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Abstract: Sign language is a communication system that encompasses bodily gestures, primarily
utilized within the deaf community. Due to its limited prevalence, information from books, news-
papers, and videos is often not translated or represented in sign language. This situation creates
challenges for deaf individuals in acquiring information, as well as in their learning and interactions
with hearing individuals. Historically, the conversion between spoken language and sign language
relied entirely on interpreters, a limited resource that is not always readily available. Currently, em-
ploying technology to convert spoken language into sign language presents a modern and convenient
alternative. This linguistic conversion typically involves two steps: first, converting spoken language
into text that adheres to the grammatical structure of sign language; second, representing this text
through the corresponding gestures. This paper proposes a method for representing sign language
using 3D characters to address the latter step. The method constructs a 3D skeleton motion for each
word or phrase from input text in sign language grammar. Subsequently, the motion data of words is
processed and interconnected to animate a 3D virtual character for the complete sentence representa-
tion. We have applied the proposed method to represent Vietnamese Sign Language (VSL) using 3D
virtual characters. The results were assessed by experts in sign language, yielding promising findings
that suggest the practical applicability of the proposed methodology.

Keywords: Vietnamese Sign Language, Sign language representation, 3D animation, Virtual
character.

1. Introduction

According to the World Health Organization
(WHO) [1], it is projected that by 2024, over
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5% of the global population, approximately 430
million individuals, will require rehabilitation to
manage the impacts of hearing loss.
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In Vietnam, this figure is estimated to be
around 2.5 million people. Deaf individuals
often lack proficiency in spoken language and
do not primarily use it as their means of
communication; instead, they rely on sign
language, utilizing bodily gestures to convey
information. However, sign language is not
widely used outside the deaf community, and
resources such as books, newspapers, and videos
frequently do not accommodate sign language.
Sign language possesses a entirely different
grammar from spoken language, complicating the
reading of written materials for deaf individuals.
In educational settings, deaf students face
significant challenges in communication and
learning due to the limited number of teachers
proficient in sign language. These factors under-
score the need for a technology-based solution for
translating text into sign language.

Sign languages exhibit considerable variation
across different countries and even within regions
of the same country. This diversity presents a
challenge, as it complicates the broad application
of sign language research. However, it also
serves as a catalyst, prompting countries to
undertake research tailored to the specific needs
of their native deaf communities. There are
some research developed aimed at translating
from spoken language to sign language in several
languages such as American [2, 3], India [4,
5], Pakistan [6], Brazil [7], Sinhala [8] and
Arabic [9–11]. In Vietnam, while there are some
studies focused on the field of sign language,
these have primarily addressed the issue of VSL
recognition [12, 13], which involves translating
sign language into spoken language. Conversely,
to our knowledge, only one study has proposed a
solution for translating from spoken language to
sign language [14].

Methods for translating spoken language
into sign language for the deaf community
generally proceed in two fundamental stages.
Initially, spoken language input, whether in text
or audio form, is converted into text with sign

language grammar. Subsequently, the processed
text is represented in various formats, such as
virtual characters [15], motion graphs [16],
or 2D images and videos [17]. Among these
methods, virtual characters provide several
notable advantages; they offer clearer and more
expressive sign language representations and
exhibit higher storage efficiency compared to
videos [18]. The motion synthesis technique that
most authentically conveys the realism of virtual
characters is data-driven [19]. Previous research
adopting this approach has typically yielded
natural and realistic motion [20–24]. However,
these studies have frequently encountered
challenges related to the cost of dataset
construction, which is predominantly driven
by the substantial expenses associated with
the motion capture process. Motion capture
typically requires specialized equipment, such as
markers [22], multi-camera systems [23, 24] or
wearable devices like Cybergloves [20, 21].

In this study, we propose a method for
representing sign language through the use of
3D virtual characters, with a focus on reducing
the costs associated with motion capture while
maintaining realistic and natural movements. The
method can be applied to any language with
input being a text that has been processed in
the sign language grammar and result in a
3D representation of the sign language. The
approach begins by constructing a 3D skeleton
motion for each word in the text. This motion
data is subsequently interconnected and utilized
to animate a virtual character, thereby creating a
3D representation of sign language. This method
has been successfully applied to VSL, resulting in
the development of a skeleton motion dataset and
animations for VSL using a 3D virtual character.
This advancement not only enhances the visual
representation of sign language but also broadens
the potential for inclusive communication within
the deaf community.

The rest of the paper is structured as follows:
Section 2 surveys the research relevant to our
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study. In Section 3, we present a detailed
explanation of the proposed method. Section 4
outlines the findings from our evaluation of the
video representing sign language generated by
the proposed method. The concluding Section
5 recaps the paper’s content and the discussed
method.

2. Related Work

In the task of representing sign language
from text input in sign language grammar,
three common methods are employed: the
use of virtual characters, the application of
motion graphs, and the utilization of 2D images
and videos. Each method possesses its own
advantages and disadvantages. However, recent
studies have increasingly favored the use of
virtual characters as the optimal approach due
to their ability to authentically and accurately
depict movements, which is a critical factor in the
representation of sign language.

Yosra Bouzid and Mohamed Jemni [2]
presented a method for generating 3D animation
sequences from SignWrititng notation for
American sign language (ASL). The input
is the XML format of SignWrititng which
is called SignWrititng Markup Language.
After processing, the notation is translated to
Sign Modeling, which is then automatically
interpreted by the WebSign player [25].

In 2015, Diego et al. [7] developed a
synthesis system that interprets XML inputs
describing hand gestures and converts them
into a vector of configuration parameters.
These parameters are then used to animate
a 3D avatar, representing the Brazilian Sign
Language. A paper published the same year by
Punchimudiyanse et al. [8] proposed a multi-
facet 3D avatar and an animation system for
Sinhala Sign Language(SSL) that allows sign
movements to be defined and animated without
the need for motion capture hardware or video
sequencing. Testing with a vocabulary of 200

signs and 40 finger-spelling signs showed that
the system effectively animated various sentence
types in SSL, demonstrating its flexibility and
potential for broader applications.

Kaur et al. [4] proposed an automation
system that generates HamNoSys for Indian Sign
Language (ISL) words. This is accomplished
by converting the Hamburg Notation System
(HamNoSys) [26] into Signing Gesture Mark-up
Language (SiGML)[27], which then is processed
to animate the corresponding signs. The
system contains a database of approximately 210
HamNoSys symbols. Also using HamNoSys
and SiGML, Bhavinkumar et al. [5] proposed
ES2ISL, a system that converts English speech to
ISL.

A method for Arabic Sign Language (ArSL)
was proposed by Al-Barahamtoshya et al [9].
It records words using a voice module and
then converts them into ArSL using a transition
module. The suggested method converts the text
into ArSL by using an Arabic language model
and a set of transformational rules. However, the
paper did not mention the sign presentation and
the method of animating the ArSL sign.

Muhammad Sanaullah et al. [6] proposed
a real-time automatic translation system called
Sign4PSL that converts English text into Pakistan
Sign Language (PSL) using a virtual signing
character. The proposed method includes
converting words to HamNoSys Notation
transcription according to sign specifications.
The transcription then is converted to SiGML
tags, which are sent to the AnimGen client-
server at UEA for the Avatar signing commands
extraction.

In Vietnam, the only attempt at representing
VSL is by. Luyl Da Quach et al [14]. They
addressed the challenge of converting Vietnamese
television news into 3D sign language. The
proposed method uses ID3 to transform input
sentences into VSL grammar sentences. The
translated text is then processed to generate a
SiGML file which is used for JA Signing [28] to
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create HamNoSys codes to animate a 3D avatar.
The utilization of notation and markup

languages, such as SignWriting [2], XML [7],
HamNoSys and SiGML [4–6, 14] is a common
method for depicting gestures in sign language.
These structured input formats facilitate the
systematic translation of text into corresponding
animated sign language visuals, thereby enabling
automation in the animation process. However,
this approach presents significant drawbacks; for
instance, reliance on specific markup languages
can limit the scalability of the vocabulary due
to the necessity of involving sign language
experts. Furthermore, there have been studies
employing a data-driven approach that eliminates
the reliance on notation and markup languages.
However, these methods still entail high costs
during the motion capture process and require
specialized equipment, such as systems involving
multiple cameras [24] or Cybergloves [20, 21].
The method proposed in this paper introduces
a pipeline to represent sign language using
virtual characters, addressing these limitations by
minimizing the costs associated with the dataset
construction.

3. Proposed Method

To address the challenge of representing sign
language from text in sign language grammar,
our proposed method involves constructing 3D
skeleton motion for each word or phrase in the
input sentence. Subsequently, this motion data
is processed and interconnected to create an
animation that represents a complete sentence.
The generated data for the words or phrases
will be stored in a dataset for future use. This
approach is advantageous due to its flexibility
in assembling words into coherent sentences.
Consequently, creating a complete sentence
from a dataset of motion data for individual
words and phrases is significantly more feasible
than developing a motion dataset for complete
sentences. Additionally, expanding the dataset

Figure 1. Overview pipeline for representing sign
language with 3D virtual characters.

Figure 2. Overview pipeline for constructing 3D
skeleton motion for words.

can be accomplished easily by using video inputs
that demonstrate sign language. Therefore, we
propose a method consisting of two steps, as
illustrated in Fig. 1: constructing 3D skeleton
motion for words and generating 3D animations
representing sign language.

3.1. Constructing 3D Skeleton Motion for Words

To construct 3D skeleton motions for a word
from a 2D video, we employ a methodology
outlined in our previous work [29] that consists
of three steps, as illustrated in Fig. 2. The
input for this process is a 2D video of a person
performing a word or phrase in sign language.
The output of this process is 3D skeleton motion,
which can subsequently be utilized to animate a
3D character representing sign language. This
approach facilitates the expansion of the 3D
skeleton motion dataset by enabling the collection
or creation of additional 2D videos of sign
language. However, a challenge associated
with 2D videos is the variability in properties
such as sources, creators, frame rates, and
resolution. Consequently, the proposed method
also addresses this challenge. The effectiveness
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of the proposed 3D motion construction approach
was evaluated in our previous study [29], where
20 evaluators assessed the similarity between
VSL signs performed by virtual characters and
those performed by real people. An average score
of 3.93 on a Likert scale of 1 to 5 demonstrates
the robustness and suitability of the proposed 3D
motion construction approach for sign language
representation.

3.1.1. Pre-processing
The use of diverse 2D video sources depicting

sign language can lead to inconsistencies in frame
rates, as these videos are often produced by
different individuals at various times or recorded
using different devices. This variability can result
in animations where certain signs are displayed
more quickly or slowly than intended. To
address this issue, we preprocess the 2D sign
language videos to achieve a uniform frame rate
of 30 fps. This standardization facilitates the
synchronization of sign execution speeds and
allows for precise control over the movements of
the virtual character. Specifically, each new video
V ′ is generated from the original video V using
the following equation:

V ′i = V[ i× f ps
f ps′ ] ∀i ∈

[
0,
|V |× f ps′

f ps
]

(1)

where Vi and V ′i are the i-th frames of the videos
V and V ′, respectively, and the frame rates of
videos V and V ′ are fps and fps′, which is set to
30 in this research.

3.1.2. Pose Estimation and Optimizing Motion
After adjusting the frame rate of the videos

to the same level, key points on the body
are identified for each frame and aggregated
into complete postures, a process called pose
estimation. In this study, we employed
OpenPose [30] to identify 2D key points across
the entire body (Fig. 3) and specifically on the
hands (Fig. 4). Following experiments with
different configurations, we have adopted the

Figure 3. The key points on the body are identified
using OpenPose [30].

BODY 25 format, which identifies 25 key points
across the whole body, as depicted in Fig. 3, to
extract 2D motion from sign language videos.
Since our research focuses on representing sign
language, we only collect the motion of key
points on the body from the waist up.

To optimize 2D motion data, redundant
movements are pruned from the 2D motion
data, which improves the performance of the
3D sign language dataset construction and the
accuracy of the final output. The actions of
raising and lowering the hand, which frequently
occur in sign language videos but do not convey
meaning, are identified and removed. This
is achieved by detecting the time intervals
where actual signs are being performed, based
on the solution proposed by Amit Moryossef
et al. [31], which utilizes machine learning
techniques with over 90% reported accuracy. By
eliminating these non-essential movements, the
computational resources required for subsequent
processing steps are significantly reduced.

First, the variation in motion between
consecutive frames is computed using equation 2.

F(P)t = ||Pt − Pt−1||2∗ f ps (2)

where P is the 2D motion data, t is the frame
index, and fps is the frame rate of the input video.
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Figure 4. The key points on the hand are identified
using OpenPose [30].

The points P that cannot have their coordinates
determined at frame t have values F(P)t and
F(P)t+1 defaulted to 0.

The pre-trained sign language detection
model [31] takes as input the variation of the
2D motion data of the entire body (excluding
the hands) from consecutive frames and outputs
the probabilities of the presence and absence of
sign language gestures between the frames. The
determination of the presence of sign language is
given by equation 3 where P is the motion data
and M is the sign language detection model.

signing(P) = argmax(M(F(P))) (3)

The signing(P) receives a value of 1 or 0,
corresponding to the ”presence” and ”absence”
of sign language gestures respectively. To ensure
the continuity of motion, frames from the first
frame to the last frame that receives a result of 1
are considered to contain sign language gestures,
and the 2D motion data of these frames will
be processed in the subsequent steps. In our
analysis, we found that the model designed for
recognizing hand-raising motions demonstrated a
high level of efficacy. However, its performance
in detecting hand-lowering motions was notably
less effective. To address this limitation, we
revised the original equation 3 to the updated
equation 4:

signing(P) = argmax(M(F(P))) OR

argmax(reverse(M(reverse(F(P)))))
(4)

The function reverse is defined as the
operation that reverses the order of elements
within an array. By reversing the video sequence,
the motion of lowering the hand becomes
analogous to that of raising the hand. This
modification significantly enhances the efficacy
of sign language recognition, thereby optimizing
the detection of hand movements

3.1.3. Creating 3D Skeleton Motion
The concluding stage of the process

necessitates the coordinates of the hip points
(specifically points 8, 9, and 12 as depicted in
Fig. 3) as essential input parameters. However,
a notable limitation arises from the fact that
videos depicting sign language typically only
capture the upper body of the performer. This
results in a significant number of videos where
the identification of these critical hip points is
rendered infeasible. To effectively mitigate this
challenge, we have devised a methodology [29]
to calculate the coordinates of the three hip points
based on the coordinates of the three shoulder
points (points 1, 2, and 5 as illustrated in Fig. 3).
Their coordinates were estimated using the
following equations:

Hm = S m + Dm × L, (5)

Hl = Hm + Dl × L, (6)

Hr = Hm + Dr × L. (7)

The meanings of the symbols used in this
section are provided in Table 1. In these equa-
tions, L, which represents the shoulder size, is
computed as follows:

L = ||S l − S m||2+||S r − S m||2. (8)

To determine the appropriate distance ratios
for these estimations, an empirical analysis
was conducted on a diverse set of videos.
Based on the results, a table of fixed distance
ratios between key points relative to shoulder
width was established (Table 2). These ratios
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Table 1. Definitions of the symbols used in pose
estimation

Symbol Definition
L Shoulder size

S m Middle shoulder coordinate
S l Left shoulder coordinate
S r Right shoulder coordinate
Hm Middle hip coordinate
Hl Left hip coordinate
Hr Right hip coordinate
Dm Distance ratio from middle shoulder

to middle hip relative to shoulder
size

Dl Distance ratio from middle hip to left
hip relative to shoulder size

Dr Distance ratio from middle hip to
right hip relative to shoulder size

Table 2. Fixed distance ratios relative to shoulder size

Ratio Starting
point

Ending
point

Value

Dm Middle
shoulder
(S m)

Middle hip
(Hm)

[0.008628,
1.503246]

Dl Middle hip
(Hm)

Left hip
(Hl)

[0.297260,
0.000245]

Dr Middle hip
(Hm)

Right hip
(Hr)

[-0.305702,
0.000097]

were subsequently applied to ensure accurate
estimation of the missing hip coordinates.

This approach enables the completion of the
final step without direct hip point data, thereby
ensuring the robustness and adaptability of the
overall process.

The subsequent challenge pertains to
the variability in body proportions among
individuals performing sign language in the
input videos. This inconsistency hinders the
ability of any virtual character to accurately
replicate the movements of these individuals.
In this research, we utilize SMPLify-X [32] to

generate 3D skeleton motion from 2D motion
data. This approach standardizes the motion
data onto the SMPL-X 3D model, thereby
effectively mitigating the issue of inconsistent
body proportions. By addressing this challenge,
we also enhance the scalability of the 3D skeleton
motion dataset, facilitating the estimation of 3D
skeletons from videos produced by a diverse
range of individuals.

As SMPLify-X operates as a command-line
application, input parameters must be manually
specified. To ensure seamless integration into our
pipeline, we modified SMPLify-X to develop a
module that automates the computation of key
parameters, including character type, weight, and
display mode, enabling more efficient processing
and adaptation to our framework. Additionally,
lower body joints (points 10, 11, 13, 14,
19, 20, 21, 22, 23, 24, as illustrated in
Fig. 3) are excluded, as sign language datasets
typically focus on the upper body, given that
hand movements and facial expressions are the
primary components of sign communication.
Furthermore, due to discrepancies in skeletal
control parameter formats between SMPLify-X
and the SMPL-X model, the system has been
adapted to extract 3D motion data in the required
format for sign language animation. For each
frame in the videos, we extract the following
information:

• global orient: The overall rotation angle.

• body pose: The rotation angle of the body
bones (excluding hand bones and the facial
region).

• left hand pose: The rotation angle of the
bones in the left hand.

• right hand pose: The rotation angle of the
bones in the right hand.

Subsequently, the data from each frame is
aggregated to construct a 3D skeleton motion for
a word or phrase.
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Figure 5. Overview pipeline for generating 3D sign
language animation.

3.2. Generating 3D Animations Representing
Sign Language

To address the representation of sign
language from text in sign language grammar,
a process consisting of three steps is proposed,
as illustrated in Fig. 5. The input to this pro-
cess is text that has already undergone word
and phrase segmentation, where compound
words are denoted by joining their syllables
using underscores instead of spaces. The input
sentence first is encoded into a format that
facilitates efficient retrieval within the dataset.
The next step involves searching for these codes
within the 3D skeleton motion dataset; any
words not found in the dataset will necessitate an
execution of the 3D skeleton motion construction
process. Once sufficient motion data for the
required words has been collected, the final
step processes and connects these motions and
integrates them into a 3D virtual character to
create an animation that represents sign language.
The output of this entire process can be exported
as a video featuring a virtual character conveying
the input sentence in sign language.

3.2.1. Encoding Sentence
The primary objective of this preprocessing

step is to identify the sign language symbols
corresponding to the words in the input sentence.
The process commences by separating the words
from the sentence. In the input sentence,
compound words are denoted by joining their
syllables using underscores instead of spaces.
This notation enables a clear distinction of words,

facilitating their separation from the sentence
based on spaces. Subsequently, we convert all
uppercase characters to lowercase and replace the
underscore with a space in all words, obtaining
a list of words W representing the words and
their order in the input sentence. By employing
a dictionary f : X → Y , the list of signs S = f (W)
that the virtual character needs to display is
retrieved. Words not found in the dictionary will
be skipped, and no sign will be displayed for
those words.

The dictionary is designed as an injective
mapping f : X → Y , where X is the set
of words and Y is the set of signs. In
this study, the dictionary is based on the
QIPEDC 2D sign language video dataset [33],
which contains 4000 VSL words and phrases.
The dictionary’s architecture is intentionally
designed to be expandable, allowing for seamless
supplementation with data from other sources in
the future. This flexibility ensures adaptability
to the evolving needs of the sign language
community, accommodating new words and
expanding its linguistic coverage over time.

3.2.2. Fetching 3D Skeleton Motion Data
After encoding the words into VSL signs,

the corresponding motion data for the words
in the input sentence is fetched from the 3D
skeleton motion dataset. This data serves as
the foundation for animating and controlling
the movements of the virtual character. If
the required sign data is not available in the
3D sign language dataset, relevant 2D sign
language videos will be automatically fetched.
Subsequently, these videos undergo a process
to generate the necessary 3D skeleton motion
data with the proposed method in Section 3.1.
The newly created 3D sign language data is
then stored in the existing 3D sign language
dataset to expand its scope and enhance future
performance. This approach not only ensures the
availability of diverse sign data but also facilitates
the continuous expansion of the dataset, allowing
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for the integration of additional available sign
language resources.

3.2.3. Animating and Rendering
The input for this step consists of motion

data corresponding to the words or phrases in
the input sentence. The output is an animation
depicting a 3D virtual character representing sign
language. It is essential to ensure the coherence
of the movements that convey the sentence, as
the motion data represents individual words while
a sentence is composed of multiple words and
phrases. To achieve this, the 3D skeleton motion
data must be interconnected and integrated into a
virtual character to execute the movements.

To create animations, various techniques can
be employed to animate the virtual character. In
this study, we utilize Blender as the software
for animation construction. A new scene is
initialized within the software, comprising two
objects: a 3D SMPL-X character and a virtual
camera. The virtual character is positioned at
the origin Oxyz of the scene’s coordinate space.
The camera is oriented towards the character’s
shoulder, maintaining a distance that focuses on
the character’s hand movements in the rendered
images. The camera is set to an Euler angle of
(π2 , 0, 0).

After setting up the scene, lighting, virtual
character, and camera, the virtual character
performs each sign corresponding to each word
in the sentence. In some frames, the character
has fixed poses based on the 3D sign language
data, while in other frames, the character’s
movements are interpolated to create smooth
transitions between the fixed frames. The
character’s movements start in a rest pose in
the first frame. Next, the character sequentially
adopts the 3D sign language data for each sign
identified. Finally, the character’s movements
end with a return to the initial rest pose. To
provide a realistic experience for the user, the
first sign’s frame appears after about 0.66 seconds
from the start of the animation, subsequent signs

are displayed approximately 0.33 seconds apart,
and the character returns to the rest state within
0.66 seconds after performing the last sign. These
specific durations were derived through iterative
experiments and consultation with sign language
experts to ensure an optimal balance between
visual realism, user comfort, and the natural flow
of signing. However, motion data when applied
to the virtual character has two issues.

The first issue pertains to the rotation angle
of the pelvis, which can result in the virtual
character appearing inverted. To address this, we
propose recalculating the rotation angle using the
following formulas:

x′ =

x + π if x ≤ 0
x − π if x > 0

(9)

y′ = −y (10)

z′ = −z (11)

where x, y, z represent the coefficients
corresponding to the Euler rotation of the
pelvis bone as controlled by the 3D sign data,
while x′, y′, z′ denote the new Euler rotation
coefficients following the adjustment.

The second issue pertains to the uncontrolled
movement of certain body parts of the virtual
character. To address this, the body parts,
excluding the hands, are rendered static across
all frames, as sign language predominantly
emphasizes hand movements for expression,
rendering motion in other body parts superfluous.
To implement this solution, the rotation angles
of all bones governing the legs and head are
reset to their default values of (0, 0, 0) in Euler
rotation mode following each instance in which
the virtual character receives motion data. This
methodology ensures that the animation remains
concentrated on the pertinent gestures while
preserving a consistent and natural appearance.
After establishing the virtual character’s pose for
each frame, keyframes are assigned to each bone
to fix the rotation angles at those specific times,
thereby enabling the graphics tool to compute the
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Figure 6. Virtual character representing the word "đồ
ăn"(food) in sign language.

motion. Finally, the entire 3D animation of
the virtual character performing sign language is
displayed to the user through a video recording
of the entire process, from the virtual character
starting the first sign to completing the last sign.
The video is in mp4 format, with a resolution
of 1280x720, and shows 30 frames per second.
Fig. 6 captures a sign language performed by the
virtual character.

4. Experiments and Results

4.1. Data Descriptions

Using the proposed pipeline, we constructed
a 3D skeleton motion dataset for VSL based on
the QIPEDC dataset [33]. The resulting dataset
consists of over 500 3D skeleton motion samples,
each corresponding to a Vietnamese word or
phrase. By processing the 2D videos, essential
movements were extracted while redundant
actions were removed, ensuring that the 3D
motion data accurately represents the original
gestures. The dataset is continuously being
expanded to include more words and phrases,
enhancing its coverage and applicability.

The QIPEDC project developed a
comprehensive 2D dataset comprising 4,000
VSL signs containing a large number of sign
language 2D videos that cover a wide range of
vocabulary, including nouns, verbs, adjectives,
phrases, numbers, and letters. The primary
objective of the project is to improve access
for primary-level deaf students through the
use of VSL, thereby enhancing their academic
performance. The data was collected through

video recordings of deaf individuals who
possess expertise in VSL, ensuring that the
signs accurately represent the language used
within the deaf community. This approach not
only guarantees the authenticity of the signs but
also empowers deaf professionals by actively
involving them in the creation of educational
resources.

For the purpose of evaluating the
effectiveness of the proposed method, we
leveraged the QIPEDC dataset to build a 3D
skeleton motion dataset for VSL. To date, our
dataset has grown to include more than 500
words and phrases, covering a diverse range
of categories such as nouns, verbs, numbers,
and letters. It continues to be expanded, adding
new VSL words and phrases to further enhance
comprehensiveness and diversity.

4.2. Experiments

To evaluate the effectiveness of the proposed
method, we conducted two experiments
designed to address two distinct scenarios:
the representation of individual words and the
representation of sentences comprising multiple
words. Three sign language experts employed at
educational institutions for children with special
needs in Vietnam participated in the evaluation
of the proposed method. The participants
viewed videos rendered from 3D animations that
depicted the virtual character performing sign
language and subsequently responded to a series
of provided questions.

The objective of the first experiment is
to evaluate the quality of words or phrases
represented by the virtual character based
on two criteria: semantic accuracy and the
quality of movement display. In this experiment,
participants viewed videos of individual signs
and recorded their meanings, along with scores
assessing the display quality. A total of 16 signs
were selected for evaluation, consisting of 8
one-handed signs and 8 two-handed signs. Each
sign was presented through a video featuring a
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virtual character. The selected signs encompass
commonly used words in communicative
and educational contexts, including nouns,
verbs, adjectives, numbers, and letters. This
selection ensures that the dataset captures various
linguistic categories relevant to sign language
communication.

As the experiment sessions were conducted
independently, the test dataset for each participant
remained consistent in terms of the displayed
signs and the order of videos. The semantic
responses were categorized as "understand",
"not understand", or "misunderstand", which
were then used to evaluate the semantic
criterion—specifically, the clarity of the signs
performed by the virtual character. Participants
rated the display quality of the animation on
a scale from 1 to 5, where 1 indicated "very
poor", 2 indicated "poor", 3 indicated "average",
4 indicated "good", and 5 indicated "very good".
The evaluations provided by three experts were
aggregated and averaged using the Mean Opinion
Score (MOS) method [34].

In the second experiment, participants
watched three videos featuring a virtual character
performing sign language sentences. They
were tasked with interpreting the meaning of
each performed sentence and identifying the
number of signs it contained. The experiment
was designed to assess the virtual character’s
ability to convey complete sentences rather
than isolated words or phrases. The tested
sentences incorporated both one-handed and
two-handed signs, reflecting the natural variation
observed in sign language communication. This
approach allowed us to evaluate not only the
accuracy of individual sign representations
but also the overall coherence and fluency of
the virtual character’s signing. Following their
reports, the responses were evaluated using
the Mean Squared Error (MSE) metric [35].
This assessment allowed for an evaluation of
the virtual character’s proficiency in executing
multiple signs within a sentence.

Figure 7. Understanding proportion in words and
phrases.
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Figure 8. Displaying quality of words and phrases.

4.3. Results

Fig. 7 and Fig. 8 summarize the responses
from experts regarding 16 signs, comprising
8 one-handed signs and 8 two-handed signs,
represented by virtual characters in the first
experiment. The distribution of the symbols, as
evaluated by the experimental participants based
on semantic assessment criteria, is illustrated
in Fig. 7. Additionally, the evaluation results
concerning the display quality of each sign are
depicted in Fig. 8

The results indicate that the comprehension
rate for the generated signs representing
sign language is 64.71%. This finding is
particularly noteworthy, especially in light of the
typical comprehension rates in sign language
communication, which generally range from 70%
to 75%, as reported by sign language experts.
Within this context, our proposed method
demonstrates exceptional efficacy in representing
single-handed signs, achieving a comprehension
rate of up to 70.37%. These results indicate that
the proposed method effectively represents sign
language, particularly with regard to one-handed
signs.

The evaluation results provided by the experts
regarding the quality of the rendered videos were
aggregated and utilized to calculate the mean
and standard deviation, as presented in Fig. 8,
according to the equation 12.

MOS =
1
N

N∑
n=1

Rn (12)

where N is the number of participants and R is
the quality score given by the participants. As we
can see from the table, one-handed signs received
a higher average rating of 3.29, indicating they
are perceived as more effective, though their
high standard deviation of 1.14 suggests varied
opinions among users. In contrast, two-handed
signs had a lower average rating of 2.83, with
a more consistent rating reflected in a standard
deviation of 0.90, suggesting general agreement
on their lesser effectiveness. The overall average
for all signs was 3.06, indicating room for
improvement across the board. These insights
suggest a focus on enhancing one-handed signs
while re-evaluating the design and usability of
two-handed signs to improve user engagement
and understanding.

In the second experiment, the results revealed
that all experts were able to understand the
meaning of every sentence presented with a
quite high degree of clarity. Regarding the
identification of the number of signs in each
sentence, the results are summarized in Table 3.
The majority of expert evaluations aligned with
the actual number of signs, with only one minor
deviation observed in Sentence 3, where Expert 1
reported a different count. The MSE between the
average number of signs identified by the experts
(X) and the actual number of signs present in the
sentences (Y) is calculated using the formula 13.

MS E =
1
n

n∑
i=1

(Xi − Yi)2 (13)

The MSE value of 0.037 demonstrates the
proposed method’s ability to represent entire
sentences in sign language, rather than being
limited to individual, discrete words.

The results of these experiments indicate
that the proposed sign language representation
method can effectively convey the content of
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Table 3. Result of Experiment 2

Sentence Number
of signs Expert 1 Expert 2 Expert 3

1 7 7 7 7
2 8 8 8 8
3 9 8 9 9

various signs. Notably, the virtual character’s
ability to perform basic one-handed signs
received high ratings, with comprehension levels
approaching real-world rates. Additionally, the
results of Experiment 2 demonstrate the virtual
character’s stable ability to perform multiple
consecutive signs within a sentence. All the
figures confirm the potential of the proposed
method outlined in the paper when applied to
communication support systems for the hearing
impaired.

5. Conclusion

In this study, we have proposed a novel
method for representing sign language using 3D
virtual characters. The approach involves two
stages: constructing 3D skeleton motion for
words and phrases, and creating corresponding
3D animations. Unlike existing methods that
utilize various forms of notation to represent sign
language, our approach introduces a completely
new method, marking the first research effort
to leverage skeleton motion data for animating
characters that represent sign language. Its key
advantage is the ease of expanding the vocabulary
dataset, as generating 3D skeleton motion data
requires only video input showing an individual
performing gestures for a single word or phrase.
In this study, a dataset comprising over 500 words
and phrases in VSL has been constructed using
the proposed method and is continuously being
expanded.

The output animations were evaluated by sign
language experts in Vietnam, yielding positive
results. Experimental findings demonstrate that
the proposed method effectively represents both

individual words and complete sentences in sign
language, highlighting its potential for facilitating
the translation of text into sign language and
advancing accessibility for the deaf community.
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