only

consider the domain valid value range of the

parameters. We call the minimum and maximum

values of the domain valid value range Min and

Max, respectively.

To generate test data, before calling IBVTG,

we generate the CFG with the coverage type of

C3 to break all complex condition statements

into simple conditions. Then, we traverse the

CFG to find all simple conditions of the form

xi  k which contains one of the input parameters.

SimpleCondList list is passed to IBVTG for

processing. From SimpleCondList, IBVTG can

retrieve boundary values. Combining those

boundary values, the corresponding data type’s

Min and Max, and a special value (norm), we can

generate test data set for the unit under test.

Algorithm 5 shows the detailed steps of IBVTG

method. The algorithm takes three inputs which

are the list of simple conditions of the unit

(SimpleCondList), the list of the input

parameters (L) of the unit under test, and a

distance value to generate test data at the

boundary values (step). The output of the

algorithm is the set of all boundary values test

data S.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 29

In Algorithm 5, we use valueList to store a

list corresponding to all input parameters (L).

This means that valueList(xi) refers to the list of

boundary values corresponding to xi . We use

valueList(xi).add(val) to add a value (val) to the

list of boundary values corresponding to xi . In

addition, we use valueList(xi).sort() to sort the

list of values of xi in ascending order. The

algorithm uses ListNorm to store the list of norm

values corresponding to all input parameters L.

When the algorithm starts, we check all

simple conditions which contains one of the

input parameters of the form xi  k, where

  {>, >=, <, <=, = =} and xi  L. Then, the

algorithm adds corresponding boundary (k),

upper boundary (k + step), and lower boundary

(k - step) values to valueList(xi) if the list has not

contained those values (line 1 to 11). Later, the

algorithm adds the minimum (min), the upper

boundary of min (min + step), maximum (max),

and the lower boundary of max (max - step)

values of the corresponding domain valid value

range of every parameter to its boundary values

list. After that, all the lists are sorted in ascending

order for creating the norm value for xi

(line 12 to 21). Now, we have the boundary and

norm values of all parameters. A testData is

created by the combination of one boundary

value of xi and all other norm values of other

parameters (line 22 to 30).

5. Hybrid Test Data Generation Method

We have presented WCFT and IBVTG

methods to generate test data from weighted

CFG and boundary values in Section 4 and

Section 3. Although these are two different test

data generation methods, they have one common

point which is to use the CFG of the unit function

under test to retrieve their needed information.

From this observation, we present Hybrid

method which integrates WCFT and IBVTG

methods. The idea of Hybrid method is to extract

the required information for both WCFT and

IBVTG at the same time. Specifically, when

traversing the given CFG to search for test paths

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 30

for WCFT, we collect the list of simple

conditions for IBVTG. Then, in their turn,

WCFT uses the returned test paths to generate

one set of test data whilst IBVTG uses the

returned list of simple conditions to generate

another set of boundary values related test data.

These two sets of test data are merged to have

the required set of test data generated by Hybrid

method. An overview of Hybrid method is

shown in Figure 3.

5.1. Traverse the Given CFG

Given the CFG of the unit function under

test, we can traverse it to get a list of test paths

and a list of simple conditions. These lists are

inputs of WCFT and IBVTG algorithms to

generate required test data. The algorithm is a

variation of Algorithm 2. Details of the

algorithm are shown in Algorithm 6. The

algorithm takes three inputs which are the first

vertex (v) of the CFG, the number of a loop

included in the test path (depth), and a global

variable (path) containing a test path being

generated from the algorithm. The output of the

algorithm is a list of all feasible test paths (P) and

a list of simple conditions (C). The difference

between Algorithm 1 and Algorithm 6 is from

line 5 to 7. If v contains any simple conditions,

the algorithm adds those conditions to C (line 5

to 7). After traversing the given CFG, the

algorithm returns the list of test paths P and list

of simple conditions C.

5.2. The Hybrid Test Data Generation Method

This paper proposes Hybrid test data

generation method which integrates WCFT and

IBVTG. The integration is in the steps of

traversing the given CFG to get a list of test paths

and a list of simple conditions. Inputs of the

algorithm are the CFG corresponding to the C3

coverage of the unit function under test (CFG),

the distance value being used when generating

the test data at boundary values (step), the list of

input parameters (L = {x1, x2, .., xn}), and the

maximum number of iterations for a loop

(depth). Outputs of the algorithm are a set of test

data which includes test data from both WCFT and

IBVTG and the list of dead paths (DeadPaths).

Figure 3. An overview of Hybrid method.

Details of Hybrid method are shown in

Algorithm 7.

In Algorithm 7, tempPath is a temporary

variable used for generating the list of test paths

(TestPaths) (line 1). After initializing tempPath

with an empty path, the algorithm starts by

traversing the given CFG to get the list of test

paths (TestPaths) and the list of simple

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 31

conditions (SimpleCondList) (line 2). Then, on

one hand, the algorithm calls WCFT

(i.e., Algorithm 3) to generate the set of test data

(SW) from weighted CFG and get the updated

CFG UCFG (line 3). After that, the algorithm

collects the list of dead paths DeadPaths by

calling Algorithm 4 (line 4). On the other hand,

the algorithm calls IBVTG (i.e., Algorithm 5 to

generate another set of test data (SB) from

boundary values of the list of simple conditions

SimpleCondList (line 5). The generated list of

test data S is the union of SW and SB

(i.e., S = SWSB) (line 6).

6. Illustrative Example of Hybrid’ Operation

Hybrid method is a combination of the two

methods IBVTG and WCFT in which the

generated test data is the union of the two test

data sets generated them. The combination is

obvious so we do not describe in detail. In this

example, we focus on explaining how IBVTG

and WCFT work to generate the required test

data set and to find dead code.

We demonstrate the behaviors of IBVTG

and WCFT methods using the example shown in

Figure 4. This is a function, named

MathEnglishGrade, which classifies students by

their Math (Math) and English (English).

In this function, Math and English are

integers with a valid range from 0 to 100. The

purpose of this function is to classify students

into four predefined levels ‘A’, ‘B’, ‘C’, and ‘D’

according to Math and English scores.

- Level A: Math>=50 and English>=60 and

Math+English>=180

- Level B: Math>=50 and English>=60 and

at least Math>=80 or English>=90

- Level C: Math>=50 and English>=60 and

not level A or not level B

- Level D: Math<50 or English<60

In Figure 5, we present the domain values of

Math and English scores in a 2D graph in which

the horizontal axis represents Math and the

vertical axis represents English scores.

Students grades are shown in the corresponding

area A, B, C, D. The function is shown in Figure 4

marked with numbers which are nodes in the

corresponding CFG shown in Figure 6.

6.1. Generate Test Data using IBVTG

To generate test data using IBVTG method,

we need to analyze the given CFG to get the list

of simple conditions before calling IBVTG

(i.e., Algorithm 5). Assume that step = 1. From

MathEnglishGrade function, we can easily get

the following list of simple conditions:

{Math >= 50; English >= 60; Math >= 80;

English >= 90}. Note that the condition Math +

English >=180 is not a simple condition. In this

function, according to the requirement, we can

see that the value of Math and English in their

simple conditions are not the same. This does not

make the example lose its generality.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 32

Figure 4. Source code of MathEnglishGrade

function.

When IBVTG runs, for each simple

condition in SimpleCondList, IBVTG adds three

values to the corresponding list of either Math or

English. For example, when checking

Math >= 50, IBVTG adds 50, 50-step = 50-1 =

49, 50+step = 50+1 = 51 to valueList(Math).

After finishing the loop from line 1 to line 11, we

have the following two lists: valueList(Math) =

{49; 50; 51; 79; 80; 81} and valueList(English)

= {59; 60; 61;89; 90;91}. Later, IBVTG adds

minimum and maximum values of the valid

domain value ranges of Math and English to the

list, sorts the list, and create norm value for each

parameter. The algorithm also adds min’s upper

boundary and max’s lower boundary to the list

(line 12 to 21). Now we have the two lists as

follows: {0; 1; 49; 50; 51; 79; 80; 81; 99; 100}

and {0; 1; 59; 60; 61; 89; 90; 91; 99; 100}. Next,

the method of creating norm value is as follows.

From the list of simple conditions SimpleCondList,

Figure 5. Student grades corresponding to Math

and English scores.

we have two boundary values for Math which are

50 and 80. With Min and Max values of domain

valid value range, we have four main values for

Math which are 0, 50, 80, 100. From these

values, we have three smaller segments [0, 50],

[50, 80], [80, 100]. In this paper, we use a

random selection to select norm value from the

average values of those segments (i.e.,

norm(Math) = random{(0+ 50)/2, (50 + 80)/2,

(80 + 100)/2}). The random value for Math in

this case is 65. The same norm selection method

is applied to English, we have the random value

for English is 75. Later, IBVTG generates test

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 33

data for MathEnglishGrade function by

combining valueList of Math and norm value of

English and vice versa. We have the following

set of test data: {(0, 75); (1, 75); (49, 75); (50,

75); (51, 75); (79, 75); (80, 75); (81, 75); (99,

75); (100, 75); (65, 0); (65, 1); (65, 59); (65, 60);

(65, 61); (65, 89); (65, 90); (65, 91); (65, 99);

(65, 100)}.

6.2. Generate Test Data using WCFT

The corresponding CFG of MathEnglishGrade

function is shown in Figure 6 in which each node

is corresponding to one statement or a condition

shown in Figure 4. Inputs of WCFT (i.e.,

Algorithm 3) are CFG of the unit under test

(CFG) and the list of test paths (TestPaths)

generated from the given CFG. For the given

function, we have 6 test paths shown in Table 1.

The running process of WCFT for

MathEnglishGrade function is shown in Table 2.

At the beginning, WCFT initializes the weight of

all edges with 1 (line 1). After traversing CFG, 6

test paths are obtained and 6 iterations are

needed to check all test paths. At first, all test

paths are marked as not visited. For each

iteration, a not visited test path having the

greatest weight is selected to generate test data.

For that reason, in the first iteration, WCFT takes

test path 1 (weight = 5) (i.e., t = test path 1)

(line 3). The result of solving the corresponding

constraints of t is that the solution does not exist

(line 4 to 7) (marked as no solution). In the next

iterations, the following test paths are selected in

order: Test path 2, Test path 3, Test path 4, Test

path 5, Test path 6. Details of the running process

are shown in Table 2. In Table 2, six iterations

are shown from Iteration 1 to Iteration 6.

Columns “Test paths”, “Weight”, “Test data

(Math, English)”, “Return value”, and “Visited”

show the test paths, their weight, generated test

data in form of (Math, English), the return result

(‘A’, ‘B’, ‘C’, ‘D’), and if the test path is visited,

respectively. Returned values are ‘A’, ‘B’, ‘C’,

and ‘D’. In “Test data (Math, English)” column,

a value of “no solution” means that the

corresponding test path constraints has no

solution. As a result, there is no generated test

data to cover that test path. In “Visited” column,

“True” value means that the corresponding test

path has been checked. Otherwise, the test path

has not been checked.

Figure 6. UCFG for MathEnglishGrade function.

From the data shown in Table 2, we have the

following observations:

• There are 5 test data generated by WCFT.

They are (50, 60), (50, 90), (80, 60), (50, 59),

(49, .). The test data (49, .) means that

Math = 49, English can be any value. In this case,

the function returns ‘D’ value.

• With the minimum of 5 test data, we

achieve a branch coverage of 9/10 = 90%.

• There is one branch which the generated

test data cannot cover. That is the branch from

node No.6 to node No.7. This is corresponding to

the test path “begin->1->2->3->4->6->7->end”

whose constraints expression does not have

solution. This is the fact that there are no values

for Math and English which satisfy both

conditions Math <= 80 && English <= 90 and

Math + English >= 180. The statement in node

No.7 (return ‘A’) is called a dead code.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 34

Table 2. The running process of WCFT for MathEnglishGrade function

No. Test paths Weight
Test data

(Math, English)

Return

value Visited

Initial
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 5 False
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 5 False
3 begin ->1 ->2 ->3 ->4 ->5 ->end 4 False
4 begin ->1 ->2 ->3 ->5 ->end 3 False
5 begin ->1 ->2 ->9 ->end 2 False
6 begin ->1 ->9 ->end 1 False

Iteration 1
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 5 No solution True
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 5 False
3 begin ->1 ->2 ->3 ->4 ->5 ->end 4 False
4 begin ->1 ->2 ->3 ->5->end 3 False
5 begin ->1 ->2 ->9 ->end 2 False
6 begin ->1 ->9 ->end 1 False

Iteration 2
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 9 No solution True
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 10 (50, 60) C True
3 begin ->1 ->2 ->3 ->4 ->5 ->end 7 False
4 begin ->1 ->2 ->3 ->5->end 5 False
5 begin ->1 ->2 ->9 ->end 3 False
6 begin ->1 ->9 ->end 1 False

Iteration 3
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 12 No solution True
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 13 (50, 60) C True
3 begin ->1 ->2 ->3 ->4 ->5 ->end 11 (50, 90) B True
4 begin ->1 ->2 ->3 ->5->end 7 False
5 begin ->1 ->2 ->9 ->end 4 False
6 begin ->1 ->9 ->end 1 False

Iteration 4
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 14 No solution True
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 15 (50, 60) C True
3 begin ->1 ->2 ->3 ->4 ->5 ->end 13 (50, 90) B True
4 begin ->1 ->2 ->3 ->5->end 10 (80, 60) B True
5 begin ->1 ->2 ->9 ->end 5 False
6 begin ->1 ->9 ->end 1 False

Iteration 5
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 15 No solution True
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 16 (50, 60) C True
3 begin ->1 ->2 ->3 ->4 ->5 ->end 14 (50, 90) B True
4 begin ->1 ->2 ->3 ->5->end 11 (80, 60) B True
5 begin ->1 ->2 ->9 ->end 7 (50, 59) D True
6 begin ->1 ->9 ->end 1 False

Iteration 6
1 begin ->1 ->2 ->3 ->4 ->6 ->7 ->end 15 No solution True
2 begin ->1 ->2 ->3 ->4 ->6 ->8 ->end 16 (50, 60) C True
3 begin ->1 ->2 ->3 ->4 ->5 ->end 14 (50, 90) B True
4 begin ->1 ->2 ->3 ->5->end 11 (80, 60) B True
5 begin ->1 ->2 ->9 ->end 7 (50, 59) D True
6 begin ->1 ->9 ->end 2 (49, .) D True

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 35

7. Experiments

To evaluate the effectiveness of the proposed

methods, we have implemented a tool, named

HybridCFT4Cpp, which is based on

WCFT4Cpp [18]. HybridCFT4Cpp contains

implementation of STCFG proposed by Nguyen

et al., [17], WCFT and BVTG proposed in our

previous paper [18], IBVTG and Hybrid

proposed in this paper. We performed

experiments to make the following two

evaluations: i) To compare BVTG and IBVTG

in terms of total number of test data, error

detection, and test data generation time; and ii)

To compare STCFG [17] and Hybrid in terms of

test data generation time, C3 coverage, and error

detection ability.

To prevent the affection of the test machine

status on the experimental results, we have run

each experiment twenty times. The average

results are shown in Table 3 and Table 4.

Experiments are performed on a machine whose

configuration is as follows: Windows 10,

Intel(R) Core(TM) i5-7100U CPU @ 2.40GHz

and 8GB RAM. We use Mingw32 compiler in

Dev- Cpp version 5.9.2 IDE. In our experiments,

we employ an SMT-Solver named Z3 for solving

test path constraints. Unit functions used in our

experiments are obtained from

geeksforgeeks.org, pathcrawler-online.com.

Some of which have been widely used in the

community.

7.1. The Comparison between BVTG and IBVTG

In this paper, we have proposed a main

change to BVTG method in which SMT-Solver

is no longer used to solve test path constraints.

We generate test data directly from simple

conditions inside the unit under test. This

experiment is to compare the error detection

ability at the boundary values and test data

generation time of BVTG and IBVTG. For this

purpose, we intentionally add errors to the

functions at the boundary values and perform

experiments using those functions (i.e., some

simple conditions are changed). For example,

x>=5 is replaced with x>5, x == 5, or x!=5. Step

value used in these experiments is 1.

Experimental results are shown in Table 3.

In Table 3, we have reused 5/6 functions

from [18] paper. Those are Grade, PDF,

isTriangle, Tritype, leapYear. Other functions

are added to clarify the differences between

BVTG and IBVTG.

When performing experiments, the coverage

of both methods is C3. We compare the two

methods according to three criteria: total number

of test data, detected errors ratio, and test data

generation time. In Table 3, columns

“Function”, “Simp Cond”, “Num Para”, and

“Para Type” show ratio of number of simple

conditions and total number of conditions,

number of input parameters, and parameter

types, respectively. The total number of test data

is shown in column “Test data”. The detected

errors ratio of each function is shown in column

“Det Err”. Test data generation time is shown in

column “Time (ms)”.

From the main difference between IBVTG

and BVTG discussed above, the experimental

results shown in Table 3 are divided into a

number of groups based on the correlation

between the number of simple conditions and the

number of constraints between the function’s

parameters.

The number of test data

• In functions where there are only simple

conditions, the number of test data generated by

BVTG is normally smaller than the number of

test data generated by IBVTG. The reason is that

in IBVTG, in addition to generating test data

using the boundary values, IBVTG generates

additional test data for boundary values of the

valid value range (i.e., Min and Max) of each

parameter. In our experiments, calculateZodiac,

Grade, and getFace are functions which solely

have single conditions.

• In functions where there are both simple

conditions and complex conditions (i.e.,

conditions which contain more than one input

parameters), if the number of simple conditions

is greater than the number of complex

conditions, the number of test data generated by

IBVTG is greater than that of BVTG. In our

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 36

experiments, i4_power, GCD, and

MathEnglishGrade are functions of this group.

On the contrary, if the number of simple

conditions is less than the number of complex

conditions, the number of test data generated by

IBVTG is less than that of BVTG. In our

experiments, Tritype, factorial, and foo are

functions of this group.

• In functions where boundary values of

each parameter have duplicate values, IBVTG

keeps one value from the duplicated ones. This

explains why the number of test data generated

by IBVTG is significantly smaller than that of

BVTG. For example, calculateZodiac function

has the following simple conditions month >= 2,

month >= 4, month >= 5. From these conditions,

IBVTG analyzes and has these boundary related

values {1, 2, 3, 3, 4, 5, 4, 5, 6}. After removing

the duplicate values, we have the following

values {1, 2, 3, 4, 5, 6}. These values are

combined with values of other parameters to

create test data.

• In function where there is no simple

condition, boundary values are the minimum

(Min), maximum (Max) of the domain valid

value range. The number of test data generated

by IBVTG is typically smaller than that of

BVTG. In our experiments, isTriangle, PDF,

and leapYear are functions of this group.

Table 3. The comparison of BVTG and IBVTG

Fuction
Simple

Cond

Num

para
Para
Type

BVTG I BVTG

Test

Data
Det
Err

Time
(ms)

Test

Data
Det
Err

Time
(ms)

Grade 10/10 1 int 18 6/6 2 20 6/6 2

getFare 8/8 2 int 11 4/4 1116 17 4/4 1.8

calculateZodiac 60/60 3 int 31 2/4 529 17 3/4 2

i4_power 6/7 2 int 12 2/2 786 11 2/2 2.8

GCD 4/6 2 int 10 2/2 3238 10 2/2 1

MathEnglishGrade 4/5 3 int 12 4/4 1448 16 4/4 2.4

Tritype 4/10 3 double 22 1/1 19782 9 1/1 2.8

factorial 1/2 1 int 3 1/1 2484 5 1/1 23

foo 1/3 3 int 36 2/2 4547 11 0/2 8

isTriangle 0/3 3 double 9 0/2 9641 6 0/2 39

leapYear 0/3 1 int 4 1/1 2759 2 1/1 2

PDF 0/2 3 int 6 3/4 4057 6 0/4 2

Error detection ability

• In functions where there is only simple

condition or there are more simple than complex

conditions, the number of errors detected by

IBVTG is greater than or equal to that of BVTG.

In our experiments, calculateZodiac, Grade,

getFare, i4_power, GCD, and MathEnglish-

Grade functions are of this group.

• In functions where there are only complex

conditions, the number of detected errors of

IBVTG is often very low, even zero. The reason

is that in this case, IBVTG only relies on the

minimum and maximum values of the domain

valid value range. Meanwhile, with BVTG,

condition constraints are passed to the solver for

getting the required solution. The generated test

data helps BVTG to have a higher error detection

ability in comparison with IBVTG. In our

experiments, isTriangle, leapYear, and PDF are

functions of this group.

The generation time

The time to generate test data using IBVTG

is much smaller than that of BVTG. The reason

is that generating test data using BVTG must use

an SMT-Solver to solve test path constraints.

This process takes much more time than

combining boundary values of input parameters

from simple conditions to generate test data in

IBVTG method.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 37

7.2. The Comparison Between STCFG and Hybrid

In this experiment, we compare test data

generation time of STCFG and Hybrid methods.

The results are shown in Table 4. In Table 4,

Columns “Function”, “Dep”, “LOC”, “Simp

Cond”, “Num para”, and “Para Type” show the

function name, the maximum number of loops in

a test path, number of line of code of each

function, ratio of number of simple conditions

and total number of conditions, number of input

parameters, parameter types, respectively. We

compare the following two key indicators: the

time each method takes to generate test data and

number of detected errors. These indicators are

shown in “Time (ms)” and “Det Err” columns,

respectively. The coverage for both methods are

shown in “Cov (%)” column.

In Table 4, we have reused 11/12 function

from [18]. Those are leapYear, isTriangle, PDF,

CheckValidDate, Tritype, Grade, foo,

calculateZodiac, simpleWhileTest, GCD. In

addition, we have reused 6 functions Tritype,

Grade, foo, GCD, Average, SelectionSort from

[17] paper. Other functions are added to enrich

the experimental results. For this reason, we can

have a better evaluation about the methods under

experiment.

Table 4. The Comparison Between STCFG and Hybrid

Function Dep LOC
Sim

Cond

Num

Para

Para

Type

STCFG Hybrid
Cov

(%)
Time

(ms)

Det

Err

Time

(ms)

Det

Err

calculateZodiac 0 60 60/60 3 int 13453 1/4 12879 3/4 100

CheckValidTime 0 7 6/6 3 int 344 1/6 252 6/6 100

CountSecond 0 10 12/12 3 int 825 6/6 683 6/6 100

distanceTest 0 15 5/5 1 float 2270 1/2 2728 2/2 100

getFare 0 20 8/8 2 int 1613 1/4 1771 4/4 100

Grade 0 13 10/10 1 int 705 1/6 678 6/6 100

multiConditionTest 0 30 13/13 1 short 5172 3/4 4241 4/4 100

smallIntervalTest 0 15 5/5 1 double 3593 1/2 1347 2/2 100

CheckValidDate 0 9 23/25 3 int 2443 0/6 750 5/6 88.5

i4_power 1 50 6/7 2 int 1140 1/2 927 2/2 100

MathEnglishGrade 0 13 4/5 3 int 3245 1/4 389 4/4 90

GCD 1 14 4/6 2 int 3167 2/2 3063 2/2 100

factorial 1 10 1/2 1 int 1799 1/2 1418 1/2 100

twoForLoop 3 10 2/4 2 int 21830 0/2 3463 2/2 100

CDateToNumber 1 25 2/5 3 int 4636 1/1 2730 1/1 100

Average 2 14 2/5 5
double

int
10248 0/0 7061 0/0 75

Tritype 0 40 4/10 3 double 28823 1/1 22126 1/1 100

foo 0 15 1/3 3 int 898 1/2 947 2/2 87.5

NextDate 1 25 2/6 3 int 26186 2/2 21093 1/2 75

MoreComplexCond 0 20 3/18 5 long 14741 1/3 13899 3/3 100

simpleWhileTest 4 6 0/1 2 int 2224 1/1 1447 1/1 100

pdF 0 6 0/2 3 int 161 1/4 798 3/4 100

isTriangle 0 6 0/3 3 double 1543 1/1 747 1/1 100

leapYear 1 6 0/3 1 int 202 0/1 200 1/1 100

SelectionSort 2 20 0/3 2 int 18654 0/0 3827 0/0 100

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 38

From experimental results shown in Table 4,

we have the following observations:

• Coverage: The coverage of the generated

test data of the two methods is the same. This

comes from the fact that the data generation

process of both methods is performed based on

the same CFG and an SMT-Solver (i.e., Z3).

• Error detection ability: The number of

errors detected by Hybrid is greater than or equal

to that of STCFG. The reason is that the test data

set generated by Hybrid method includes both

test data generated from the corresponding CFG

and from boundary values. Meanwhile, STCFG

generates test data only from the given CFG.

• The generation time: The test data

generation time of STCFG is greater than that of

Hybrid in most cases. The reason is that STCFG

checks all sub-execution paths in the process of

finding a full-execution path. When checking,

these sub-execution path constraints are solved

by an SMT-Solver. This makes STCFG slower

than WCFT which requires the whole test path

constraints to be solved only once for a full-

execution path. In addition, because IBVTG has

much faster speed than BVTG, including

IBVTG in Hybrid does not make Hybrid slower

than STCFG. The functions Average, and

SelectionSort do not have errors. We can see that

the test data generation time of Hybrid is less

than that of STCFG.

8. Related Works

There are some research related to the

proposed methods in this paper. They are

researches about ganerating test data

automatically from the source code [10, 16-18]

and at the boundary values [19, 21-23].

Nguyen et al., improved the execution path

exploration method from CFG [17]. In this

method, the source code is converted to the

coresponding CFG. Then, CFG is explored to

find the test path using backtracking algorithm.

In each step of exploration process, at each

decision node, the feasibility of the test path

from the inittial node to the decision node is

examined. This method eliminates infeasible

execution paths as soon as possible. However, it

takes the method long time to process the

constraints when CFG has many nodes and

infeasible execution paths.

Nguyen et al., proposed SDART [10] method

to improve the coverage by combining the

breadth first search strategy of DART [6] with the

static test data generation method. Specifically,

after some times where the generated test data do

not increase the code coverage, the method uses

static testing to generate test data.

Marashdih et al., proposed the path weight

method (PWM) to avoid detecting duplicated

feasible paths [16]. The method uses an SMT-

slover to check the feasibility of a given test path.

In our previous paper [18], we proposed a

method to generate test data based on weighted

CFG (named WCFT). This is the method

presented in Section 3 in this paper. This paper

proposes an improved method for BVTG, named

IBVTG, by using simple conditions to generate

test data. IBVTG can greatly reduce the

boundary test data generation time in

comparison with BVTG. In addition, we

combine the two methods of WCFT and IBVTG

methods to have a hybrid method which has the

advantages of both WCFT and IBVTG methods.

Feng et al., proposed a number of papers for

boundary values related generation methods.

These methods are for the cases where function

parameters are related to each others.

First, Feng et al., proposed a sequence

method to evaluate the relationship between

input parameters [19]. The method has a

limitation of low test data generation

performance with functions of the form Y = f(X)

and Z = g(Z,Y). The reason is that the sequence

method can only be applied for two functions.

For other functions, the method cannot generate

test data.

Second, Feng et al., proposed Divide-and-

Rule method to break the dependency between

input parameters for creating independent

variables [20]. The method can create some

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 39

required test data which cannot be generated by

traditional methods.

Finally, Wenying Feng et al. proposed a

function tree method to generate test data at

boundary values in case the input parameters are

constrained to each other [21]. To find test data

for a given function with three inputs X, Y, and

Z, the method assumes that Y is a function of X

and Z. The method is inspired from geometry

view and is a generalization of the traditional

boundary value analysis in black-box testing.

We share the interest in generating test data for

boundary values. However, our proposed

method bases directly on simple conditions, but

not on the dependencies between input

parameters of a function.

For achieving the highest coverage, Zhang et

al., proposed a method of defining the

boundaries of condition predicates used in

white-box testing [22]. The method employed

constrained combinational testing to cover these

boundaries with reduced number of test cases.

The method can guarantee to cover all possible

boundaries for each selected execution path. We

share the interest in generating test data for

boundary values as Zhang et al., However, our

IBVTG method bases directly on simple

conditions, but not on the boundaries of

execution paths.

Dobslaw et al., proposed a Boundary Value

Exploration (BVE) method to detect and identify

boundary inputs [23]. Additionally, Dobslaw

proposed two concrete BVE methods based on

information-theoretic distance functions: i) A

boundary detection algorithm; and ii) A method

to explore the behavior of the unit under test and

identify its boundary behaviors. We share the

interest about generating test data for boundary

values. However, we focus on using simple

conditions of input parameters.

9. Conclusion

This paper proposes IBVTG method to

improve the boundary values test data generation

method (BVTG) and Hybrid method which is the

combination of IBVTG and WCFT methods.

With IBVTG method, we analyze the source

code to find simple conditions and generate test

data sets from those conditions. The method is

capable of detecting errors at boundary values

without using an SMT-Solver. Experimental

results show that it takes IBVTG less time to

generate test data than BGVT method. Depends

on test cases, the test data set generated by

IBVTG has higher error detection capacity

whilst having a smaller number of test data than

that of BVTG.

In Hybrid method, we analyze the source

code of the unit under test, generate

corresponding CFG, assign weights to the graph,

and select the execution path with the highest

weight to generate test data. In the process of

choosing an execution path, we also collect

simple conditions which are used for IBVTG

method to generate test data for boundary values.

As a result, Hybrid method generates test data

which both ensure source code coverage while

having high error detection ability. In addition,

Hybrid method keeps the same capability as

WCFT to detect infeasible execution paths or

dead code. These methods are implemented in

the same tool named HybridCFT4Cpp.

Experimental results with some popular unit

functions in the research community show that

these methods are superior to STCFG method in

terms of test data generation time and boundary

values error detection ability.

Although Hybrid method is implemented in

a tool and some experiments are performed with

some common unit functions in the research

community, there are many works we need to do.

The current Hybrid method can generate test

data for only primitive types, we need to extend

the method for other complex types such as

pointers, struct, class, etc. Moreover, we need to

implement more advanced user interface for

HybridCFT4Cpp so that normal software

engineers can use. This aims to make the method

more widely used in projects in practice.

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 40

Acknowledgements

This work has been supported by VNU

University of Engineering and Technology

under project number CN21.18.

Do Minh Kha was funded by Vingroup JSC

and supported by the Master, PhD Scholarship

Programme of Vingroup Innovation Foundation

(VINIF), Institute of Big Data, code

VINIF.2021.ThS.24.

References

[1] J. C. King, Symbolic Execution and Program

Testing, Commun. ACM, Vol. 19, No. 7, 1976,

pp. 385-394,

https://doi.org/10.1145/360248.360252.

[2] C. Cadar, K. Sen, Symbolic Execution for Software

Testing: Three Decades Later, Commun, ACM 56

Vol. 2, 2013, pp. 82-90,

https://doi.org/10.1145/2408776.2408795.

[3] J. Burnim, K. Sen, Heuristics for Scalable Dynamic

Test Generation, in: Proceedings of the 2008 23rd

IEEE/ACM International Conference on

Automated Software Engineering, ASE ’08, IEEE

Computer Society, USA, 2008, pp. 443-446,

https://doi.org/10.1109/ASE. 2008.69.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,

D. R. Engler, EXE: Automatically Generating

Inputs of Death, ACM Trans. Inf. Syst. Secur,

Association for Computing Machinery, New York

NY, United States, Vol. 12, No. 2, 2008, pp 1-38,

https://doi.org/10.1145/1455518.1455522.

[5] C. Cadar, D. Dunbar, D. Engler, Klee: Unassisted

and Automatic Generation of High-Coverage Tests

for Complex Systems Programs, in: Proceedings of

the 8th USENIX Conference on Operating Systems

Design and Implementation, OSDI’08, USENIX

Association, USA, 2008, pp. 209-224.

[6] P. Godefroid, N. Klarlund, K. Sen, Dart: Directed

Automated Random Testing, in: Proceedings of the

2005 ACM SIGPLAN Conference on

Programming Language Design and

Implementation, PLDI 05, Association for

Computing Machinery, New York, NY, USA,

2005, pp. 213-223,

https://doi.org/10.1145/1065010.1065036.

[7] N. Williams, B. Marre, P. Mouy, M. Roger,

Pathcrawler: Automatic Generation of Path Tests

by Combining Static And Dynamic Analysis, in:

M. Dal Cin, M. Kaâniche, A. Pataricza (Eds.),

Dependable Computing - EDCC 5, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2005, pp. 281-292.

[8] K. Sen, D. Marinov, G. Agha, Cute: A Concolic

Unit Testing Engine for C,, Association for

Computing Machinery, New York, NY, USA,

Vol. 30, 2005, pp. 263-272,

https://doi.org/10.1145/1095430.1081750.

[9] Z. Wang, X. Yu, T. Sun, G. Pu, Z. Ding, J. Hu, Test

Data Generation for Derived Types in C Program,

in: Proceedings of the 2009 Third IEEE

International Symposium on Theoretical Aspects

of Software Engineering, TASE ’09, IEEE

Computer Society, USA, 2009, pp. 155-162,

https://doi.org/10.1109/TASE.2009. 10.

[10] D. A. Nguyen, T. N. Huong, H. D. Vo, P. N. Hung,

Improvements of Directed Automated Random

Testing in Test Data Generation for C++ Projects,

International Journal of Software Engineering

and Knowledge Engineering, Vol. 29, 2019,

pp. 1279-1312.

[11] Z. Xu, T. Kremenek, J. Zhang, A Memory Model

for Static Analysis of C Programs, in: Proceedings

of the 4th International Conference on Leveraging

Applications of Formal Methods, Verification, and

Validation - Volume Part I, ISoLA’10, Springer-

Verlag, Berlin, Heidelberg, 2010, pp. 535-548.

[12] B. Elkarablieh, P. Godefroid, M. Y. Levin, Precise

Pointer Reasoning for Dynamic Test Generation,

in: Proceedings of the Eighteenth International

Symposium on Software Testing and Analysis,

ISSTA ’09, Association for Computing Machinery,

New York, NY, USA, 2009, pp. 129-140,

https://doi.org/10.1145/1572272.1572288.

[13] D. Trabish, A. Mattavelli, N. Rinetzky, C. Cadar,

Chopped Symbolic Execution, in: Proceedings of

the 40th International Conference on Software

Engineering, ICSE ’18, Association for Computing

Machinery, New York, NY, USA, 2018, pp. 350-360,

https://doi.org/10.1145/3180155.3180251.

[14] D. M. Perry, A. Mattavelli, X. Zhang, C. Cadar,

Accelerating Array Constraints in Symbolic

Execution, ISSTA 2017, Association for

Computing Machinery, New York, NY, USA,

2017, pp. 68-78,

https://doi.org/10.1145/3092703.3092728.

[15] H. Palikareva, C. Cadar, Multi-solver Support in

Symbolic Execution, in: Proceedings of the 25th

International Conference on Computer Aided

Verification, CAV 2013, SpringerVerlag, Berlin,

Heidelberg, Vol. 8044, 2013, pp. 53-68.

[16] A. W. Marashdih, Z. Zaaba, K. Suwais, An

Approach for Detecting Feasible Paths Based on

https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/ASE.2008.69
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
http://dx.doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1095430.1081750
http://dx.doi.org/10.1145/1095430.1081750
http://dx.doi.org/10.1145/1095430.1081750
https://doi.org/10.1109/TASE.2009.10
https://doi.org/10.1109/TASE.2009.10
http://dx.doi.org/10.1109/TASE.2009.10
http://dx.doi.org/10.1109/TASE.2009.10
http://dx.doi.org/10.1109/TASE.2009.10
https://doi.org/10.1145/1572272.1572288
https://doi.org/10.1145/1572272.1572288
https://doi.org/10.1145/1572272.1572288
http://dx.doi.org/10.1145/1572272.1572288
http://dx.doi.org/10.1145/1572272.1572288
https://doi.org/10.1145/3180155.3180251
http://dx.doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1145/3092703.3092728
http://dx.doi.org/10.1145/3092703.3092728
http://dx.doi.org/10.1145/3092703.3092728

T. N. Huong et al. / VNU Journal of Science: Comp. Science & Com. Eng, Vol. 39, No. 2 (2023) 22-41 41

Minimal Ssa Representation and Symbolic

Execution, Applied Sciences, Vol. 11, 2021,

pp. 5384, https://doi.org/10.3390/ app11125384.

[17] D. A. Nguyen, P. N. Hung, V. H. Nguyen, A

Method for Automated Unit Testing of C

Programs, in: 2016 3rd National Foundation for

Science and Technology Development Conference

on Information and Computer Science (NICS),

2016, pp. 17-22,

https://doi.org/10.1109/NICS.2016.7725644.

[18] T. N. Huong, D. M. Kha, H. V. Tran, P. N. Hung,

Generate Test Data from C/C++ Source Code using

Weighted Cfg and Boundary Values, in: 2020 12th

Int. Conf. on Knowledge and Systems Engineering

(KSE), 2020, pp. 97-102,

https://doi.org/10.1109/KSE50997.2020. 9287629.

[19] W. Feng, Z. Zhang, Sequence Algorithms for

Boundary Value Analysis With Constrained Input

Parameters, in: R. T. Hurley, W. Feng (Eds.),

Proceedings of the ISCA 14th Int. Conf. on

Intelligent and Adaptive Systems and Software

Engineering, July 20-22, 2005, Novotel Toronto

Centre, Toronto, Canada, ISCA, 2005, pp. 255-160.

[20] K. Vij, W. Feng, Boundary Value Analysis Using

Divide- and-rule Approach, in: Fifth Int. Conf. on

Information Technology: New Generations (itng

2008), 2008, pp. 70-75,

https://doi.org/10.1109/ITNG.2008.218.

[21] W. Feng, A Generalization of Boundary Value

Analysis for Input Parameters with Functional

Dependency, in: Computer and Information

Science, ACIS Int. Conf. on, IEEE Computer

Society, Los Alamitos, CA, USA, 2010,

pp. 776-781,

https://doi.org/10.1109/ICIS.2010.39.

[22] Z. Zhang, T. Wu, J. Zhang, Boundary Value

Analysis in Automatic White-Box Test

Generation, in: 2015 IEEE 26th Int, Symposium on

Software Reliability Engineering (ISSRE), 2015,

pp. 239-249,

https://doi.org/10.1109/ISSRE.2015.7381817.

[23] F. Dobslaw, F. G. D. O. Neto, R. Feldt, Boundary

Value Exploration for Software Analysis, 2020

IEEE International Conference on Software

Testing, Verification and Validation Workshops

(ICSTW).

https://doi.org/10.1109/icstw50294.2020.00062.

http://dx.doi.org/10.3390/app11125384
http://dx.doi.org/10.3390/app11125384
http://dx.doi.org/10.1109/NICS.2016.7725644
http://dx.doi.org/10.1109/KSE50997.2020.9287629
http://dx.doi.org/10.1109/KSE50997.2020.9287629
http://dx.doi.org/10.1109/KSE50997.2020.9287629
http://dx.doi.org/10.1109/ITNG.2008.218
http://dx.doi.org/10.1109/ITNG.2008.218
http://dx.doi.org/10.1109/ICIS.2010.39
http://dx.doi.org/10.1109/ICIS.2010.39
https://doi.org/10.
https://doi.org/10.
http://dx.doi.org/10.1109/ISSRE.2015.7381817
http://dx.doi.org/10.1109/ICSTW50294.2020.00062
http://dx.doi.org/10.1109/ICSTW50294.2020.00062
file:///C:/Users/CHUTHAIHA/Documents/Zalo%20Received%20Files/).%20https:/doi.org/10.1109/icstw50294.2020.00062
file:///C:/Users/CHUTHAIHA/Documents/Zalo%20Received%20Files/).%20https:/doi.org/10.1109/icstw50294.2020.00062

