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Abstract: This paper focuses on researching and proposing perturbation-based model-agnostic
methods to explain time series classification models. The main objective of this study is to explain
the predictions of the model, or in other words, to give reasons why it classifies a time series into
a particular label in a set of labels. In this work, we aim to provide the reliability of the decision
and the importance of features in the model. Moreover, in real-world time series, variations in the
speed or scale of a particular action can determine the class, so modifying this type of feature leads
to arbitrary explanations of the time series. To achieve the set objectives, we provide two methods,
each with its own strategies and advantages: the LIME-based method and the SHAP method, with
the novelty of using them in combination with data perturbation techniques, especially the ones that
affect the above-mentioned characteristics of the time series.

Keywords: Time series classification, model-agnostic explanation, time series transformation,
robustness, shapley value.

1. Introduction

Nowadays, machine learning is increasingly
being applied in many fields, including research
problems and solving practical problems, and
time series data analysis is no exception. This
is an important issue with many applications in
finance, medicine, engineering, etc. In time series
data analysis, Time Series Classification (TSC) is
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a popular problem, intending to predict the label
for a given time series. For example, TSC can be
used to suggest decisions about buying or selling
stocks, diagnose heart disease, or classify traffic
information. However, the increasing complexity
of machine learning models, especially TSC
models, leads to a decrease in transparency in the
model decision process. This makes it difficult to
learn the expected underlying model of the image,
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Figure 1. Classification of TSC Explanation Methods [1].

limiting the creativity of the idea and the
application of the model in practice.

Explainable Artificial Intelligence (XAI) is an
emerging research field that is being vigorously
developed to try to solve the problem of
transparency lacking in the above-mentioned
machine learning models. More specifically,
for the problems related to time series data,
explaining the model’s decisions is not simple,
because the time series data often have special
correlations with each other, creating a more
complex structure to have specific independent
data. Therefore, explaining the decisions of the
TSC model becomes more difficult, especially in
terms of semantic explanation.

TSC explanation methods are often classified
based on the level of explanation, depending

on the part of the time series used to illustrate
the reasons for the model’s decisions. In other
words, the classification of TSC explanation
methods is based on detecting anomalies in the
time series. Accordingly, there are three groups
of explanation methods based on the detection
of these anomalies (Figure 1). Time point-
based explanations refer to specific time points in
the time series, subsequences-based explanations
refer to subsequences of the time series, and
instance-based explanations apply the entire time
series as an explanation. Explanations are
classified as ”Other” if they cannot be tied to any
of the previous explanation types. Furthermore,
for each category of XAI methods for TS, we
can further distinguish the algorithmic strategies
applied by the considered methods to provide
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explanations. In addition, explanation methods
can also be classified based on their scope, which
can be local explanations or global explanations.
The following are existing research works on
local TSC explanation methods that have been
studied and listed in Table 1.

Among the mentioned methods, the family
of time point-based TSC explanation methods
provides a very powerful tool in explaining why
a TSC model makes a certain prediction by
analyzing the regions where time points have
a large influence on the model’s decision in
the input time series, especially the Attributions
explanation type. Therefore, we mainly focus
on researching and proposing TSC explanation
methods belonging to this category, especially
LIME for TS [2] and related methods, including
SHAP [3] (an improved version of LIME).

The basic LIME method provides
explanations by locally approximating the
classifier with an interpretable model. To achieve
this, a synthetic neighborhood is generated
around a given instance by perturbing it, and
then, the explanation is obtained by learning
an interpretable model using the neighbors
(see [4] for more details). In the popular
LIME application method for time series data
- LEFTIST [5], time series perturbations to
generate neighborhoods are identified through
transformations applied to one or more intervals
(subsequences) of the time series, rather than
to isolated points. These transformations
include replacing the given interval(s) with
another interval, such as a random noise
interval, linear interpolation between the first
and last points of the interval, or intervals
extracted from other series in the training
set. However, the main drawback of these
methods is that the neighborhoods generated
with the transformations are not realistic.
For example, if a time series represents the
electricity consumption of a country (as in the
ItalyPowerDemand dataset from the UCR archive
[6]), replacing a certain time interval of the series

with random noise does not generate a realistic
neighborhood. In particular, the generated
neighborhood is semantically meaningless, since
a random noise interval cannot be interpreted
from the perspective of electricity consumption.

Our proposal with the LIME-based method
aims to provide a local model-independent
explanation for TSC with the novelty of creating
more realistic neighbors for the time series.
In this work, we consider four transformations
based on [7–9]: warping, scaling, noise,
and slicing. For these transformations, the
explanations provided by our method have one
interpretation: an interval is important because
if a certain transformation is applied to this
interval, the prediction will change. In addition,
we also propose a further improved method
using Shapley value combined with LIME to
specifically emphasize the influence of each part
of the time series on the model’s decision,
showing whether that influence supports or
opposes the model to classify the series into a
specific class.

A primary contribution of this work is the
elucidation of not only the relevant regions of a
given time series, as TSC explanation methods
do, but also the specific causal impact of these
regions on the classifier’s decision. Our methods
reveal that a particular region is significant
because applying a specific transformation to it is
likely to alter the classifier’s output, assigning the
transformed time series to a different class. This
information can be highly valuable in various
real-world applications.

The rest of the work is organized as follows:
in Section 2, the related work for the TSC
explanation is introduced, including the proposed
transformations for time series. Two explanation
methods are thoroughly described in Section 3,
while the experimentation is presented in Section
4. Finally, the main conclusions are drawn in
Section 5.
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Table 1. Some existing local explanations methods for TSC and their characteristics

Name Explanation Type Explanation Method Model-dependence Scope

MTEX-CNN [10] Time points Attributions Intrinsic (DNN) Local
CAM [11] Time points Attributions Intrinsic (DNN) Local
LEFTIST [5] Time points Attributions Agnostic Local
TimeXplain [3] Time points Attributions Agnostic Local
LIME TS [2] Time points Attributions Agnostic Local
Dynamic Masks [12] Time points Attentions Intrinsic (DNN) Local

SAX-VSM [13] Subsequences SAX Intrinsic Local
AI-PR-CNN [14] Subsequences Shapelets Intrinsic (DNN) Local
LASTS [15] Subsequences Shapelets Agnostic Local

CEM [16] Instance Counter-factuals Intrinsic (DNN) Local
Tweaking RSF [17] Instance Counter-factuals Intrinsic Local
Native-Guides [18] Instance Counter-factuals Intrinsic (K-NN) Local

2. Related Work

2.1. LIME Method

LIME (Local Interpretable Model-Agnostic
Explanations) is a popular model explanation
method used to explain the predictions
of machine learning models, especially
classification ones. LIME works by creating
a simple local explanatory model around the
data point of interest, making it easy for users
to understand the reasoning behind the model’s
predictions. This method approximates the
original complex model into a linear model based
on the neighborhood data around the data point
to be explained, in order to determine the role of
each important feature in that point.

There are many approaches to applying LIME
to time series data, but any proposed method
must address the following condition: Firstly,
a time series must be represented as a vector
according to Definition 1. Secondly, there
must be suitable ways to generate perturbed
sequences in the neighborhood of x. Finally,
the neighborhood of x must be determined and
a method for calculating the distances from
neighboring sequences to x must be proposed.

Theorem 1. A time series x = {t1, t2, ..., tm} ∈
Rm×d is an ordered set of m real-valued
observations (or time steps), with d dimension.

2.2. Time Series Transformations

The purpose of using time series
transformations is to provide tools for generating
perturbed time series (or “neighborhoods”)
to serve as training grounds for explanatory
models. Time series can be analyzed in both
the time domain and the frequency domain, so
transformations can be defined in both of these
spaces. However, in TSC and more specifically
in the explainability of TSC, working in the time
domain is much more common. Indeed, there are
very few problems in constructing explanations
for TSC where the series is represented in the
frequency domain, one of which is Mujkanovic’s
work on the TimeXplain method [3]. The main
reason is that the transformations in the time
domain can be applied to specific time intervals
more intuitively and interpretably. Therefore, the
transformations proposed in this paper will be
defined in the time domain.

There are many methods for performing
time-domain series transformations, for example
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bootstrapping [19–21], or Generative Adversarial
Network (GAN) [22]. The main goal of these
methods is to generate the time series that are
similar to a given time series (with the same
probability distribution). These methods do not
allow us to fully control the characteristics of
the generated time series, which means that
we cannot directly specify the exact properties
of the perturbations we want to generate.
Thus, if these transformations are applied, the
cost of initializing suitable neighboring series
may increase due to ”trial and error”. To
provide a more efficient approach, time series
neighborhoods will be generated using a set of
locally controllable transformations of the series
features, proposed in the work of A. Abanda [23],
including: warp, scale, noise, and slice.

2.2.1. Warp Transformation
This transformation is a distortion of a time

series along the time axis (x-axis), resulting
in a compression or expansion (depending on
the warp level) of the series’ values within a
given interval. Time series with time intervals
warped at different warp levels appear frequently
in real-world problems, for example, in the
GunPoint dataset (from UCR repository [6])
context. Figure 2 shows two time series from
this dataset, one from each class. The interval
in the [40, 60] interval of the Gun class can be
considered a warped version of that interval in
the Point class (or vice versa). In particular, in
the Gun class time series, the value ti increases
more rapidly (in the interval [t40, t60]) than in the
Point class time series. In this case, this interval is
considered as a distinguishing mark for the warp
transform, because if we compress/expand it, the
classifier may change its class prediction.

To synthetically create warped versions of the
reference time series T = (t1, ..., ti, ..., tl), given
an interval [s, e] where the Warp transformation
is applied (so that 0 < s < e < l)
and the degree of warping kw, the warped
version of T is determined by the vector T ′ =

Figure 2. Two time series labeled Gun (Figure a) and
Point (Figure b) in the GunPoint dataset [23].

(t′1, ..., t
′
i , ..., t

′
s+(e−s)kw+(l−e)), with:

t′i =


ti, i ≤ s
(w1tp + w2tq)/kw, s ≤ i ≤ s + kw(e − s)
te+i−(s+kw(e−s)), i ≥ s + kw(e − s)

(1)

where tp = max j=1,...,l[ jkw] < i and tq =
min j=1,...,l[ jkw] ≥ i. The [ ] notation refers to the
nearest integer and the weights are determined by
w1 = kw − (i − p) and w2 = kw − (q − i).

Note that this transformation performs a
compression of (kw < 1) or a stretch of (kw > 1)
of the reference time series, so the transformed
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Figure 3. Two examples of applying the Warp
transform to time series in the GunPoint dataset.

series will be shorter or larger than the reference
series. Figure 3 shows two examples of two time
series in the GunPoint dataset that are subjected to
a warp transformation with kw < 1 (for the series
labeled Gun) and kw > 1 (for the series labeled
Point).

2.2.2. Scale Transformation
This transformation is a deformation of the

y-axis series. It produces a shift up or down
(depending on the scale) of the series values
over a given interval. The idea behind applying
this transformation is that for time series that
are similar in shape, changing the y-axis values
by a given scale can change their labels, as in
the Coffee dataset from the UCR archive [6].
In this dataset, the change in spectral values of

two coffees over a period of time determines
their labels. The time series representing the
spectral values of these two coffees have very
similar shapes but differ in magnitude over some
intervals. Thus, the Scale transformation over
those intervals is considered to have an impact on
the prediction (see the example in Figure 4). The
proposed scaling transformation of the reference
time series T = (t1, ..., ti, ..., tl) is as follows:
given an interval over which the transformation
is applied [s,e] (such that 0 < s < e < l) and
a scaling level ks, the transformed version of the
series is: T ′ = (t′1, ..., t

′
i , ..., t

′
l ) with:

t′i =

tiks, s ≤ i ≤ e
ti, i < s or i > e

(2)

2.2.3. Noise Transformation
Noise transformation involves adding noise

to a sequence in a given interval. Similar to
the Scale transformation, for the Coffee dataset,
a noise transformation in an interval can cause
the model to predict a sequence into a different
class and thus, the noise transformation in a
given interval is considered to influence the
classification decision of the TSC model (e.g.
Figure 5). Given a reference time series T =
(t1, ..., ti, ..., tl), an interval in which the Noise
transformation is applied [s, e] (such that 0 < s <
e < l) with noise level kn, the noise-transformed
version T ′ = (t′1, ..., t

′
i , ..., t

′
l ) of sequence T is

defined by:

t′i =

ti +N(0, A×kn
100 ), s ≤ i ≤ e

ti, i < s or i > e
(3)

with A = |max(T ) − min(T )| being the
amplitude of the series. As the formula 3 shows,
the added noise is Gaussian noise N(µ, σ), with
µ = 0 and σ depending on the amplitude of the
time series and the noise level kn. In this way, for
example, with kn = 5, the standard deviation is
set to 5% of the amplitude of the series.
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Figure 4. Example of applying Scale transformation to time series of Arabica (Figure a) and Robusta (Figure b)
classes in Coffee dataset.

Figure 5. An example of applying the Noise
transform to the Coffee dataset.

2.2.4. Slice Transformation

The slice transformation selects a sub-series
of the time series and shifts it toward the
beginning of the reference time series. Using
again 2 samples in the GunPoint dataset, it can
be seen that both time series have very similar
shapes, but the time series from the Gun class
can be considered a truncated version of the
time series from the Point class. That is, if the
recording of the time series from the Point class
had started a little later, the classifier could have
classified it as a Gun class (see Figure 6). In
this way, the chosen interval for truncation and in
particular its position in the reference time series

are considered to influence the prediction.
Given a reference time series T =

(t1, ..., ti, ..., tl), the truncated version of T by
an interval [s, e] (with 0 ≤ s < e ≤ l) is
T ′ = (t′1, ..., t

′
i , ..., t

′
e−s), with:

t′i = ts+i,i = 1, ..., e − s (4)

In summary, these transformations can be
applied to any time series from any type of
TSC problem, but it is particularly interesting
for problems where the transformations are
considered meaningful and semantically
interpretable.

2.3. SHAP Values
SHAP Values provide a consistent, objective

way to explain how each feature influences
a model’s predictions, based on game theory.
Positive SHAP values indicate a positive impact
on prediction, while negative values indicate a
negative impact. The value’s magnitude reflects
its level of influence.

SHAP Values Fomula
The formula for calculating SHAP values

for a feature i in a machine learning model.
This is a mathematical and fair way to measure
the contribution of each feature to the model’s
predictions.
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Figure 6. An example of a case where a time series of
class Point (Figure b, blue line) is truncated at the

first part will become a series labeled Gun (Figure b,
yellow line) because of its similarity to another series

also of class Gun (Figure a, blue line).

ϕi =
∑

S⊆N\{i}

|S |!(M − |S | − 1)!
M!

[ fx(S ∪ {i}) − fx(S )]

(5)

In this formula, ϕi is the SHAP value for
feature i, indicating its contribution. S ⊆ N \ i are
subsets excluding i, and |S |!(M−|S |−1)!

M! is the weight
for i’s contribution. [ fx(S ∪ i) − fx(S )] shows the
prediction change with and without i in S .

In summary, this formula calculates the
SHAP value ϕi by summing feature i’s marginal
contributions across all subsets S of features
(excluding i), each weighted to ensure fair
attribution.

Algorithm 1: Kernel SHAP Algorithm
1 Inputs: A predictive model f , a data point x

with M features.
2 Outputs: SHAP values ϕi for each feature i.
3 begin
4 Create all 2M subsets (coalitions) of the

features;
5 for k = 1, ..., 2M do
6 Create a new data point hx(z′(k)) by

keeping the values of the features
in z′(k) from x and replacing the
remaining features with baseline
values;

7 Get the prediction f (hx(z′(k))) from
model f ;

8 end
9 for k = 1, ..., 2M do

10 Calculate the weight:

πx(z′(k)) =
M − 1(

M
|z′(k) |

)
· |z′(k)| · (M − |z′(k)|)

(6)11

12 end
13 Find ϕ0, ϕ1, ..., ϕM to minimize the loss

function:

L( f , πx) =
2M∑
k=1

∣∣∣∣ f (hx(z′(k)))−

(
ϕ0 +

M∑
i=1

ϕiz
′(k)
i

)∣∣∣∣2πx(z′(k))

(7)
14 return SHAP values ϕ1, ϕ2, ..., ϕM for

each feature;
15 end

2.4. KernelSHAP

Kernel SHAP is an agnostic method of
approximating SHAP values by combining LIME
and Shapley. The way to apply KernelSHAP is
described in Algorithm 1.

In Algorithm 1, πx(z′(k)) is the weight of the
subset z′(k), |z′(k)| is the number of features in the
subset z′(k), and z′(k)

i is the value of feature i at
z′(k). Besides, ϕ0 is the SHAP value when no
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Figure 7. SHAP values for each feature and their respective contributions to the model’s prediction.

features are involved, and ϕi is the SHAP value
at feature i.

The SHAP values ϕi quantify each feature’s
individual impact on the prediction, with ϕ0
representing the baseline prediction when no
features are included. The goal of the algorithm
is to minimize the loss function L( f , πx), which
measures the difference between the model’s
actual prediction and the SHAP explanation
model across all subsets, weighted by πx(z′(k)).
By minimizing this loss, Kernel SHAP provides
a fair and interpretable distribution of feature
importance in line with Shapley value principles.

3. Time Series Classification Explanation
Methods

3.1. LIME-based Explanation Method for TSC
Given an input of a time series in a labeled

dataset, a classification model, and one of
the time series transformations mentioned, this
method provides an explanation at two levels: the
high-level explanation describes the robustness of
the prediction for the transformation; whereas,
the low-level explanation shows the influence of
each feature in the series on the prediction.

3.1.1. High-level Explanation
The high-level explanation can be

summarized in three steps: generating
neighboring time series, labeling them, and
then computing an index that assesses the
robustness in the model’s classification decision
(see Figure 8):

Algorithm 2: Randomized unwrap the
circle
1 Inputs: Parameters of Beta prime

distribution α, β.
2 Outputs: Random interval in [0,1].
3 begin
4 Sample x randomly generated from

BetaPrime(α, β);
5 Sample u uniformly on [−x, 1];
6 return [0, 1] ∩ [u, u + x];
7 end

Neighbour generation: Generate a
neighborhood time series by selecting a random
time interval, which is a subsequence of the
reference series, and applying one of the four
mentioned transformations to this interval;
while the features outside the interval are kept
unchanged. Thus, it is necessary to randomly
select the time interval to be transformed so
that all time indexes of the series have the
same probability of occurring in that interval.
To satisfy this condition, a method called
”Randomized unwrap the circle method” [24] is
used, which treats the randomly generated time
intervals as points on the circumference of a
circle (described in Algorithm 2).

Neighbour labeling: In this step, the original
model classifies the neighboring sequences (noise
sequences) generated by the transformation.
Some transformations involve distortions in the
time axis (x-axis) of the time series, resulting in
transformed sequences that are longer or shorter
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than the reference time series. However, as Chang
Wei Tan et al.’s study [8] has shown, many TSC
models are not suitable for handling time series
of different lengths, which leaves us with two
options: use an additional preprocessing step to
make the length of all the perturbed sequences
equal, or limit the scope of the method to
using TSC models that can handle time series of
different lengths. The first option involves adding
information to the shorter series or deleting
information from the longer series, while the
second option makes use of all the available data
without making any changes, but this approach
is somewhat limited for quantitative evaluation
because the number of suitable models is limited.
In this paper, to minimize the modification of the
time series, the second option was adopted.

Estimation of the Robustness: This
method assumes that a prediction is robust
(highly certain) to the transformation if all the
neighboring time series (generated from that
transformation) are classified into the same label
as the original reference time series. Hereafter,
we call I = I= ∪ I, the set of randomly generated
intervals, where I= refers to the intervals in the
neighboring sequences that have the same label
as the reference sequence and I, contains the
intervals of the neighboring sequences that are
classified into a different label than the reference
sequence. Thus, in this step, the robustness
of the prediction for a transformation, Rtrans f ,
is quantified by measuring the percentage of
neighbors that are classified into the same class
of the reference time series:

Rtrans f =
|I=|
|I,|

(8)

where |I=| and |I,| are the numbers of
elements in the set I= and I,, respectively. Rtrans f

varies in the range [0, 1], where a value of 0
means that the prediction is completely sensitive
(has low robustness) to the transformation since
all neighbors of the sequence are labeled into

a different class. Conversely, a value of 1
means that the prediction is completely robust to
the transformation since all considered neighbors
are labeled into the same class as the reference
sequence.

3.1.2. Low-level Explanation
The low-level explanation consists of

calculating the relevance of each region in the
time series in the prediction. In this step, two
possible situations are considered: a completely
robust prediction for a transformation (Rtrans f

= 1) or a slightly sensitive prediction for a
transformation (Rtrans f ¡ 1). In the first case,
the results indicate that the chosen time series
transformation does not affect the prediction and
thus the explanation is obtained that no time
period in the series has a special impact on the
prediction for that transformation. In the second
case, the low-level explanation is calculated in
the following steps (see Fig. 9).

Isolation of intervals of interest: An interval
is considered to be influential in the prediction if a
transformation applied to this interval changes the
classifier’s prediction (i.e., the interval belongs to
the set I,). However, in some regions of the time
series, there may be intervals belonging to I= and
also intervals belonging to I,. To ensure that a
region of the series is influential in the prediction,
the term ”intervals of interest” is introduced,
which defines intervals from I, that do not have
many intervals from I= in their neighborhood.

Specifically, an interval i, ∈ I, is considered
an intervals of interest if it is predominantly
surrounded by intervals from I,. Based on
this idea, the procedure for defining intervals of
interest is summarized as follows:

• For each interval i, ∈ I,, find the K
closest intervals in I = I= ∪ I, using the
Hausdorff distance [25]. The calculation of
the Hausdorff distance between two intervals
is presented in the Appendix 5.

• If more than K/2 of those intervals belong
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Figure 8. The diagram illustrates a high-level explanation with an example of the Warp transform for a time series
in the ArrowHead dataset (from the UCR Repository [6]) with kw = 0.7 [23].

to I,, then i, is considered an intervals
of interest. Otherwise, if at least K/2 of
those intervals belong to I=, then i, is not
considered an intervals of interest.

Note that the distribution of intervals in the
set I between I= and I, varies across time series.
Thus, using a fixed value of the parameter K for
all time series will bias the neighborhood of the
reference series toward the predominant interval
type (I= and I,). Therefore, the parameter K is
set to the proportion of the number of intervals
contained in I,.

Intersection: This step involves
summarizing and presenting information about
the intervals of interest in the original time series.
The idea is that the more intervals of interest
containing time index i, the more influential
this index is on the prediction. Thus, given a
time series T = (t1, ..., ti, ..., tl), we count the
number of intervals of interest containing index
i with i = 1...l and these values are stored in
a vector w = (w1, ...,wi, ...,wl). Therefore, the
low-level explanation can be viewed as a weight
vector w, where wi denotes the influence of time
index i on the prediction. The time series is then
colored depending on these values: red indicates

that these time metrics are contained in many
intervals of interest, so the region is important for
the prediction, while blue indicates the opposite.
Note that the color bar is normalized to [0, 1].

Note that, given a time series, a
transformation, and a TSC model, the cost
of computing an explanation is dominated by the
step of labeling neighboring series. In this step,
neighbors are labeled by the corresponding TSC
model, so the time taken to perform this process
varies significantly depending on the complexity
of the model and the length of the time series.

3.2. Explanation Method for TSC Using SHAP
3.2.1. Kernel SHAP for Time Series Data

Although Kernel SHAP can generate
model-agnostic explanations, it heavily
relies on designing a good mapping for the
specific application domain. The pieces
of the sample x defined by hx need to be
intuitively understandable to have meaningful
impacts. Poorly designed mappings can produce
misleading explanations, undermining the idea
of explainability. This makes constructing good
mappings a significant challenge.

To apply Kernel SHAP to time series data, we
need to develop a mapping function that divides
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Figure 9. The diagram illustrates the low-level explanation with an example being a time series in the ArrowHead
dataset [23].

the time series into fragments and computes
the impacts of these fragments on the model.
To divide the time series into fragments, we
define the input space I = Rd as the space of
time series with length d. Each vector z ∈ I
represents a time series, with the value at time
t ∈ {1, ..., d} denoted by zt. For technical time
series segmentation, we propose the Time Slice
Mapping transformation, which partitions the
time series into equal segments and applies value
transformations to specific segments to generate
perturbed time series.

3.2.2. Time Slice Mapping
This technique segments the sample (x) into

(d′) equal-length segments along the time axis.
Each segment (i ∈ {1, ..., d′}) constitutes a
segment whose activity is governed by (z′i). To
disable a segment, it is not feasible to simply
remove or fill in missing values, as most models
cannot handle time series with varying lengths or
missing values. Instead, the segment is replaced
with the corresponding segment from a second
substitute time series (r ∈ I), effectively masking
the original segment.

When the time slice mapping function,
tailored to the sample (x), is queried with a binary
input (z′), it disables all segments (i) of (x) for
which (z′i) is 0, resulting in a perturbed version of
(x), as depicted in Figure 10.

Given a substitute time series (r ∈ I) and

Figure 10. Two different perturbations on the same
sample.

a mapping function ( j : {1, ..., d} → {1, ..., d′})
that assigns each time point (t) to a segment, the
mapping function (h(1)x : I′ → I) generates a
perturbed time series for every (z′ ∈ I′) according
to the following rule:

∀t ∈ {1, ..., d} : (h(1)x(z′))t =

xt, if z′j(t) = 1;

rt, if z′j(t) = 0.
(9)

This formula defines how the perturbed time
series is created by selectively replacing segments
in x with those in r, based on the binary input
z′. For each time point t, if z′j(t) = 1, the
original value xt is retained; otherwise, the
corresponding value rt from the substitute series
is used, effectively masking that segment of x.
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In applying Time Slice Mapping to Kernel
SHAP, this function allows for generating various
perturbations in each step of the SHAP algorithm.
Each perturbation corresponds to a subset of
features, toggled on or off based on z′. This
enables Kernel SHAP to evaluate the impact of
each segment on the model’s output by observing
the predictions with different combinations of
active and masked segments, providing a detailed
view of feature contributions over time.

4. Experimental Results

4.1. Case of Study

4.1.1. GunPoint Dataset
The dataset consists of 200 data samples

(observations) with 50 samples in the training
set and 150 samples in the test set, with 151
features, including one dependent variable and
the remaining 150 features representing a time
series. The dependent variable is considered as
the label of the observation (Gun = 1, Point =
2). This data is used in many reputable papers
on XAI for time series data.

4.1.2. Coffee Dataset
The dataset consists of 56 instances

(observations) with 28 samples in the training
set and 28 samples in the testing set, with
286 features representing a time series and a
dependent variable representing the label of the
sample. The time series represents the process of
recording the infrared spectral values of 2 types
of Robusta coffee (label 1) and Arabica (label
0) through a food spectrometer in the Coffee
discrimination experiment [26].

4.2. Set-up

The experimental program is implemented
in Python language, TSC models and some
probability distribution functions are used from
the libraries scikit-learn [27], sktime [28]
and scipy [29]. As mentioned earlier, in
this experiment we use the models that handle

variable length time series. Therefore, 3 standard
and popular TSC models were selected: 1-NN-
DTW distance, Shapelet Transform (ST) and,
Bag-of-SFA-Symbols (BOSS). We experiment on
a system consisting of 16 AMD Ryzen 7 4800H
CPUs with 2.9GHz scan frequency and 16GB of
RAM.

Because the LIME-based method includes
time series transformation process to generate
neighbors, experiments were conducted by
considering and selecting some parameters of the
randomization and transformation. The number
of neighboring series is set to 500, while the
parameters in Algorithm 2 are set to α = 8 and
β = 18, so that the probability that a time index
is covered by an interval is 0.3 [24]. In this way,
each transformed time index appears in about 150
of the 500 generated neighbors. In the calculation
of the intervals of interest, the parameter K is
set to 0.1 × |I,|. Regarding the time series
transformation process, the warp and scale levels
considered in this experimentation, kw and ks, are
{0.7, 0.8, 0.9, 1.1, 1.2, 1.3}, while the considered
noise levels, kn are {1, 3, 5, 7, 9}. Other sets of
parameters could be considered, but we limit
our experimentation to the mentioned values;
we think that they lead to a reasonable variety
in the transformations, while creating realistic
neighbours with no extreme modifications in
the time series. Each transformation level is
independently studied. The slice transformation
does not depend on any parameter but, in order
to ensure a minimum length in the generated
neighbours, we set the minimum interval length
to 0.3× l, where l is the length of the series that is
the object of study.

We first train the TSC models with training
sets from two datasets, then randomly select time
series from the two datasets to predict labels for
that series, as well as provide explanations using
the proposed methods.
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4.3. LIME-based Explanation Method for TSC

4.3.1. Experimental Results
Select a time series in the GunPoint dataset,

use the 1-NN-DTW model to classify through
the Warp transformation. With the LIME-based
TSC interpretation method, we will get the result
including an index showing the confidence of
the classification decision for the considered
transformation. Besides, a weight vector is given,
showing the influence level of each feature in the
series on the model’s decision. We visualize the
weight vector into a saliency map as Figure 11, in
which the values of the weights are normalized to
values in the range [0,1].

The influence of each feature on the TSC
model’s decision is specifically shown by a color
range from blue to red. Features that have a
large influence on the decision will be colored
red and features that have a small influence
will be colored blue. With the selected data
sample in Figure 11, we can see that the red
area is concentrated in the time interval [40,
60], indicating that this time interval is the most
influential on the model’s decision to label this
sequence. Indeed, considering the context of
the data set, the interval [40, 60] represents
the time interval when the experimenter’s hand
position leaves the initial position, so this interval
will have the largest influence on the model’s
classification decision. In other words, if the
speed of this action is changed, there is a
high probability that the model’s classification
decision for this action will also change. We can
use this method to derive any transformation as
well as any TSC model for data samples, such as
the examples in Figures 12, 13 and 14.

4.3.2. Quantitative Evaluation
In this section, the quantitative evaluation will

be based on the method in [2] and [23], with
modifications to suit our problem context. The
idea behind our evaluation method is to show that
perturbations in important regions will change the

(a) Warp (kw = 0.7) with 1-NN-DTW model,
Rwarp = 0.60.

(b) Warp (kw = 0.7) with 1-NN-DTW model,
Rwarp = 0.64.

Figure 11. Experimental results for data samples
labeled Gun (11a) and Point (11b) in the GunPoint

dataset with Warp transform.

model’s predictions more often than perturbations
in unimportant regions.

The important and unimportant regions are
determined based on the distribution of values
of the computed weight vector w: the most
important p% is the p% time index with the
highest weight in w, and we will call this set of
indices p+. Similarly, the least important p% is
the p% time index with the lowest weight in w,
and we will call this set p−. With X being the
test set, let Xp− be the set of sequences in which
the least important p% time index is transformed
by the chosen transformation. Conversely, Xp+

is the set in which the most important p% time
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(a) Scale (ks = 1.3) with 1-NN-DTW model,
Rscale = 0.32.

(b) Scale (ks = 1.3) with 1-NN-DTW model,
Rscale = 0.45.

Figure 12. Experimental results for data samples labeled Gun (12a) and Point (12b) in the GunPoint dataset with
the Scale transformation.

(a) Noise (kn = 7) with BOSS model,
Rscale = 0.89.

(b) Noise (kn = 7) with BOSS model,
Rscale = 0.73.

Figure 13. Experimental results for data samples labeled Arabica (13a) and Robusta (13b) in the Coffee dataset
with Noise transformation.

(a) Slice with ST model, Rslice = 0.11. (b) Slice with ST model, Rslice = 0.49.

Figure 14. Experimental results for data samples labeled Arabica (14a) and Robusta (14b) in the Coffee dataset
with Slice transformation.
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Figure 15. Diagram showing quantitative assessment method [23].

index is transformed. Then, we label the strings
in the set Xp− (this label set is called Y p−) and
Xp+ (called Y p+). For 3 values of p: 10, 50 and
90, we calculate the probability that the label of
the time series in the set Xp− (or Xp+) is different
from the label of the test set using the formula:

Cp+ =
1
m

m∑
s=0

⊮ys=ysp+ (10)

with:

⊮ys=ysp+ =

1, if ys = ysp+ ;
0, if ys , ysp+ .

(11)

The probability value varies from 0 to 1,
where 0 means that all labels in Y p+ (or Y p−) are
different from the labels in Y , while 1 means that
all time series in the perturbed set are classified
in the same class as the corresponding time series
in the original test set. The computation is
performed sequentially for different values of p =
(10, 50, 90), so that Cp− and Cp+ form two curves
(as shown in Figure 15).

The area under each line Cp− and Cp+,
eLoss1 and eLoss2, are calculated using the
trapezoidal rule. The area between the lines Cp−

and Cp+ is called ∆eLoss and is defined by:

∆eLoss = eLoss1 − eLoss2 (12)

If ∆eLoss is positive, the explanation is
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Table 2. Table of average ∆eLoss and Robustness values (Robustness values are shown in parentheses) over the
entire dataset when applying transformations with different TSC models. For each transformation and TSC model

on a dataset, the best ∆eLoss value is shown in bold

Warp Scale

1-NN-DTW BOSS ST 1-NN-DTW BOSS ST

GunPoint 0.10 (0.86) 0.01 (0.54) 0.09 (0.76) 0.26 (0.42) 0.15 (0.85) 0.00 (0.94)
Coffee – (1.00) 0.36 (0.82) 0.17 (0.71) 0.23 (0.45) 0.16 (0.66) 0.11 (0.82)

Noise Slice

1-NN-DTW BOSS ST 1-NN-DTW BOSS ST

GunPoint 0.29 (0.56) 0.29 (0.40) 0.23 (0.51) -0.06 (0.10) 0.02 (0.80) 0.04 (0.40)
Coffee 0.10 (0.62) 0.08 (0.86) 0.09 (0.58) 0.15 (0.00) 0.05 (0.86) 0.14 (0.74)

considered credible and if ∆eLoss is negative, the
explanation is considered unreliable. We have
evaluated all 4 transformations, 3 TSC models
for 2 datasets GunPoint and Coffee, obtaining the
results presented in Table 2.

Table 2 shows that the average ∆eLoss value
is positive in most cases, with only one negative
∆eLoss case in italics in the table, which means
that the explanation given is informative. The
results also confirm that perturbing the important
parts will have a higher chance of changing
the classifier’s prediction than perturbing the
unimportant parts.

If we analyze the results by each
transformation, we can see that the negative
∆eLoss value, i.e. the explanations are not
informative, is in the Slice transformation. This
may indicate that the Slice transformation is
not suitable for our experimental datasets. If
we analyze the results based on each TSC
model, in most cases the best-explained model
(highlighted) is 1-NN-DTW, which obtains the
highest ∆eLoss value in 6 out of 8 cases.

4.3.3. Comment
This method provides an intuitive and

semantically understandable explanation for the
classification decision of the TSC model for time
series. Specifically, the method shows that the

speed of each action recorded in the GunPoint
dataset is discriminative, i.e. if an action occurs
faster or slower in a specific time interval, it
can be classified into a different class than it
would be if the change were not applied. In
addition, a number is also provided to represent
the model’s reliability for a transformation,
helping users to evaluate the suitability between
time transformations and TSC models, thereby
choosing the appropriate model for each specific
problem.

However, besides the obvious advantages
mentioned, this method still has limitations that
need to be overcome: Firstly, determining the
correct neighborhood is a big challenge and
there is no general rule to prescribe. For
example, if the time interval chosen to perform
the transformations is too short compared to the
length of the reference sequence, the generated
neighbor sequences may all be labeled in the
same class as the original sequence, leading to
the inability to provide low-level explanations.
Secondly, illogical cases may occur when
applying the transformations. For example, with
the GunPoint dataset, the values of the features
(logically) only lie within the range [−2, 2], but
if we apply the Scale transformation with an
unreasonable scale, the values of some features in



V. Nguyen et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 30–53 47

Figure 16. Table of SHAP Values.

the sequence may lie outside this range, leading to
the risk of errors when performing classification
using TSC models. Finally, the consistency of
the method may not be guaranteed, because each
time we perform the initialization of neighbor
sequences, the generated random intervals will
often be completely different.

4.4. Explanation Method for TSC Using SHAP
4.4.1. Point Sample - GunPoint Dataset

The parameter values for this experiment are
as follows: the label is set to 2 for the Point
class, with 30 slices and a slice length of 5. The
classification model used is ST.

After applying KernelSHAP, we obtain the
SHAP values corresponding to each segment, as
shown in Figure 16.

Figure 17. Waterfall Plot - SHAP for Point Sample.

To easily visualize the impact of each feature
on the model’s decision, we can use a Waterfall
plot (Figure 17) or a Force-plot (Figure 18).

Features that have a positive impact on the
decision are shown in red, and features with
a negative impact are shown in blue. The
magnitude of the impact for each feature is also
clearly displayed.

Based on the Waterfall plot (Figure 17)
and the Force-plot (Figure 18), we can easily
understand and identify the model’s decision.

E[ f (X)] = 0.5 indicates that the expected
value of the model is 0.5. This means that the
probability of the label 2 in the training set is 0.5.
Using the SHAP values calculated, we can also
represent the final value of f (x). In this case,
f (x) = 0.83 indicates that the probability of the
model assigning label 2 to the data point being
considered is 0.83.

Based on the plots, we can also easily identify
the impact of each feature on the value of f (x).
Besides, we can easily answer the following
questions: Which features have the most positive
and negative impact on the model’s decision?
What is the extent of their impact? The answer
is that Slice 9 has a positive impact of +0.14 on
the model, while Slice 12 has a negative impact of
−0.05 on the model (the higher the value of f (x),
the higher the accuracy of the model).

From the calculated SHAP values, we can
also represent it in a Colormap as shown in
Figure 19. With this plot, we can simultaneously
visualize the time series and the impact of each
feature on the model’s decision. Features with
a larger impact will have a darker color, and
features with a smaller impact will have a lighter
color. This is displayed on the color scale on the
right side of the plot.
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Figure 18. Force-Plot - SHAP for Point Sample.

Figure 19. Colormap - SHAP for Point Sample.

4.4.2. Experiments with Other Samples
Similar to the Point Sample - GunPoint

Dataset, we conducted experiments on three
samples: Gun Sample from the GunPoint
Dataset, Robusta and Arabica Samples from the
Coffee Dataset. For each sample, we present
the Waterfall plot and Colormap plot to show the
impact of each feature on the model’s decision for
each sample.

a) Gun Sample - GunPoint Dataset
The parameter values for this experiment are

similar to those of the Point sample, with the only
difference being the label, which is set to 2 for the
Gun class.

The impact of each feature on the model’s
decision for the Gun Sample - GunPoint Dataset
is shown in Figure 20 and Figure 21.

From the plots, we can see that Slice 11
has the highest positive impact on the model’s
decision for the Gun label with a value of +0.12,

Figure 20. Waterfall Plot - SHAP for Gun Sample.

while Slice 9 has the highest negative impact on
the model’s decision for the Gun label with a
value of −0.05.

b) Robusta Sample - Coffee Dataset
The parameter values for this experiment are

as follows: the label is set to 1 for the Robusta
class, with 57 slices and a slice length of 5. The
classification model used is ST.

The impact of each feature on the model’s
decision for the Robusta Sample - Coffee Dataset
is shown in Figure 22 and Figure 23.

From the plots, we can see that Slice 47
has the highest positive impact on the model’s
decision for the Robusta label with a value of
+0.18 . In contrast, Slices 5 and 32 have the
highest negative impact on the model’s decision
for the Robusta label, each with a value of −0.04.

c) Arabica Sample - Coffee Dataset
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Figure 21. Colormap - SHAP for Gun Sample.

Figure 22. Waterfall Plot - SHAP for Robusta
Sample.

The parameter values for this experiment are
similar to those of the Robusta sample, with the
only difference being the label, which is set to 0
for the Arabica class.

The impact of each feature on the model’s
decision for the Arabica Sample - Coffee Dataset
is shown in Figure 24 and Figure 25.

From the plots, we can see that Slice 47
has the highest positive impact on the model’s
decision for the Arabica label with a value of
+0.04, while Slice 13 has the highest negative
impact on the model’s decision for the Arabica
label with a value of −0.02.

Figure 23. Colormap - SHAP for Robusta Sample.

Figure 24. Waterfall Plot - SHAP for Arabica Sample.

4.4.3. Compare Experiment Result with LIME

With the same data sample, Robusta from the
Coffee dataset, and using the same classification
model, ST, we obtained the results shown in
Figure 14b for LIME and in Figure 23 for SHAP.

We can easily see that the fundamental
difference between SHAP and LIME lies in the
feature impact values: SHAP includes negative
values, while LIME does not. This difference
suggests that SHAP provides a more nuanced
understanding of feature contributions, capturing
both positive and negative impacts on the model’s
prediction, whereas LIME may offer a simpler but
less detailed perspective.
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Figure 25. Colormap - SHAP for Arabica Sample.

5. Conclusion and Future Work

The local TSC explanation method based
on LIME and SHAP that has been proposed
can become a powerful tool for explaining TSC
models. The key strength of this method lies
in its ability to provide a precise explanation
of the contribution value for each feature in the
time series. Consequently, we can identify the
degree of influence of each factor on the model’s
prediction results, including both positive and
negative impacts. Additionally, the application
of time series data transformation methods
discussed in this work can provide additional
useful information about the properties of time
series, supporting the provision of effective
semantic explanations. The detailed explanations
for TSC models are visually represented through
saliency maps, making it easy for users to
comprehend the information provided by the
explanations.

For the LIME-based explanation method,
exploring the application of additional time
series transformations (such as bootstrapping
for time series [21]) or combining multiple
transformations to generate neighboring
sequences is a promising avenue to address
the limitations discussed in Section 4.3.3.

Similarly to the problem of initializing
neighbors in the LIME-based explanation
method, determining the features to perform

segmentation is also an important task to make
SHAP work more smoothly and efficiently. Let’s
consider the following example:

Figure 26. The difference in importance when slice
size changes.

When the slice size is different, the impact
of features on the model’s decision also changes
and may lead to inaccuracy. Therefore, in the
future, this study can be further researched and
developed to select the optimal slice size for each
model and each specific data point to accurately
calculate the impact.

Furthermore, beyond the challenge of
determining an optimal number of slices for
segmentation, our SHAP-based explanation
method currently employs slices of uniform size.
An alternative approach involves segmenting
time series into slices of varying sizes, which
could provide a more nuanced understanding of
the features that genuinely influence the model’s
decision.
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Appendix .1. Hausdorff distance between two
time intervals

Named after Felix Hausdorff (1868-1942),
the Hausdorff distance [25] is stated as ”the
maximum distance of one set to the nearest point
in the other set”.

More specifically, the Hausdorff distance
from set A to set B is a maximin function, defined
by the formula:

h(A, B) = maxa∈A[minb∈Bd(a, b)]

where a and b are points in sets A and B,
respectively, and d(a, b) is an arbitrary distance
between these points; for simplicity, we will take
d(a, b) to be the Euclidian distance between a and
b.

If A and B are two sets of points, the
Hausdorff distance between them will be:

HD(A, B) = max{h(A, B), h(B, A)}

In the context of our work, we have two intervals
A = [a1, a2] and B = [b1, b2] with a, b ∈ R, the
Hausdorff distance from A to B is determined by
the following formula:

dH(A, B) = max{|a1 − b1|, |a2 − b2|}

Note that the Slice transform uses the union
of intervals, so the extension of the Hausdorff
distance calculation with the union [? ] is used
for this transform.


