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Abstract: In multi-task reinforcement learning, an agent using off-policy learning can leverage sam-
ples from other tasks to improve its learning process. When the reward signal from the environment is
sparse, the agent in each task spends most of its training time exploring the environment. Therefore,
the shared experiences between tasks can generally be considered as samples derived from an explo-
ration policy. However, when the exploitation phase begins, the shared experience framework must
account for the divergence of policies across different learning tasks. However, when the exploita-
tion phase starts, the sharing experience framework has to take into account the policies’ divergence
issue of different learning tasks. Our work addresses this issue by employing an adaptive weight for
shared experiences. First, a central buffer collects and shares the experiences from each individual
task. To mitigate the effects of policy divergence among multiple tasks, we propose an algorithm that
measures policy distances using the Sinkhorn distance. The computed distances are used to assign
a specific weight to each shared sample, controlling the amount of knowledge shared as the policies
begin to diverge during the exploitation phase. We conduct experiments in two goal-based multi-
task learning environments to evaluate the effectiveness of our approach. The results show that our
proposed method can improve from 8%-10% in average rewards in comparison with other baselines.

Keywords: multi-task reinforcement learning, off-policy, experience sharing

1. Introduction

In reinforcement learning (RL), an agent is
trained to achieve its goals through interactions
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with the environment. The agent’s objectives
are represented by the reward signals provided
for each action. By maximizing discounted
cumulative rewards over a sequence of actions,
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the agent can reach its goal. RL has been
applied to various real-world problems and has
achieved promising results [1, 2]. Among
different RL problem settings, the sparse-reward
setting is defined by rewards that are only relevant
for specific state-action pairs. Therefore, the
agent must employ an efficient exploration and
exploitation strategy to discover these state-action
pairs and shape its policy [3]. The multi-
task reinforcement learning (MTRL) framework
employs different goal settings within the same
environment [4, 5]. By allowing each agent
to access the experiences of others, the shared
experience framework in MTRL is designed to
improve data efficiency by reducing the total
number of samples required to train all tasks
[6]. It is expected that an agent optimized for
a specific task can extract relevant information
from experiences derived from other tasks. If
these experiences come from an exploration
policy, it is straightforward to rely on that
exploration to learn the optimal policy, as in
standard off-policy learning [7]. In a sparse
reward environment, an agent can use other
agents’ experiences as additional exploration
samples to accelerate its exploration phase.
Roughly speaking, the sparse condition alleviates
the exploitation-divergence issue in the shared
experience framework within the MTRL setting.

In general, approaches for training agents
in multi-task reinforcement learning (MTRL)
can be divided into several subcategories.
Feature-based approaches focus on learning an
efficient representation that enables the agent
to optimize the reward function. Gradient-
based approaches exploit gradient information to
maximize training efficiency in multi-task RL.
For instance, [8] accumulates shared gradients
through a central model from each downstream
task, while more advanced methods employ
normalization procedures to eliminate gradient
disagreement among tasks [9]. In a sparse-reward
environment, [10] extends the standard fitted Q-
iteration algorithm to improve the shared feature

representation.
For experience-sharing in MTRL training,

off-policy learning algorithms such as DQN [11]
and SAC [12] can be used to train on experiences
from other tasks. The work in [6] discusses
the sharing capability among multiple tasks by
employing the V-trace correction. In [13], the
authors use a filtered agent to select the most
relevant experiences for a specific task from all
available agents’ experiences. These selected
experiences are expected to reduce the effects
of distribution shift. Collectively, these studies
suggest that if the policies are similar enough,
directly using experiences from other tasks can
improve the overall training process. From
a domain adaptation perspective, Huang et al.
[14] generate a sequence of tasks that can be
used to improve learning efficiency based on
the Wasserstein barycenter. Several works [15,
16] rely on optimal transport to establish policy
distances in imitation learning or offline RL.

In this paper, we explore the idea of directly
sharing training experiences among multiple
tasks in a sparse-reward environment. We
propose the Weighted Experience Sharing using
Sinkhorn Distances (WES-SD) method, which is
based on Soft Actor-Critic off-policy learning.
In WES-SD, a common replay buffer is used
to collect training samples from individual
tasks. To reduce sample distribution mismatch
between tasks, an adaptive weight is assigned
to each agent’s collected experiences. When
an experience is shared with another agent, this
weight is incorporated into the actor and critic
update according to the loss function. This
procedure allows experiences from the initial
exploration phase to improve sample efficiency
by assigning them a high weight. Once each
agent begins to optimize its specific task, WES-
SD employs Sinkhorn distances to measure
policy divergence. By detecting divergence,
the shared experiences are reweighted based on
the degree of policy difference between tasks.
This updated weight provides a flexible way to
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control how much information is shared across
different tasks. To evaluate the effectiveness
of our method, we conducted experiments on
two goal-based navigation environments using 2,
3, and 4-task settings. WES-SD outperformed
the baseline methods in both environments,
improving average rewards by approximately 8%
to 10%. Compared to other baselines, our
approach reduces the effects of policy divergence
while maintaining effective sharing ratios during
exploration.

2. Related Works

Multitask RL: While it is possible to
train an individual policy to optimize each
targeted reward, MTRL methods aim to improve
training efficiency by optimizing all environments
simultaneously and reusing knowledge from
other tasks [8, 17]. Possible approaches include
gradient-based regularization and experience
sharing. For gradient-based methods, MAML
[8] attempts to find a direction that accounts
for the optimized direction of each policy.
Meanwhile, PCGrad employs an operator to
resolve conflicts in the gradient update directions
across multiple tasks [9]. Distral [18] proposes a
framework that maximizes task-based objectives
while minimizing the distance to a central policy.
From an optimization perspective, Distral can be
categorized as a gradient-based method in which
regularization constrains the update direction of
the policy. Instead of using a central policy,
the work in[19] proposes a guidance policy
for efficiently collecting experiences in MTRL.
On the other hand, the work of SACMT [20]
successfully extends SAC to the multi-task RL
domain. The main drawback of the gradient-
based approach is filtering out the noisy gradients
from different tasks.

From an experience-sharing perspective,
shared samples act as exploration experiences
that can be used to optimize a specific reward
function. Unlike a standard exploration policy,

samples coming from a different task must be
adjusted or selected to remove bias toward the
shared reward functions [6, 13, 21]. However,
directly using data from other tasks introduces
bias and can negatively interfere with the learning
of the current tasks. Importance sampling (IS) is
a popular approach that reweights each sample
to correct the bias resulting from mismatches
between task distributions [22, 23]. Although IS
has a solid theoretical foundation [22], empirical
results indicate that its estimates suffer from high
variance and are only useful in certain cases.

Policy Distance: Quantifying the
discrepancy between tasks is critical for modeling
the connections between different policies in
many RL problems. One popular approach relies
on various information-theoretic metrics, such
as Kullback–Leibler (KL) divergence [24] or
mutual information [25]. These metrics have
the practical advantage of providing closed-form
expressions for some widely used parametric
policy distributions or being easily estimated
from samples. Alternatively, optimal transport
distances and their entropy-regularized versions
[26] have recently been applied to several RL
problems, including imitation learning [27, 28],
unsupervised RL [29], and offline RL [24]. In
addition to KL divergence, optimal transport
distances offer a practical means of measuring
policy differences. For example, the authors in
[30] propose an auxiliary reward built upon the
Wasserstein distance between two trajectories to
distill knowledge between policies. Recently,
optimal transport has emerged as a robust
framework for modeling policy distances across
various RL domains, such as imitation learning
and offline training [15, 16].

3. Backgrounds

Our WES-SD employs the setting of a multi-
task environment with spare-reward of N tasks. It
can be formulated as a tuple of ⟨S,A,T ,Ri,Ei, γ⟩

with i = 1 . . .N as follows:
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• Let S be the set of states in the MDP,
A is the set of actions with the transition
function T : S × A → S. An initial
probability distribution function is provided
if necessary. In general, we can assume the
initial distribution is the uniform distribution
over S.

• For each task i, given the discount factor γ,
a policy πi is trained to maximize the reward
function Ri with respect to a specific set of
terminal state Ei. The reward function Ri is
defined as a mapping:

Ri : S → R (1)

Additionally, we assume that the reward
function Ri is sparse, meaning that for most
of states, the reward signal is 0

Ri(s) = {0|∀s ∈ S, s < Ei}.

Only a limited set of terminated states se ∈

Ei provide a positive rewards Ri(se) > 0. An
episode terminates when the agent reaches
one of these terminal states. We further
assume that |Ei| ≪ S.

• The objective function of task i is defined as
the expected discounted cumulative reward
when starting from an initial state s0 and
following the policy πi:

J(πi) = Eπi

∑
t≥0

γtRi(st+1)

 (2)

where st+1 ∼ T (st, a ∼ πi(.|st)) and s0 ∼ P0

• The overall objective across N tasks is
defined as the sum of individual objective
functions:

J({πN
i=1}) =

∑
i

J(πi) (3)

In other words, each task i differs only in its
the specific reward function Ri and terminal state

Ei. To maximize the total objective function in
Equation 3, one can choose to train each task
i separately to maximize its individual objective
J(πi).

In our work, we consider each task i as a
subtask which can be used to construct a central
policy π0. The π0 is trained to maximize the
following new reward function R0 : S → R as
follow:

R0(s) =

1, if
∑N

i=1 Ri(s) > 0
0, otherwise

(4)

We further assume that each subtask reward
functions Ri are normalized to the range [0, 1]
and R0 can be interpreted as an indicator function.
The terminated set of states of the central policy
E0 =

⋃N
i=1 Ei, which is a combination of ending

set of each task i.
Our optimization framework for multi-task

learning is built on an off-policy learning method
that allows experiences can be shared across
different tasks. We choose the popular Soft
Actor-Critics (SAC) [12] algorithm as the base
learning method. In SAC, the policy is trained to
maximize a maximum entropy objective, which
augments the expected discounted cumulative
rewards with expected entropy H(π(·|st)) of the
policy at each timestep:

J(π) =
∑
t=0

Est ,atγ
t[r(st, at) + αH(π(·|st))

]
. (5)

To maximize the objective in Equation 5, the
SAC framework alternates between evaluating
the soft-critic value function Q(s, a) and updating
the actor to minimize the Kullback-Leibler (KL)
divergence between the learning policy and the
policy derived from the soft Q-value function.
The entropy coefficient term α plays an important
role to control the exploration behaviour of the
learned SAC policy. For a given environment,
one can set a target entropy Htarget and update
the value of α to match the target value [31].
Although, other optimization algorithm, such as
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DQN, can serve as the underlying learning policy,
SAC is chosen as it is more flexible in exploration
by controlling the regularized entropy in Equation
5. In the sparse settings of our work, a high target
entropy Htarget helps stabilize the exploration
phase.

4. Method

4.1. Sharing Experiences Framework through
Policy Divergence

To share experiences among multi-task agent
training, we propose the Weighted Experience
Sharing with Sinkhorn Distance (WES-SD)
method. Our approach utilizes a central buffer
that aggregates and directly shares experiences.
To control the effects of policy divergence
across tasks, an adaptive weighting mechanism
is applied to each shared experience. These
weights are designed to enhance experience
sharing during the exploration phase and mitigate
the effects of policy divergence during the
exploitation phase. An overview of our
framework is shown in Figure 1. For a
specific objective Ti, each agent interacts with
its environment to maximize its own reward
function. The experiences of the ith agent are
collected and stored in the buffer replay Bi as a
tuple of state s, action a, next state s

′

and reward
r. An additional weight w is added, initially set to
1, and is later used for training the actor and critic
of SAC.

In order to use experiences from other tasks, a
sharing buffer B0 is used to collect samples from
all the tasks T1,T2, . . . ,TN . Each agent’s buffer
Bi is then combined with its own experiences
and samples from common buffer B0. The buffer
Bi is used to train its policy πi using the SAC
algorithm. At each SAC updating step of the ith

agent, additional samples from the central buffer
B0 are added to buffer Bi. However, the weight of
these additional samples is adjusted to control the
effects of policy divergence. In contrast, samples
originating from task i always have a weight of 1.

Figure 1. An overview of our Weighted Experience
Sharing with Sinkhorn Distance framework. The

central buffer B0 aggregates samples from individual
tasks, such as, Bi and B j in this example. When a
sample is drawn from B0 to Bi, it is assigned an

additional weight to account for the policy
divergence.

As illustrated in Figure 1, B0 serves as the
buffer of the central policy π0, which is trained
to maximize the reward function R0 in Equation
4. The purpose of buffer B0 is to act as a temporal
shared memory among the policies. Each sample
in B0 is assigned a specific weight to estimate the
divergence between policy πi to the central π0:

wBi→B0 =
d(πi, π0)
C(π0)

, (6)

where d(πi, π0) is the measured divergence of
policy πi to π0 and C(π0) is the normalized factor
for the central policy π0. Based on the weight in
Equation 6, when task j draws samples from B0,
a reversed sample weight is calculated as follows:

wB0→B j =
d(π j, π0)

C(π j)
(7)
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To avoid training an additional central policy
π0, we further combine Equation 6 and Equation
7 by incorporating the normalization constant
C(π0) to C(π j). Specifically, an experience from
buffer Bi can be shared to buffer B j with a new
weight:

wBi→B j = C(π j)
d(πi, π0)
d(π j, π0)

(8)

At the early stage of training, when the two
policies πi and π j are in the exploration phase and
exhibit similar performance, the ratio d(πi,π0)

d(π j,π0) is
closed to 1. However, at the later stage, when
the two policies πi and π j begin to optimize their
targeted reward function Ri, they start to diverge.
In this case, an experience collected from task i
may introduce noise to the task j. Our WES-SD
is designed to detect such changes during training
process and to mitigate the effect of distribution
drifting to the policy π j when its training buffer
B j incorporates samples from other policies πi.

4.2. Estimated the Policy Divergence with
Sinkhorn Distance

To estimate the transfer weight in Equation
8, it is required to compute the policy divergence
between a specific task πi to the central policy
π0. There are several methods to compute the
policy divergence such as KL-divergence [18].
However, this approach requires direct access to
the central policy π0, which could be very noisy
because the reward function R0 is combination of
task-specific rewards.

In our work, we propose an alternative
approach that measures the policy distance
d(πi, π j), or di, j for short, between each task
pair i, j and uses this measurement to estimate
the divergence measurement di,0. As the
state and actions distributions in a sparse
reward environment change slowly during the
exploration phase, we can rely on the buffer
replay Bi to represent the distribution of the
policy πi. As our sharing framework is required
frequent computation the pairwise distance

d(πi, π j), we employ the Sinkhorn Distance [26],
which is widely used for comparing distributions
based on data samples. For each task πi and
π j, we take the last k trajectories from their
respective replay buffers Bi and B j. The sample
representation from each buffer is a tuple of <
s, a, s′, r >. Without the lost of generality, we
denote the samples from the two buffer replays
as {τi} and {τ j}, respectively.

The Sinkhorn Distance modifies the transport
cost of the Wasserstein Distance by subtracting
an entropy regularize term. The introduced
entropy term makes the computation of
the Wasserstein Distance more tractable by
smoothing the transport plan. By leveraging
this smooth property, the original optimization
is converted into an convex one that can be
solved by iterative methods with quadratic time
complextiy. Specifically, the Sinkhorn Distance
finds the transport matrix P which maximizes the
following objective function Wϵ :

Wϵ = min
P∈U({τi},{τ j})

⟨C, P⟩ − ϵH(P) (9)

where U({τi}, {τ j}) denotes the set of transport
mappings from {τi} to {τ j}, H(P) denotes the
entropy of the mapping P and ϵ is the weight of
the entropy regularizer. The transportation cost
matrix C defines the cost for moving a sample
from one distribution to another. Since each
distribution is represented by a set of observation
from the underlying task, we employ a L1-
distance between observation as follows:

C(x, y) = ||x − y|| (10)

with x ∈ {τi}, y ∈ {τ j}.
In [26], the author proposes to find the

solution of Equation 9 in the following form:

P∗ = diag(u∗) ⊙ K ⊙ diag(v∗) (11)

where u∗ and v∗ are the two diagonal
parameterized of P∗, K is the kernel matrix,
and ⊙ denotes element-wise multiplication
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between two matrixes. The kernel matrix K is
the smooth version of the cost matrix C obtained
using the regularized term:

K = exp(−
C
ϵ

) (12)

The optimal value u∗, v∗ can be computed by an
iterative process [26]. The Algorithm 1 describes
the computing of Sinkhorn Distance between two
set of trajectories.

Algorithm 1 Sinkhorn Distance (SD) for
computing Wϵ({τi}, {τ j}) with ϵ is the regularized
entropy weight

1: SD({τi}, {τ j})
2: Initialize C as in Equation 10
3: K ← exp(−C

ϵ )
4: Initialize u← 1, v0 ← 1
5: for t = 1, 2, . . . ,max iter:
6: ut ←

1
Kvt−1

7: vt ←
1

Kut−1
8: end for
9: P← diag(ut) ⊙ K ⊙ diag(vt)

10: Return trace(CT P)

Given the Algorithm 1, the distance can
be computed for any pair of trajectory set πi

and π j. Based on the computed distance, we
derive Algorithm 2, which outputs the pairwise
distance as defined in Equation 8. Firstly, if Bi

and B j come from the two different tasks, it is
straightforward to compute the distance li, j by
relying on the last k trajectories. We rely on
the last k trajectory in Line 5 because we want
to focus on the divergence of the two policies
based on their most recent rollouts. The number
of trajectory k is chosen as a hyper-parameter.
Secondly, to stabilize the distance measuremen,
we employ a running average with coefficient λ
and the previous pairwise distance d̂i, j. If the λ
is set to 1, the new distance is used directly for
computing the sharing weight.

When the two buffers Bi and B j come from
the same task, the distance between the last k

trajectories and the last 2k to k + 1 trajectories
are used as stated in Line 7 of Algorithm 2. This
value measures the divergence between the policy
i with itself. The self-distance di,i is later used as
the normalized constant C(πi) as in the Equation
8. Note that, for each of the two cases i = j or
i , j, the two buffers, Bi and B j, are assumed
to contain enough samples to form two trajectory
sets {τi}, {τ j}, respectively.

In our approach, we do not train directly π0
because training π0 requires a combination of
experiences from each individual task. Instead,
we rely on the pairwise distance of between each
pair individual task i to approximate the distance
di,0. Because the central policy is a mixture
of other tasks, we propose to estimate di,0 by
averaging the distance from task i to the other N
tasks as follows:

di,0 =

∑N
j=1 di, j

N
. (13)

Algorithm 2 Computing the policy distance
between two policy πi and π j with running
average parameter λ

1: Distance(Bi, B j, d̂i, j, k, λ)
2: Let Bi = {τ

0
i , . . . τ

h
i }

3: Let B j = {τ
0
j , . . . τ

s
j}

4: if i = j:
5: li, j = SD({τh−2k+1→h−k

i }, {τh−k+1→h
i })

6: if i , j:
7: li, j = SD({τh−k+1→h

i }, {τs−k+1→s
j })

8: di, j = (1 − λ)d̂i, j + λli, j
9: Return di, j

By combining the Algorithm 2 and Equation
13, it is possible to estimate the pairwise
distance for all the policies π0, π1, . . . , πN .
Since the pairwise distance could be noisy,
the variance can be controlled by adjusting
the number of trajectory k and the running
average value λ. However, in the sparse signal
reward environment, the policy focuses on the
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exploration, so the pairwise distance is expected
to be estimated stably.

4.3. Training Pipeline by Weighting Experiences
with Task Distance

Using the proposed distance estimation in
Algorithm 2, we arrive at the following training
procedure in Algorithm 3. The algorithm receives
a list of policies πi and trains them by the SAC
algorithm. The main difference between WES-
SD and the SAC baseline is the introduction of the
shared replay buffer B0 and the pairwise distance
di, j. Before training, all the buffers are empty and
the distances di, j are initialized to 1. During, each
buffer Bi collects the experiences as the policy πi

interact swith its environment Ti. Each collect
sample is assigned a training weight w according
to the Equation 8 for subsequent SAC updates.
The weight of samples of task i in the buffer
Bi are set to the default value 1. However, in
the central buffer B0, the weight is the reverse
distance from task ith to the central policy, which
is 1/di,0, specifically.

Algorithm 3 Experience sharing between multi-
task in with sharing buffer replay

1: TRAIN(π1, π2, ..., πN ,M, δ)
2: Initialize Bi = {},∀i ∈ [0, 1, . . . ,N]
3: Initialize di, j = 1,∀i, j ∈ [0, 1, . . . ,N]
4: for(i = 1, . . . ,N):
5: Let πi interact with environment Ti

6: Bi ← (s, a, s′, r,w = 1)
7: B0 ← (s, a, s′, r,w = 1/di,0)
8: for( j = 1, . . . ,N):
9: for(i = 1, . . . ,M):

10: Draw (s, a, s′, r,w) ∼ B0
11: B j ← (s, a, s′, r,w′ = δ ∗ w ∗ d j, j/d j,0)
12: Run SAC update(π j, B j)
13: if (Warm Up): Continue
14: for(i, j = 1, . . . ,N):
15: di, j ← Distance(Bi, B j, di, j)
16: di,0 ←

∑N
j=1 di, j/N

When a sample is drawn from the central

buffer B0 and added to Bi, its weight is updated
as in Line number 11 and is added to the shared
experiences. The normalized constant to each
task j, C(π j), is computed as a divergence from
task jth to itself. We further employ a sharing
constant δ, which serves as a hyperparameter
to control the sharing weight. The value of δ
depends on the nature of the environment and
the combined tas T0. Moreover, the number of
sharing experiences M is introduced to balance
intra-task and inter-task samples. In practice,
we select M as a percentage of the newly added
samples during the sampling steps in Line 5.
After new samples from the central buffer B0 are
added to B j, each policy π j is trained with the
SAC objective in Equation 5. We update the pair-
wise distance matrix di, j using the procedure from
Line number 14-16. To prevent an empty buffer
when computing the distance, a warm-up phase
is implemented at the beginning of the training
stage, as shown in Line 13.

Complexity Analysis: Our WES-SD has
a complexity of O(NM) for drawing from the
central buffer replay B0. The training time of
the each πi would be the same as SAC, with
more training samples. Additionally, tWES-
SD must update the pair-wise distance di j with
a complexity if O(N2). The computation
of di j can be approximated by the runtime
complexity of Sinkhorn Distance between a two
sets of k trajectories, each with Tmax timesteps.
The complexity of Sinkhorn Distance can be
estimated by O(cS 2), where S is the maximum
total number of samples in each set {τi}, {τ j} and
c is a constant determined by the regularized
entropy weighted ϵ. Therefore, at each training
steps, the time complexity of our WES-SD is
O(NM + cN2S 2), compared to the standard SAC
algorithm. The memory complexity is O(N |B| +
N2) with |B| denoted the maximum capacity of the
replay buffer.
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5. Experiment Results and Discussions

In this section, we design our experiment to
asnwer the following research questions (RQ):

• RQ1: The performance of our sharing
framework in comparison with other popular
sharing frameworks and other distance-
based approaches?

• RQ2: How sensitive of the sharing constant
δ in controlling the policies’ divergence in
WES-SD?

• RQ3: How the state representation could
affect the performance of WES-SD?

• RQ4: Ablation study on other
hyperparameters and time comparision
of the proposed WES-SD.

5.1. Experiment Settings

Environments. We evaluate the proposed
algorithm using two navigation environments.
During the training phase, each agent starts
at a random position and moves within the
environments. Agents receive position reward
when they reach the target and the episode is
terminated. In the testing phase, the agents’ task
is to move to target position. Different tasks have
different goal positions, which are fixed between
training and testing phases. The details of each
environment are described as follows:

Corridor-TwoRooms: We reuse the simple
set up of multi-tasks with two rooms and a
connecting corridor between two rooms in [18].
The environments are tested with 2, 3 and 4 tasks,
which are illustrated in the left image of Fig. 2.
The agent is started at a random position and can
move into four direction: up, down, left, right. An
episode is terminated if the agent can reach the
goal position or its number of interactions reaches
to a maximum timestep. When the agent can
reach the goal, agents receive a reward maximum
at 1 and reduce linearly with the length of the
episode. The input observation is a tuple of 3×3

squares around the agent. The value of each
element is one of 0-empty, 1-wall or 2-target.

MiniGrid-FourRooms: The environment is
a discrete, grid-based spare-reward environment
where the agent (the red triangle) navigates
in a maze with partial observations of the
environment. In our experiment, we use the
custom FourRooms environment with different
goals in each task, which is illustrated in the right
image of Fig. 2. There are walls which divided
each room. The walls are fixed in the environment
and do not change between episodes. In this
setting, the starting position and direction of the
agent is randomized at a valid square. The
agent can carry one of three actions: moving
forward, turn left or turn right. Similarly to the
Corridor-TwoRooms environment, the reward has
a maximum value at 1 and reduce linearly with
the length of the episode. The agent receives zero
reward and is terminated if it performs more than
a maximum number of actions.

Figure 2. The two testing environments:
Corridor-TwoRooms on the left image and

Minigrid-FourRooms on the right image. The agent is
denote with red with its observation distance and the

target positions are denoted with green square.

Baselines. We compare our WES-SD with
several baselines, which can be divided into three
groups:

• SAC: We train a standard SAC agent for
each tasks. As our environment is discrete
action, we follow the work in [32], which
adapts the SAC framework for discrete
action environments.
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Table 1. Hyper-parameters for models and training
settings

Params Two Room Minigrid-
Corridor FourRoom

Observation 1x3x3 3x7x7
No. of Actions 4 3
Feature Type MLP 2xConv2D
Buffer size 25K 100K

Warmup buffer 5K 5K
Minibatch size 128 128

Entropy 0.6 0.6
Training Steps 50K 200K

• SAC-Sharing: We employ a simple version
of directly experience sharing based on SAC
agents. Each agent can use experiences from
other tasks for optimizing its training update.
The sharing mechanism is follow the Alg.
1, except the updated weight at line 8. In
the SAC-Sharing method, all the pair-wise
distance is set to 1. Thus, the sharing weight
now depends only on the sharing constant
δ. We vary the sharing constant δ in the set
of {0.2, 0.5, 1.0}, which aims to control the
sharing information with different degrees.
Note that, a sharing constant δ = 1.0 means
that the samples from B0 have equals weight
to samples in each of Bi.

• SAC-MT [20], PCGrad [9], Distral [18]:
we employ the three multi-task sharing
baselines from the literature to compare
its effectiveness with our method in sparse
multi-task environments.

All sharing methods are implemented based
on SAC algorithm for a fair comparison. Network
architecture and common hyper-parameters are
kept the same for all methods of the same types.
We give a summarize of key hyperparameters in
the Table 1. For our WES-SD method, the sharing
constant is chosen at δ = 0.2, the number of
trajectory k = 3, and the running weights λ = 0.8.
The number of sharing samples M is selected

to equal with the new collected samples of each
buffer Bi in each training iteration.

Given a multi-task training set up, each tasks
is trained parallel given the maximum number of
interactions steps. For the number of training
steps, as the Corridor-TwoRooms environment
has a low complexity, the maximum number of
steps is set with 50K samples. For the Minigrid-
FourRooms environment, we set the maximum
interaction steps for 200K steps. For each
environment and number of tasks, we train with
3 different seeds and report the average testing
rewards on all goals. The testing rewards are
average across 100 trajectory for each tasks.

5.2. RQ1: Main Results

We provide the testing rewards for the
Corridor-TwoRooms settings in Table 2 and the
Minigrid-FourRooms in Table 3. In the first
environment, our WES-SD achieves the best
performance in 2 of 3 testing configs. The
SACMT method has the best performance on
the remaining 2-tasks setting while our method
ranks third with a slightly lower performance.
Our method has the best rank of 1.7 and the
best reward of 0.42 in average. Surprisingly, the
SAC baseline without sharing has the second-best
performance. The third performance method is
the SAC-Sharing baseline with the sharing weight
δ = 0.5. The two sharing-based approaches,
SACMT and Distral, have lower performance
than our WES-SD and only have an average rank
of 4.3.

Similarly, in the Minigrid-Fourooms
environment, our WES-SD has the best
performance in all the three settings. The
SAC-Sharing baseline with δ = 0.5 and δ = 1.0
rank second and third place in average ranking,
respectively. Our method achieves the highest
performance. As our distance can be adapted
to different phase of each individual policy, it
outperforms the SAC baseline with constant
weight. For other sharing-based methods, the
SACMT has the most competitive performance
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Table 2. Results with average and the standard deviation of testing rewards on Corridor-TwoRooms environment
in the configs of 2, 3 and 4 multi-tasks. The best, second and third performance for each columns are highlighted

with bold, underline and italics, respectively.

Method 2 tasks 3 tasks 4 tasks Avg. Rewards Avg. Rank
SAC 0.41 ± 0.04 0.36 ± 0.13 0.36 ± 0.07 0.38 4.0

SAC-Sharing (δ = 0.2) 0.45 ± 0.13 0.23 ± 0.06 0.32 ± 0.07 0.33 4.0
SAC-Sharing (δ = 0.5) 0.42 ± 0.06 0.38 ± 0.08 0.29 ± 0.08 0.36 4.0
SAC-Sharing (δ = 1.0) 0.34 ± 0.05 0.22 ± 0.05 0.24 ± 0.12 0.27 7.3

SACMT 0.46 ± 0.11 0.31 ± 0.12 0.28 ± 0.12 0.35 4.3
PCGrad 0.32 ± 0.24 0.40 ± 0.07 0.23 ± 0.11 0.29 6.0
Distral 0.36 ± 0.03 0.38 ± 0.05 0.31 ± 0.14 0.35 4.3

WES-SD 0.44 ± 0.14 0.43 ± 0.09 0.39 ± 0.04 0.42 1.7

Table 3. Results with average and the standard deviation of testing rewards on Minigrid-FourRooms environment
in the configs of 2, 3 and 4 multi-tasks. The best, second and third performance for each columns are highlighted

with bold, underline and italics, respectively

Method 2 tasks 3 tasks 4 tasks Avg. Rewards Avg. Rank
SAC 0.23 ± 0.10 0.24 ± 0.02 0.18 ± 0.04 0.22 5.3

SAC-Sharing (δ = 0.2) 0.25 ± 0.08 0.22 ± 0.02 0.23 ± 0.03 0.23 4.7
SAC-Sharing (δ = 0.5) 0.26 ± 0.01 0.25 ± 0.01 0.21 ± 0.04 0.24 3.0
SAC-Sharing (δ = 1.0) 0.27 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.24 3.3

SACMT 0.26 ± 0.05 0.24 ± 0.04 0.20 ± 0.04 0.23 3.7
PCGrad 0.23 ± 0.01 0.24 ± 0.02 0.20 ± 0.03 0.22 4.7
Distral 0.16 ± 0.07 0.19 ± 0.05 0.14 ± 0.07 0.16 8.0

WES-SD 0.29 ± 0.03 0.26 ± 0.01 0.24 ± 0.02 0.26 1.0

which is slightly lower than the constant weight
baselines.

Note that, in the two settings, the Distral
method which employs the KL-divergence for
adjusting the central policy fails to achieve a good
performance. It can be explained that the KL-
divergence is more sensitive to noise. In a sparse-
reward environment, each task policy is mostly
in the exploration mode with high amount of
noise signal from environment. Hence, the KL-
divergence makes the central policy unstable. On
the other hand, our WES-SD is designed based
on the Sinkhorn distance which is more robust to
noise and can improve the average rewards 20%
in comparison to Distral.

Table 4. Results with average and the standard
deviation of testing rewards on the 4-tasks setting of
Corridor-TwoRooms and Minigrid-FourRooms with

different sharing constant values δ

Sharing Corridor- Minigrid-
Constant TwoRooms FourRooms
δ = 0.1 0.36 ± 0.15 0.21 ± 0.03
δ = 0.2 0.39 ± 0.04 0.24 ± 0.02
δ = 0.5 0.29 ± 0.07 0.21 ± 0.04
δ = 1.0 0.34 ± 0.03 0.22 ± 0.03

5.3. RQ2: The Effects of Sharing Constant δ
From the results in the Table 2 and 3, it is

clear that the sharing constant δ has a significant
impart on the weight sharing performance. In this
section, we further vary the sharing constant δ as
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Table 5. Results with different observation choices on
the 4-tasks setting of Corridor-TwoRooms and

Minigrid-FourRoom for weight computing

Input Corridor- Minigrid-
Observation TwoRooms FourRooms

⟨s⟩ 0.35 ± 0.03 0.22 ± 0.03
⟨s, a⟩ 0.30 ± 0.06 0.24 ± 0.03
⟨s, a, s′⟩ 0.37 ± 0.04 0.21 ± 0.03
⟨s, a, s′, r⟩ 0.39 ± 0.04 0.24 ± 0.02

it controls the effects of the experiences which
are sampled from the buffer B0. The result on
the two environments with four task setting is
presented in the Table 4. From the Table, the
best result can be achieved with δ = 0.2. With
the value of δ = 0.1, the performance is slightly
lower and achieves the second best performance.
In all 4 tested values of δ, a lower value is
more prefer with more stable value than high
values of delta. On the other hand, the standard
SAC-Sharing baseline with δ = 0.5 has the
best performance among the other values across
the two tested environments. For comparison
between our WES-SD and the SAC-Sharing, the
interaction between tasks in our framework is
more flexible than the latter.

5.4. RQ3: Analysis on Different Input
Observations

The input observation plays a central role to
compute the distance between two policy. It is
used to construct the cost matrix C in Equation
9 and Equation 10. In the standard setting,
the full observation ⟨s, a, s′, r⟩, which includes
state, action, next state and reward is used. We
alternate the input observation for verifying its
effectiveness in the WES-SD method From the
full observation ⟨s, a, s′, r⟩, we remove each of
the component and construct the cost matrix with:
state only ⟨s⟩; state and action ⟨s, a⟩; state, action
and next state ⟨s, a, s′⟩. The Table 5 illustrates the
result of different input observations.

From the Table 5, it can be seen that the

full observation has the highest performance for
the experience sharing framework. When the
information is removed from the full observation,
the performance is reduced in general. In
the Corridor-TwoRooms environment, there
are reductions from 5%-10% of the average
rewards. However, in the Minigrid-FourRooms
environment, the state and action config has a
performance as good as the full observation. Note
that, the input representation is only involved
in cost matrix computation, which does not
contribute much to the computation time of the
Sinkhorn algorithm. Therefore, it is reasonable
to use the full observation as the default setting
in our proposed WES-SD.

5.5. RQ4: Ablation Study

In this section, we evaluate the performance
of our WES-SD with different values of k and λ as
desribed in the Algorithm 2, and we compare the
running time of our baseline with other methods.
The two settings used in this section are the 4-
task configurations of Corridor-TwoRooms and
Minigrid-FourRooms. Each experiment is run
with three different seeds, and the mean testing
rewards are reported.

• Number of trajectories k: We iterate the
value of k over the set {3, 4, 5}. The results
are reported in the Table 6. In general, as k
is increases, the sharing effect diminishes in
both environment settings. The main reason
is that with a larger number of samples, the
estimated Sinkhorn Distance between two
tasks becomes more stable. Consequently,
our WES-SD behaves more similarly to
SAC-Sharing with a constant δ.

• Running weight λ: We vary the value of
λ in the range of [0.8, 1.0]. The Table 7
highlights the results. When the value of
λ is increased from 0.8 to 1.0, the pair-
wise distance becomes more noisier, which
reduces the overall performance.



T. V. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 69–83 81

Table 6. Results with different values of k on the
4-tasks setting of Corridor-TwoRooms and

Minigrid-FourRoom

Number of Corridor- Minigrid-
Trajectory TwoRooms FourRooms

k = 3 0.39 ± 0.04 0.24 ± 0.02
k = 4 0.31 ± 0.11 0.19 ± 0.05
k = 5 0.29 ± 0.07 0.23 ± 0.03

Table 7. Results with different values of λ on the
4-tasks setting of Corridor-TwoRooms and

Minigrid-FourRoom

Running Corridor- Minigrid-
Weight TwoRooms FourRooms
λ = 0.8 0.39 ± 0.04 0.24 ± 0.02
λ = 0.9 0.32 ± 0.04 0.21 ± 0.02
λ = 1.0 0.25 ± 0.04 0.21 ± 0.04

• Training time comparision: Table 8 presents
the training time comparisons between our
WES-SD and other baselines. Since the
running time for the SAC-Sharing baseline
is similar across different settings, we only
report the results for δ = 0.2. The
table shows that our WES-SD requires 2.5
times more training time than standard
SAC. This overhead is primarily due to the
increased number of training samples. The
computation gap can be reduced by lowering
the value of M. Compared to the SAC-
Sharing baseline, the WES-SD training time
is is 10% longer due to the additional
computation of the pairwise distance matrix.
Among the other baselines, PCGRAD has a
similar performance to our WES-SD, while
both SACMT and Distral run efficiently and
achieve performance comparable to the SAC
baseline.

6. Conclusions

In this paper, we present the WES-SD, a
distance-based metric for experience sharing in

Table 8. Training time in seconds for 10K samples on
Corridor-TwoRooms and Minigrid-FourRooms with

the setting of 4 tasks

Methods Corridor- Minigrid-
TwoRooms FourRooms

SAC 14.1 ± 0.2 22.0 ± 0.2
SAC-Sharing 35.9 ± 0.1 45.1 ± 0.2

SACMT 18.5 ± 0.2 26.1 ± 0.1
PCGrad 40.9 ± 0.4 49.2 ± 0.3
Distral 14.3 ± 0.3 21.8 ± 0.3

WES-SD 41.3 ± 0.4 50.0 ± 0.4

multi-task RL. Our method is designed for the
spare-reward environments where the agent has
to balance between exploration and exploitation
phase. The WES-SD is built upon the SAC
algorithm and employs a central sharing buffer
which aggregates all of the experiences from
the other tasks and is also used to share the
experiences. To control the policy divergence in
shared samples, we introduce a Sinkhorn-based
distance for computing the pairwise distance
from two individual policies. The distance is
then used to compute the sharing weight for
samples. We evaluate our methods on two goal-
based navigation environments with 2, 3 and 4
tasks settings. The results show that WES-SD
achieves the best average reward and ranking in
both environments. We also conduct experiments
with several key parameters and illustrate their
impact on the overall performance of the method

From the results of our paper, one possible
extension is to replace the Sinkhorn distance
with other measures of policy divergence such
as Slice Wasserstein Distance or Total Variation
Distance. In addition, because sharing samples
can substantially increase training complexity, a
more advanced approach would be to balance
training efficiency and the exploration signal
by employing an adaptive sharing weight δ.
The appropriate value of δ could be estimated
as a function of the entropy of the sharing
policy. Given the flexibility of our method, it
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can be extended to other types of environments,
such as dense-reward settings or continuous-
action domains. We also plan to develop a
complexity analysis framework to better balance
the exploration and exploitation trade-off in
multi-task experience-sharing settings.

Acknowledgements

This work has been supported by VNU
University of Engineering and Technology under
project number CN24.13

References

[1] B. Kiumarsi, K. G. Vamvoudakis, H. Modares,
F. L. Lewis, Optimal and Autonomous Control
Using Reinforcement learning: A Survey, IEEE
Transactions on Neural Networks and Learning
Systems, Vol. 29, No. 6, 2017, pp. 2042–2062.
doi:10.1109/TNNLS.2017.2773458.

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage,
A. A. Bharath, Deep Reinforcement Learning:
A Brief Survey, IEEE Signal Processing
Magazine, Vol. 34, No. 6, 2017, pp. 26–38.
doi:10.1109/MSP.2017.2743240.

[3] D. Pathak, P. Agrawal, A. A. Efros, T. Darrell,
Curiosity-driven Exploration by Self-supervised
Prediction, in: International Conference on Machine
Learning, PMLR, 2017, pp. 2778–2787.

[4] A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task
Reinforcement Learning: A Hierarchical Bayesian
Approach, in: Proceedings of the 24th International
Conference on Machine learning, 2007, pp. 1015–
1022.

[5] H. Li, X. Liao, L. Carin, Multi-task Reinforcement
Learning in Partially Observable Stochastic
Environments, Journal of Machine Learning Research,
Vol. 10, No. 5, (2009).

[6] L. Espeholt, H. Soyer, R. Munos, K. Simonyan,
V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al., Impala: Scalable Distributed
Deep-rl with Importance Weighted Actor-learner
Architectures, in: International Conference on
Machine Learning, PMLR, 2018, pp. 1407–1416.

[7] R. S. Sutton, A. G. Barto, Reinforcement Learning:
An Introduction, MIT press, 2018.

[8] C. Finn, P. Abbeel, S. Levine, Model-agnostic Meta-
learning for Fast Adaptation of Deep Networks,
in: International Conference on Machine Learning,
PMLR, 2017, pp. 1126–1135.

[9] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman,
C. Finn, Gradient Surgery for Multi-task Learning,
Advances in Neural Information Processing Systems,
Vol. 33, 2020, pp. 5824–5836.

[10] D. Calandriello, A. Lazaric, M. Restelli, Sparse Multi-
task Reinforcement Learning, Advances in Neural
Information Processing Systems, Vol. 27, (2014).

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., Human-
level Control through Deep Reinforcement Learning,
Nature, Vol. 518, No. 7540, 2015, pp. 529–533.
doi:10.1038/nature14236.

[12] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft
Actor-critic: Off-policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor,
in: International Conference on Machine Learning,
PMLR, 2018, pp. 1861–1870.

[13] T.-L. Vuong, D.-V. Nguyen, T.-L. Nguyen, C.-M. Bui,
H.-D. Kieu, V.-C. Ta, Q.-L. Tran, T.-H. Le, Sharing
Experience in Multitask Reinforcement Learning, in:
Proceedings of the 28th International Joint Conference
on Artificial Intelligence, 2019, pp. 3642–3648.

[14] P. Huang, M. Xu, J. Zhu, L. Shi, F. Fang, D. Zhao,
Curriculum Reinforcement Learning Using Optimal
Transport via Gradual Domain Adaptation, Advances
in Neural Information Processing Systems, Vol. 35,
2022, pp. 10656–10670.

[15] Y. Luo, Z. Jiang, S. Cohen, E. Grefenstette, M. P.
Deisenroth, Optimal Transport for Offline Imitation
Learning, ArXiv Preprint arXiv:2303.13971 (2023).

[16] A. Asadulaev, R. Korst, A. Korotin, V. Egiazarian,
A. Filchenkov, E. Burnaev, Rethinking Optimal
Transport in Offline Reinforcement Learning,
Advances in Neural Information Processing Systems,
Vol. 37, 2024, pp. 123592–123607.

[17] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre,
G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, R. Hadsell, Policy Distillation,
ArXiv Preprint arXiv:1511.06295 (2015).

[18] Y. Teh, V. Bapst, W. M. Czarnecki, J. Quan,
J. Kirkpatrick, R. Hadsell, N. Heess, R. Pascanu,
Distral: Robust Multitask Reinforcement Learning,
Advances in Neural Information Processing Systems,
Vol. 30, (2017).

[19] J. He, K. Li, Y. Zang, H. Fu, Q. Fu, J. Xing,
J. Cheng, Efficient Multi-task Reinforcement Learning
with Cross-Task Policy Guidance, Advances in Neural
Information Processing Systems, Vol. 37, 2024, pp.
117997–118024.

[20] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman,
C. Finn, S. Levine, Meta-world: A Benchmark and
Evaluation for Multi-task and Meta Reinforcement
Learning, in: Conference on Robot Learning, PMLR,
2020, pp. 1094–1100.



T. V. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 1 (2025) 69–83 83

[21] H. Ma, Z. Luo, T. V. Vo, K. Sima, T.-Y. Leong,
Knowledge Sharing and Transfer via Centralized
Reward Agent for Multi-Task Reinforcement
Learning, ArXiv Preprint arXiv:2408.10858 (2024).

[22] A. Tirinzoni, A. Sessa, M. Pirotta, M. Restelli,
Importance Weighted Transfer of Samples in
Reinforcement Learning, in: International Conference
on Machine Learning, PMLR, 2018, pp. 4936–4945.

[23] A. Xie, C. Finn, Lifelong Robotic Reinforcement
Learning by Retaining Experiences, in: Conference on
Lifelong Learning Agents, PMLR, 2022, pp. 838–855.

[24] Y. Wu, G. Tucker, O. Nachum, Behavior Regularized
Offline Reinforcement Learning, ArXiv Preprint
arXiv:1911.11361 (2019).

[25] B. Eysenbach, A. Gupta, J. Ibarz, S. Levine, Diversity
Is All You Need: Learning Skills without a Reward
Function, ArXiv Preprint arXiv:1802.06070 (2018).

[26] M. Cuturi, Sinkhorn Distances: Lightspeed
Computation of Optimal Transport, Advances in
Neural Information Processing Systems, Vol. 26,
(2013).

[27] R. Dadashi, L. Hussenot, M. Geist, O. Pietquin,

Primal Wasserstein Imitation Learning, ArXiv Preprint
arXiv:2006.04678 (2020).

[28] G. Papagiannis, Y. Li, Imitation Learning with
Sinkhorn Distances, ArXiv Preprint arXiv:2008.09167
(2020).

[29] S. He, Y. Jiang, H. Zhang, J. Shao, X. Ji,
Wasserstein Unsupervised Reinforcement Learning,
in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36, 2022, pp. 6884–6892.
doi:10.1609/aaai.v36i6.20645.

[30] B. G. Le, V. C. Ta, Distill Knowledge in Multi-
task Reinforcement Learning with Optimal-
Transport Regularization, in: 2022 14th
International Conference on Knowledge and
Systems Engineering (KSE), IEEE, 2022, pp.
1–6. doi:10.1109/KSE56063.2022.9953750.

[31] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker,
S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
Others, Soft Actor-critic Algorithms and Applications,
ArXiv Preprint arXiv:1812.05905 (2018).

[32] P. Christodoulou, Soft Actor-critic for Discrete Action
Settings, ArXiv Preprint arXiv:1910.07207 (2019).


