VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

Original Article

An Efficient End-to-End User Interface Testing Method
for Web Applications

Trinh Le-Khanh, An Pham-Hoang, Quyen Hoang-Van, Cong Bui-The,
Tam Cao-Thi-Minh, Pham Ngoc Hung*

VNU University of Engineering and Technology, Hanoi, Vietnam

Received 18" September 2024
Revised 9™ January 2025; Accepted 18" June 2025

Abstract: This paper proposes a novel end-to-end Ul testing method by introducing a domain-
specific language named User Behavior Language (UBL) for specifying UI test scenarios. The UBL
provides a concise and intuitive syntax for describing UI interactions, enabling rapid test script cre-
ation and reducing the learning curve for non-technical testers. Additionally, UBL allows for the
specification of constraints between interactions, facilitating the modeling of complex user work-
flows and enforcing application-specific rules. We also propose a test case generator that utilizes
the UBL and the test data to automatically generate a comprehensive suite of test cases, covering
both expected and abnormal user behavior. The effectiveness of the proposed UI testing method
was validated through a comparative analysis with Katalon Studio by testing some functionalities of
SauceDemo, a benchmark Website for Ul testing.

Keywords: Domain-specific language, End-to-end Ul testing, Test case generation, Web application

testing.

1. Introduction

User interface (UI) testing is one of the major
challenges in modern software development
processes. It is a complex problem that
requires significant effort and often depends
on technologies provided by third parties.
Nevertheless, interface testing is an indispensable
requirement for every software company and

*Corresponding author.
E-mail address: hungpn@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.3629

97

project and is also one of the most time-
consuming and labor-intensive tasks in the
development process. Particularly in software
evolution, interface testing needs to be performed
repeatedly, further increasing the complexity and
cost of this process. Therefore, developing and
providing an effective tool for UI testing is an
urgent need to optimize the development process
and improve the quality of software products.

98 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

End-to-end UI testing is employed to verify
the seamless functionality of a web application
throughout the user experience [1]. However,
contemporary testing tools rely on manual
execution, which requires testers to possess
extensive prior knowledge of the application’s
structure and functionality [2]. As applications
evolve and expand, the time and resources
required for comprehensive manual testing can
become prohibitively expensive. Moreover, the
subjective nature of manual testing can lead to
inconsistencies in test coverage and quality across
different testers or testing cycles.

Various approaches and tools have been
developed to streamline the UI testing process.
One popular method is model-based testing [3],
which involves creating a formal model of the Ul
to generate test cases automatically [4—7]. While
this method can provide a comprehensive view
of the application’s interface, it often results in
redundant test cases and an expansive set of states
to be evaluated. The complexity of managing and
interpreting these layout graphs outweighs their
benefits, particularly for large-scale applications
with dynamic interfaces. Another commonly
used technique is Record & Replay, where testers
manually interact with the UI to record their
actions, which are then replayed to verify the
application’s behavior. By automating repetitive
user interactions, these tools significantly
enhance testing efficiency, reducing human error
and accelerating development cycles. Some
popular tools support this approach such as
Cypress [8], Katalon Studio [9], Ranorex [10], or
Selenium [11]. This technique is relatively easy
and effective for simple UI testing scenarios.
However, Record & Replay is limited in handling
dynamic UI elements, complex workflows, and
data-driven testing.

This paper proposes a novel end-to-end
Ul testing method for Web applications to
address the limitations of existing Ul testing
approaches. The proposed method consists of
two key components: (1) a domain-specific

language (DSL) for test script specification and
(2) a test cases generator. The proposed
DSL provides a concise and intuitive way
to describe Ul test scripts. Each user
interaction is represented by a 2-unit phrase:
(action) (description). For example, “Click
add to cart the backpack” describes a user
clicking the Add to Cart button for a backpack
on an e-commerce Website. This simple syntax
facilitates rapid test script creation and reduces
the learning curve for non-technical testers.
Furthermore, the DSL allows for the specification
of constraints between interactions, enabling
the modeling of complex user workflows and
enforcing application-specific rules. For instance,
the constraint “Login requires username and
password” ensures that users must enter both
a username and password before successfully
logging in.

The proposed method provides a test case
generator to enhance test coverage and efficiency.
Users input test data corresponding to each
interactable Ul element declared in the test script.
Then, considering the specified constraints and
the provided test data, the test cases generator
generates a comprehensive suite of test cases that
cover both expected and abnormal user behavior
when interacting with the Ul Separating test
scripts from test data reduces the effort required
to create and maintain test cases. To validate
the effectiveness and efficiency of the proposed
UI testing method, we conducted a comparative
analysis with Katalon Studio, a widely used
commercial Ul testing tool. The comparison
focused on key aspects such as test script creation,
test case generation, and learning curve.

The rest of this paper is organized as follows.
Section 2 introduces the User Behavior Language
(UBL) for specifying the UI test scenario.
Section 3 presents the method for test case
generation. Section 4 designs an experiment to
prove the advantages of our proposed method.
A comparison of learning time and test cases
geneartion time is conducted in Section 5 to

T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111 99

validate the effectiveness and efficiency of the
proposed method. The drawbacks and threats to
validity are discussed in Section 6. Some related
works are presented in Section 7 to compare
our research. Finally, Section 8 concludes our
research and discusses future directions.

2. The User Behaviors Language

This section outlines our methodological
approach, which revolves around developing
a domain-specific language (DSL) specifically
tailored for the specification of user interactions
within a web environment. These scenarios are
described in an abstract manner, incorporating a
predefined action and a corresponding word for
the element’s information. Figure 1 outlines our
proposed approach for automated web Ul testing,
which consists of five main steps:

Figure 1. The proposed automated Web testing
process.

1. Test Scenario Creation: Testers initially
create Ul test scenarios using the DSL
named User Behavior Language (UBL).
These scenarios provide a high-level
description of the desired user interactions
for specific functionalities.

2. Test Script Generation: The test scenario is
subsequently transformed into a test script,

which details the specific actions and data
involved in the test. Testers can refine the
test script as needed to ensure accuracy and
completeness.

3. Element Location Detection: Once the test
script is finalized, the element’s locations
on the Web Under Test are detected. This
involves identifying the elements’ unique
identifiers (e.g., XPath) that correspond to
the actions specified in the script. This
information is crucial for automating the test
execution.

4. Test Case Generation: Test cases are
generated with the element locations and test
data in place. These test cases represent
individual scenarios that need to be tested,
encompassing both normal and abnormal

conditions.
5. Test Case Execution and Report
Generation: The generated test cases

are then executed against the Web Under
Test, and the results are captured in a
comprehensive test report. This report
provides valuable insights into the quality
of the web application and identifies any
defects or issues that need to be addressed.

Figure 2. The metamodel of the UBL.

Figure 2 presents the metamodel to construct
the UBL. This metamodel contains concepts and
their relationships to specify test scenarios. In
UI testing, each functionality is a specific aspect
of the Web U, such as form submission or
page navigation, and can be represented by Test
scenarios. These scenarios are created to verify

100 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

the corresponding expected user behaviors on the
Web Under Test. Each scenario includes one or
more Sequences of Command (SoC), representing
users’ steps to express a functionality. Each
SoC contains one or many Commands and might
contain Constraints.

Table 1. Supported actions

Actions Meaning
Open Access a website via opening the
link
Hover Hover on an element
Fill Enter text content into a text input
or a text area element
Click Click on a clickable element, such
as button, link, or image
Select Select an item from a list, such as
checkbox, dropdown, or list
Verify ~ An assertion to check whether the

current link or the elements’ value
appear as expected

A Command describes a specific action using
two phrases: action and targeted element. The
UBL supports several user actions to facilitate
web automation (see Table 1). The “Open”
action enables access to a website by opening
the provided link. The “Hover” action allows
positioning the cursor over a specified element
without activating it. The “Fill” action permits
entering textual content into a text input or text
area element. The “Click” action activates
clickable elements such as buttons, links, or
images. The “Select” action facilitates choosing
an item from a list, such as a checkbox, dropdown
menu, or list. Furthermore, the “Verify” action
asserts whether the current link or the value of
specified elements appears as expected, enabling
validation of the desired state.

When a SoC expression comprises more
than one Command, these Commands are linked
together through Constraints, which are binary
logical characters, such as conjunction (&) or

disjunction (). In conjunction with n Commands
within a SoC, a test template is generated to
execute all Commands as expected (i.e., the
Command’s element receives the expected value
from the input data set). The Constraint can not
be used to link different SoCs together.

If the SoC represents a disjunction of n
Commands, there are n + 1 generated test
templates, including:

e n templates where each Command 1is
executed as expected (i.e., the Command
elements receive the anticipated value from
the input data set), the remaining Commands
are free.

e 1 template where all Commands are
executed as expected.

The disjunction of n Commands produces
2" — 1 combinations. However, considering
all combinations is unnecessary and would
consume computational resources inefficiently.
Thus, n + 1 test cases are appropriate, as
they allow for a balance between achieving
essential test cases and minimizing computational
overhead. For example, consider the formula
A|B|C. All possible combinations where at
least one subset is wvalid, such as A&B,
B&C, C&A, must be considered to ensure
their validity. However, validating A, B,
and C simultaneously satisfies all these subset
combinations, eliminating the need to check each
subset individually and reducing computational
overhead. The specification permits users to
combine conjunction (&) and disjunction (]). To
streamline evaluation, all formulas are converted
to Disjunctive Normal Form (DNF), where
the formula is expressed as a disjunction of
conjunctive clauses. The test case generation
process then accounts for n + 1 disjunction
combinations, ensuring comprehensive coverage
while optimizing efficiency.

T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111 101

3. UI Test Cases Generation

This section presents the method for
generating Ul test cases, encompassing specified
scenarios that describe expected actions and
abnormal scenarios that delineate potential
abnormal actions of users.

3.1. Test Cases for Specified Action

In particular, if a user performs a specific
action, the system should respond in a certain
way. These responses could be in the form of
data returned, changes in the system state, or even
the triggering of certain events. The test cases
are generated to verify these expected outcomes.
After executing test cases, the actual outcomes
are compared with the expected outcomes to
determine if the system is functioning as
intended. A test scenario containing k sequence
of actions and having / test data will generate the
number of test cases as equation (1):

T:lxl_[ti (1)

Where ¢, is the number of test templates for the i
SoA.

The algorithm 1 represents our method
for generating executable test scripts from
a specified set of actions and datasets. It
iterates through each dataset, initializing an
empty list, 1istLineTemplates, to store test
templates for each line. Each line is treated
as a boolean expression and is converted into
Disjunctive Normal Form (DNF), which is a
standard format consisting of a disjunction of
conjunctions. Subsequently, each conjunction,
representing a sequence of multiple actions, is
transformed into a linear list of actions, with
data for each action extracted directly from
the dataset. This linear list of actions serves
as a candidate template for the current line
and is added to currentLineTemplates.
If multiple conjunctions exist, the algorithm

combines all corresponding linear lists into a
single linear list and adds this combination to
currentLineTemplates. Once all candidate
templates for current line are generated, the
currentLineTemplates is added to the
listLineTemplates. Finally, a backtracking
process is applied to listLineTemplates to
generate all complete test templates, which are
then transformed into executable test scripts.

Algorithm 1: Test cases generation
algorithm for specified actions

Input: lines, dataSets

Output: testScript

testScript « emptyString;

for dataSet in dataSets do

listLineTemplates < emptyList;

for linein lines do

currentLineTemplates « emptyList;

dnf « convertToDNF(line);

templateAllActions < emptyList;

for conjunctionin dnf do

template « emptyList;

for singledctionin conjunction do
singleAction «

replaceData(singleAction);

template.add(singleAction);

end
currentLineTemplates.add(template);

end
if dnf.size() > 1 then

end
listLineTemplates.add(currentLineTemplates);

end
testCases <
createTestCases(1istLineTemplates);
currentTestScript «
createT estS cript(testCases);
testScript.append(currentTestScript);

end
return testScript;

Figure 3 illustrates an example of generating
test cases following the given test scenario, which
involves two lines: LINE 1 presents an expression
that the user would enter a value to element
A or element B, LINE 2 presents the expected
result. There are three possible test templates

templateAllActions.add(singleAction);

currentLineTemplates.add(templateAllActions)

102 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

for the specified scenario, including: Fill A &
Assert C, Fill B & Assert C, and Fill A
& Fill B & Assert C. Then, six test cases are
generated from three test templates and two sets
of values.

Figure 3. Generated test cases for the specified
scenario.

3.2. Test Cases for Abnormal Actions

This section presents our approach to
determining and testing abnormal actions
not performed as specified in the scenario.
Algorithm 2 depicts the process of test templates
generation for abnormal situations. The
algorithm takes the targeted assertion block
index as the input. For all assertion blocks
prior to the targeted block, they will be added
to the validBlockList for the valid templates
generation process. The targeted block will
be used as the input for the invalid templates
generation process which will is described in
Figure 3 and then both the validT emplates and
invalidT emplates will be used as input for the
templates combination process in Figure 4 and
return the finalT emplates.

Algorithm 3 describes the algorithm for
invalid templates generation, which takes the

Algorithm 2: Abnormal actions test
templates generation

Data: assertionBlockList, targetedBlockIndex > 0
Result: finalTemplates
validBlocksList < list,
targetedBlock
assertionBlockList.get(targetedBlockIndex);
for i = 0 to targetedBlockIndex do
| validBlocksList < assertionBlockList.get(i)
end
validTemplates <
validT emplatesGeneration(validBlocksList);
invalidT emplates «—
invalidT emplatseGeneration(targetedBlock);
finalT emlates —
combineT emplates(validT emplates, invalidT emplates);

targetedBlock script as input and return the
invalidT emplates. The algorithm loops through
each line in the targeted block, then check if the
line is an action line and not an assertion line.
After which, the line will be hashed as invalid”
so that in the data replacing phase, the system will
know to replace invalid data for the line. Then, all
other line get valid hashed as “valid” for the data
replacing phrase. The algorithm will loop until
there are no action line left in the targeted block
and then return the invalidT emplates.

Algorithm 3:
generation

Data: rargetedBlock
Result: invalidT emplates
invalidT emplates « list;
for i = 0 to targetedBlock.size() do
if isActionLine(targetedBlock.get(i)) then
invalidT emplate « list;
invalidT emplate «—
invalidHash(targetedBlock.get(i));
for j = 0 to targetedBlock.size() do
if j # i then
invalidT emplate —
validHash(targetedBlock.get(j));

Invalid templates

end
end
invalidT emplates « invalidT emplate;

end
end

Algorithm 4 shows the
for combining the

algorithm
validT emplates and

T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111 103

invalidT emplates to obtain the finalT emplates
ready for data replacing. The algorithm loops
through the list of valid templates and for each
valid template, it will be matched against each of
the invalid templates to create the final templates
list. The number of final templates can be
calculated by multiplying the number of valid
template with the number of invalid templates.

Algorithm 4: combine

algorithm

Data: validTemplates, invalidT emplates
Result: finalTemplates
finalTemplates « list;
for i = 0 to validT emplates.size() do
for j = 0 to invalidT emplates.size() do
finalT emplate « list;
finalT emplate « validT emplates.get(i);
finalT emplate « invalidT emplates.get(j);
finalT emplates «— finalT emplate
end
end

Templates

So what is considered an Assertion Block
in the test script. An Assertion Block is the
combination of normal action lines and assertion
lines with the condition that the assertion block
must be started with normal action lines and end
with an assertion line or a formula of assertion
and there are no assertion line in between of
the normal action lines. Figure 4 shows the
examples for valid and invalid assertion blocks
for better understanding of how we breakdown
the test script for this section. An Assertion Block
can be considered a subset of SOA as not all SoA
end with or contain a assertion line.

4. Experiment

This section shows an example that illustrates
the application of the proposed approach in Ul
testing for Web applications. The methodology
employs a test scenario in the proposed UBL
language. It also provides an end-to-end
toolchain to facilitate users in crafting test
scenarios, generating test cases, and executing
them. The implementation process is structured

into four phases, each contributing to the testing
procedure:

o Test scenario creation: Testers describe the
user actions on Ul for a functionality using
the UBL syntax.

e Test data creation: Defining expected
values representing the anticipated outcomes
or results the Web page should produce
when executing the generated test cases.

o Test case generation: In this step, test cases
are generated automatically by applying
the methodology in Section 3. These
test cases are derived from the instructions
and specifications outlined in the scenario
written in the UBL, ensuring thorough Web
functionality coverage.

o Test case execution: The final step is to
execute the generated test cases against the
target web page. Currently, generated test
cases are written in the Robot framework.
However, test cases could be generated in
any common Ul testing framework.

4.1. Experimental Design

The experiment employed SauceDemo, a
web application developed by SauceLabs, a
provider of automation testing solutions. This
platform served as an environment for practicing
and evaluating browser automation techniques.
The experiment was designed to assess the
functionality of the login and buy products
features.

Figure 5 illustrates the translation of user
interactions into the test scenario written in the
UBL language. The left image describes user
interactions on the Web under test. The center
images illustrate how those steps are described
as commands in UBL. Writing the scenario in
natural language commands significantly reduces
the learning curve and composes scripts with
minimal effort. Then, the proposed system

104 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

Figure 4. Examples for valid and invalid assertion blocks.

Figure 5. The translation of user interactions into the proposed Ul test script.

converts the described scenario into an interactive
UL, which allows users to define expected data
values for Ul elements. The right image in
Figure 5 represents the interactive UI. The bold
texts are elements used to identify corresponding
element locators (e.g., XPath information), and
text input boxes define the desired data values to
be used during the automated testing process.

4.2. Experimental Result

4.2.1. Test Cases for the Specified Scenario

The experimental scenario consisted of
six SoCs, which were processed to generate
corresponding test templates as presented in
Figure 6.

Each SoC template is combined to form
a complete, end-to-end test template for the
scenario. This combinatorial process uses
the Multiplication Product Rule [12], a basic
counting principle that takes each element in each

Figure 6. Lists of test templates for each Sequence of
Actions.

SoC and combines it with another SoC. Applying
this rule in the current context creates a single test
template illustrated in Figure 7.

Finally, a test suite was generated by
integrating the generated test templates with
each record within the dataset to validate the

T. L. Khanh et al. | VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111 105

Figure 7. Complete test template.

basic flow of user behavior across the specified
input scenarios. This test suite ensured that the
application’s functionality was robustly assessed.

4.2.2. Test Cases for the Abnormal Actions

This section describes the process of
generating test cases for abnormal actions. This
process consists of (1) generating test templates
for preceding valid assertion blocks if they exist,
(2) generating test templates for the invalid
assertion blocks, and (3) combining the valid and
invalid templates.

Figure 8. The two assertion blocks of the specified
scenario.

Figure 8 illustrates two assertion blocks
named Assertion Block 1 and Assertion
Block 2. As mentioned in Section 3.2, abnormal
test templates were generated by negating each
SoC within each assertion block. Assertion
Block 1, with two SoCs at LINE2 and LINES3,
produced four abnormal test templates. Three

abnormal test templates were generated by
negating LINE2, while one was created by
negating LINE3. These abnormal test templates
for Assertion Block 1 are illustrated in
Figure 9 where the line with the color red
indicated the process of invalid hashing mention
in Algorithm 3 which marked the line so that the
system will replace the data used for the line with
invalid data.

As shown in Figure 10, the generation of
abnormal test templates for Assertion Block
2 was initiated only after confirming that no
abnormal actions were present within Assertion
Block 1, the blue color being used here
indicated the valid hashing process mention in
Algorithm 3 which specified the line will be
replaced with valid data in the data replacing
process. Specifically, to generate test cases
for abnormal user actions related to product
selection (e.g., Assertion Block 2), it was
essential that the user successfully logged into
the system without encountering any errors (e.g.,
Assertion Block 1). Given an SoC in LINES,
one abnormal test template is generated for
Assertion Block 2.

Five abnormal test templates were generated:
four for Assertion Block 1 and one for
Assertion Block 2. These test templates
were the foundation for generating test cases
for abnormal user actions. The test cases were
generated according to formula (1), utilizing the
test data set provided by the users. This process
ensured that the generated test cases adequately
covered a variety of abnormal scenarios and
effectively validated the application’s behavior
under unexpected conditions.

5. Evaluation

This research conducts a comparative
analysis with Katalon Studio !, a widely

recognized commercial Ul testing tool, to

'https://katalon.com/

https://katalon.com/

106 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

Figure 9. The test templates generation for Assertion Block 1.

Figure 10. The test templates generation for Assertion Block 2.

validate the effectiveness and efficiency
of the proposed UI testing method. The
comparison was performed on SauceDemo 2, an
e-commerce Web application that provides well-
known functionality in real-world e-commerce
applications such as user authentication, product
selection, and transaction processing, on
Demoqa®, a website which allows for interaction

simulation on multiple type of elements and

*https://www.saucedemo.com/
Shttps://demoqa. com/

BKCAD?, a real world e-commerce management
website. The proposed UBL was implemented in
a Web application > and was used for comparison
with Katalon Studio. There are 44 test cases for
the three functionalities, testing a range of user
interactions within the SauceDemo application.
The results are presented in Table 2 to provide
valuable information on the potential benefits
and drawbacks of each approach, demonstrating
the effectiveness of the proposed method.

“nttp://103.138.113.158:1012/account/login
Shttp://109.123.233.95:8082/

https://www.saucedemo.com/
https://demoqa.com/
http://103.138.113.158:1012/account/login
http://109.123.233.95:8082/

T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111 107

In Saucedemo, the proposed method
generates 44 test cases in 660 seconds, in which
it takes /75 seconds to write the specification and
525 seconds to finish the test cases generation
process. Meanwhile, it takes /450 seconds for
the user to write the specification manually. In
which the total creation time was calculated
using the formula:

Tcreation = Tspec + Tgen
Where:

® Tirearion: The time taken to complete the
whole test case creation process, containing
the specification writing process and the test
case generation process.

® Tpec: Time to write the test specification.

® T¢.n: Time to automatically generate test
cases from the specification.

Thus, the performance of the proposed method is
twice as high, with an average time of /5 seconds
to generate a test case when using the proposed
method and 33 seconds if manually generated
in Katalon Studio. The result for Demoga and
BKCAD follow the same trend, the proposed
method outperformed heavily in the writing time
due to the ability to generate multiple test cases
from one specification, however it comes with a
low overhead cost in generation time.

6. Threats to Validity

Despite the promising results demonstrated
by our algorithm, several limitations need to
be acknowledged to provide a comprehensive
understanding of its capabilities and constraints.

6.1. Rigid Invalid Data Generation Process

The process employed for generating invalid
data in the proposed method relies solely on
basic string manipulation techniques. This
approach lacks the flexibility to adapt the

generated data to the specific characteristics or
requirements of the input elements within the
system. As a result, the generated invalid data
may fail to effectively challenge or invalidate
the targeted elements, reducing the robustness
of the testing process. This limitation restricts
the method’s ability to comprehensively evaluate
the system’s handling of diverse or unexpected
inputs, potentially overlooking critical edge cases
or failure scenarios.

6.2. Absence of Core Programming Concepts

The metamodel of the Universal Behavior
Language (UBL) incorporates only Scenario,
Sequence of Commands (SoCs), Commands,
and Constraints, as defined Section 2.
However, it does not support the integration
of fundamental programming concepts [13],
such as variables, conditions, and loops. This
absence imposes significant restrictions on the
scripting capabilities within the UBL structure.
Without variables, scripts cannot store or
manipulate dynamic data, limiting their ability
to handle varying inputs or maintain state across
operations. The lack of conditions prevents
scripts from implementing decision-making
logic, resulting in linear execution paths that
cannot adapt to different GUI responses or
system states. Similarly, the absence of loops
prohibits repetitive operations, forcing scripts to
rely on manual, hard-coded repetition for tasks
requiring iteration. Collectively, these limitations
render scripts static and inflexible, incapable
of supporting complex workflows or dynamic
interactions with the graphical user interface,
thereby constraining the overall functionality and
adaptability of the system.

6.3. Testing Responsive Web User Interfaces

Responsive user interfaces (Uls) are designed
to adapt seamlessly to a wide range of screen
resolutions and device types, ensuring consistent
functionality and presentation across diverse
platforms [14]. This adaptability, however,

108 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

Table 2. Comparison with Katalon Studio

Web Number of | Writing Generation Ave. .
. L. Method . . Creation
Applications Test Cases Time Time .
Time
Katalon Studio 44 1450 s N/A ~33s
Saucedemo
Proposed Method 44 175s 525 s ~15s
Katalon Studio 40 3350s N/A ~169 s
Demoqa
Proposed Method 40 212's 588 s ~20s
BKCAD* Katalon Studio 35 2630 s N/A ~152s
Proposed Method 35 114 s 306 s ~12s

introduces significant challenges to the Ul testing
process. At different screen sizes, the Ul
may exhibit variations in layout, behavior, or
interaction patterns, potentially leading to distinct
functional outcomes or user experiences. The
proposed method currently lacks the capability
for testers to define or configure specific screen
resolutions for testing purposes. This limitation
restricts the ability to thoroughly evaluate the
UI's performance under varying conditions,
potentially overlooking critical workflows or
edge cases that could result in system failures or
degraded user experiences on certain devices or
resolutions.

7. Related Works

Many researchers have explored automating
test script creation for web applications to reduce
development costs. Sikuli [15] is a commercial
tool that identifies Ul elements through image
matching. However, the Sikuli script is restricted
to interacting with graphical elements currently
displayed on the screen. It cannot access GUI
components that are obscured or hidden from
view. Moreover, Sikuli is more affected by theme
variations.

The most significant challenge in maintaining
end-to-end user interface testing for web
applications is the fragility of the tests. Research
presented in [16] addresses the issue of instability

in visual GUI testing. The authors report that
approximately 20% to 30% of the testing
methodologies required at least one modification
as the application underwent development and
changes. To address this issue, the authors
in [17] developed a proof-of-concept library
that makes test cases independent of the internal
structure of Uls. Their methodology incorporates
natural language descriptions of user interactions
and NLP algorithms for analysis. However, a
limitation of their study is the relatively small
dataset.

Rahulkrishna [18] proposed a method for
identifying web elements through contextual
relationships with other prominent elements on
the page. This approach involves establishing
a sequence of contextual cues that precisely
identify web elements without relying on
deeply embedded page information. However,
the algorithm exhibits high computational
complexity. Furthermore, DOM restructuring
can hinder the playback phase, rendering it
infeasible.

Besides, some researchers write test cases
in natural language without test scripts or
using a previously defined domain-specific
language. Pasupat [19] proposed a machine
learning approach to translating natural language
instructions (like “click on apple deals”) into
actions performed on web pages. While this
method shows promise for automated testing,

T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111 109

it struggles to interpret complex or indirect
commands accurately. Kirinuki [20] introduced
a cutting-edge approach that combines natural
language processing and heuristic search
algorithms to locate web elements based
on descriptions written in a domain-specific
language. However, this method can be
inefficient when dealing with intricate or large-
scale user interfaces. WebPuppet [21] is an
automated web UI testing tool that uses DSL
formulation with JSON schema to generate
test scripts. However, this self-defined domain
language is still a bit complicated compared to
natural language, and users still need to write
another type of code.

In addition to the above approaches, a method
for generating new test scenarios for widgets and
test specifications is presented in the paper [6].
Besides, the paper contributes a technique to
detect hidden widgets, considered one of the most
challenging problems in user interface testing.
One of the drawbacks is that this method is
semiautomatic - testers need to specify user
interactions. The authors in study [22] employed
deep learning techniques to analyze graph data
derived from user interactions on e-commerce
platforms. By examining URL patterns, they
sought to understand user behavior. However,
the limitations of this approach become apparent
when user interactions do not result in URL
changes, as the analysis would be restricted to
surface-level engagement.

Beyond the limitations mentioned earlier,
most of these approaches employ scenarios
comprising simple sequences of consecutive
actions, lacking inter-relational constraints. This
results in a limited diversity of generated
test cases. In contrast, our methodology
proposes constraints as binary logical characters
for commands to represent their relationship.
Consider the example of a website where users
can log in using conventional login methods
or via Google, GitHub, or Facebook. Users
only need to describe that functionality in the

following scenario: “Click Google | Github
| Facebook” instead of writing three different
scenarios as the mentioned approaches. Such
inter-commands constraints significantly reduce
user scenario writing time, particularly in
complex scenario development. Our proposed
method enhances efficiency and streamlines the
process of creating comprehensive test cases.
Furthermore, with the proposed method, the
generated test cases also cover abnormal user
interactions on UI that cause the scenario to fail.

8. Conclusion

This paper has introduced a novel end-to-
end UI testing method for Web applications,
integrating a domain-specific language called
User Behavior Language (UBL) and a test case
generator. The proposed approach addresses
critical challenges in UI testing by simplifying
test script creation and enhancing test coverage
and efficiency.

With its 2-unit phrase format, the UBL
significantly reduces the complexity of test script
specification, making it more accessible to non-
technical testers. This language simplifies the
testing process and diminishes the learning curve
associated with traditional testing frameworks.
Furthermore, the language’s capability to define
constraints between interactions enables the
modeling of complex user workflows and the
enforcement of application-specific rules, thereby
enhancing the fidelity of the testing scenarios.

The test case generator, leveraging the
specified constraints and test data, produces a
comprehensive set of test cases that encompass
both expected and abnormal user behaviors. This
automated approach ensures thorough coverage
of application functionality while optimizing
testing efficiency. Comparative analysis with
Katalon Studio has validated the effectiveness and
efficiency of our proposed method.

The results demonstrate superior
performance in test scenario creation, test

110 T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

case generation, and ease of learning. However,
further comparative analyses incorporating
broader evaluation criteria are necessary to
assess the solution’s efficacy comprehensively.
Future research will expand the comparison to
include other prominent user interface testing
tools available in the market, providing a more
holistic assessment of the method’s capabilities.
While the current implementation significantly
enhances Ul testing automation and efficiency,
the manual identification of Web element
locations remains a limitation. Our future
research will focus on developing an automated
solution for determining the locations of web
elements based on natural language descriptions.
This improvement further saves time in the Ul
testing process, reduces manual intervention, and
increases overall testing productivity.

References

[1] M. Niranjanamurthy, A. Nagaraj, H. Gattu, and P. K.
Shetty, “Research Study on Importance of Usability
Testing/User Experience (UX) Testing,” International
Journal of Computer Science and Mobile Computing,
vol. 3, no. 10, pp. 78-85, 2014.

[2] N. Minh, “Developing Automated UI Testing,” 2023.
[3] L. J. White, “Regression Testing of GUI Event
Interactions,” in icsm, vol. 96, 1996, pp. 350-358.

[4] L. K. Trinh, V. D. Hieu, P. N. Hung et al., “A Method
for Automated User Interaction Testing of Web
Applications,” Journal on Information Technologies &
Communications, pp. 28-28, 2015.

[5] R. Narkhede, S. Korde, A. Darda, and S. Sharma,
“An Industrial Research on GUI Testing
Techniques for Windows Based Application
Using UFT,” in 2015 International Conference
on Smart Technologies and Management for
Computing, Communication, Controls, Energy
and Materials (ICSTM). 1EEE, 2015, pp. 466471,
doi:10.1109/ICSTM.2015.7225455.

[6] D. T. Dinh, P. N. Hung, and T. N. Duy, “A
Method for Automated User Interface Testing of
Windows-Based Applications,” in Proceedings of
the 9th International Symposium on Information
and Communication Technology, 2018, pp. 337-343,
doi:10.1145/3287921.3287973.

[7] I. Prazina, S. Beéirovi¢, E. Cogo, and V. Okanovi¢,
“Methods for Automatic Web Page Layout
Testing and Analysis: A Review,” [EEE

Access, vol. 11, pp. 13948-13964, 2023,
doi:10.1109/ACCESS.2023.3243285.

[8] E. Pelivani, A. Besimi, and B. Cico, “A Comparative
Study of UI Testing Framework,” in 2022
11th Mediterranean Conference on Embedded
Computing (MECO). IEEE, 2022, pp. 1-5,
doi:10.1109/MECO055406.2022.9797217.

[9] R. B. Bahaweres, E. Oktaviani, L. K. Wardhani,
I. Hermadi, A. Suroso, I. P. Solihin, and Y. Arkeman,
“Behavior-Driven Development (BDD) Cucumber
Katalon for Automation GUI Testing Case CURA
and Swag Labs,” in 2020 International Conference
on Informatics, Multimedia, Cyber and Information
System (ICIMCIS). IEEE, 2020, pp. 87-92,
doi:10.1109/ICIMCIS51567.2020.9354292.

[10] S. R. Mallick, R. K. Lenka, S. Sudershana,
A. Sahoo, S. Palei, and R. K. Barik, “An
Investigation into the Efficacy of RANOREX Software
Test Automation Tool,” in 2023 3rd International
Conference on Innovative Sustainable Computational
Technologies (CISCT). IEEE, 2023, pp. 1-5,
doi:10.1109/CISCT57197.2023.10351286.

[11] H. A. Thooriqoh, T. N. Annisa, and U. L. Yuhana,
“Selenium Framework for Web Automation Testing:
A Systematic Literature Review,” Jurnal Ilmiah
Teknologi Informasi, vol. 19, no. 2, pp. 65-76, 2021.

[12] K. H. Rosen, Discrete Mathematics and Its
Applications, 5th ed. McGraw-Hill Higher
Education, 2002.

[13] P. Van Roy and S. Haridi, Concepts, Techniques, and
Models of Computer Programming. MIT press, 2004.

[14] M. H. Baturay and M. Birtane, “Responsive
Web Design: A New Type of Design for Web-
Based Instructional Content,” Procedia-Social and
Behavioral Sciences, vol. 106, pp. 2275-2279, 2013,
doi:10.1016/j.sbspro.2013.12.258.

[15] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli:
Using GUI Screenshots for Search and Automation,”
in Proceedings of the 22nd annual ACM symposium
on User interface software and technology, 2009, pp.
183-192, doi:10.1145/1622176.1622213.

[16] R. Coppola, L. Ardito, and M. Torchiano, “Fragility
of Layout-Based and Visual GUI Test Scripts:
An Assessment Study on a Hybrid Mobile
Application,” in Proceedings of the 10th acm
sigsoft international workshop on automating test
case design, selection, and evaluation, 2019, pp.
28-34, doi:10.1145/3340433.3342822.

[17] H. Pirzadeh and S. Shanian, “Resilient User
Interface Level Tests,” in Proceedings of the
29th ACMJIEEE International Conference on
Automated Software Engineering, 2014, pp. 683-688,
doi:10.1145/2642937.2642992.

[18] R. Yandrapally, S. Thummalapenta, S. Sinha,

https://doi.org/10.1109/ICSTM.2015.7225455
https://doi.org/10.1145/3287921.3287973
https://doi.org/10.1109/ACCESS.2023.3243285
https://doi.org/10.1109/MECO55406.2022.9797217
https://doi.org/10.1109/ICIMCIS51567.2020.9354292
https://doi.org/10.1109/CISCT57197.2023.10351286
https://doi.org/10.1016/j.sbspro.2013.12.258
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1145/2642937.2642992

[19]

(20]

T. L. Khanh et al. /| VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 97-111

and S. Chandra, “Robust Test Automation
Using Contextual Clues,” in Proceedings of
the 2014 International Symposium on Software
Testing and Analysis, 2014, pp. 304-314,
doi:10.1145/2610384.2610398.

P. Pasupat, T.-S. Jiang, E. Z. Liu, K. Guu, and
P. Liang, “Mapping Natural Language Commands
to Web Elements,” arXiv preprint arXiv:1808.09132,
2018.

H. Kirinuki, S. Matsumoto, Y. Higo, and S. Kusumoto,
“NLP-Assisted Web Element Identification toward
Script-Free Testing,” in 2021 IEEE International
Conference on Software Maintenance and

Evolution (ICSME). IEEE, 2021, pp. 639-643,

(21]

(22]

111

doi:10.1109/ICSME52107.2021.00070.

R. Queirés, “WebPuppet-A Tiny Automated Web
UI Testing Tool,” in Third International Computer
Programming Education Conference (ICPEC 2022).
Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik,
2022.

R. F. Oguz, 1. Erdem, E. Olmezogullari, and
M. S. Aktas, “End-to-End Automated UI Testing
Workflow for Web Sites with Intensive User—

System Interactions,” International Journal
of Software Engineering and Knowledge
Engineering, vol. 32, no. 10, pp. 1477-1497,

2022, doi:10.1142/S0218194022500462.

https://doi.org/10.1145/2610384.2610398
https://doi.org/10.1109/ICSME52107.2021.00070
https://doi.org/10.1142/S0218194022500462

	Introduction
	The User Behaviors Language
	UI Test Cases Generation
	Test Cases for Specified Action
	Test Cases for Abnormal Actions

	Experiment
	Experimental Design
	Experimental Result
	Test Cases for the Specified Scenario
	Test Cases for the Abnormal Actions

	Evaluation
	Threats to Validity
	Rigid Invalid Data Generation Process
	Absence of Core Programming Concepts
	Testing Responsive Web User Interfaces

	Related Works
	Conclusion

