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Abstract: Emotion recognition is crucial in various fields, particularly in human-machine interac-
tion. Although previous research has focused predominantly on using facial expressions or elec-
troencephalogram (EEG) signals as the sole input for emotion recognition, integrating multiple data
types into a single system remains an underexplored area. This paper aims to contribute to this evolv-
ing field by exploring a multimodal emotion recognition approach that combines facial expressions
and EEG signals. For facial expression recognition, two deep learning models are developed: one
for detecting facial emotions and another for classifying them. The focus is on improving the effi-
ciency of the recognition model by leveraging modern machine learning techniques and minimizing
the number of parameters. In parallel, a small dataset is collected using the Emotiv FLEX 2 Saline
32-channel EEG headset, capturing four distinct emotional states. The processing of EEG signals
involves a complete workflow, from pre-processing to feature extraction, followed by mapping the
features into a format suitable for emotion recognition. The evaluation results demonstrate the effec-
tiveness of the proposed method. The facial expression recognition model achieves an accuracy of
92.5%, while the EEG-based recognition model achieves an impressive 98.7%. Furthermore, com-
bining the output of both models improves performance, as the integration of facial expressions and
EEG signals compensates for the limitations of using either data type individually.
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1. Introduction

Emotions are a core element of the human
experience, shaping psychological processes
and behaviors such as information processing,
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decision-making, and social interactions. The
emotions play a critical role in both personal life
and professional settings, significantly affecting
communication and emotional intelligence, the
ability to recognize, understand of human being.
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Emotional intelligence is the key to successful
interpersonal interactions and effective
collaboration. The ability to accurately recognize
emotions is growing in importance, not just in
human-machine interaction, but across various
fields such as healthcare, education, virtual
reality, and entertainment.

In recent years, emotion recognition have
generally been classified into two categories:
those based on physiological signals and those
based on non-physiological signals. Non-
physiological signals include facial expressions,
gestures, and voice. However, in some cases,
the reliability of these methods can be limited, as
individuals can control these physical signs, such
as facial expressions and speech, to mask their
true emotions. On the other hand, physiological
signals, such as electroencephalograms (EEG),
body temperature (T), electrocardiograms (ECG),
electromyograms (EMG), galvanic skin response
(GSR), and respiration (RSP), are less influenced
by subjective factors and can more accurately
reflect emotional states. Among these, EEG
signal analysis is particularly popular in emotion
research due to its non-invasive nature and
the availability of affordable EEG devices,
which provide accessible solutions for emotion
recognition applications.

Although emotion recognition using
physiological signals offers greater reliability,
it has certain limitations. These signals are
often weak and susceptible to interference
from external noise, such as electromagnetic
or mechanical noise, as well as physiological
noise from the body. As a result, the practical
applicability of physiological signal-based
methods is more constrained compared to
non-physiological signals.

Although numerous studies have explored
using either type of signal independently
for emotion recognition, few have investigated
combining both types of signals. In this paper, we
propose a multi-modal approach that integrates
both non-physiological (facial expressions) and

physiological (EEG) signals. The framework
focuses on a discrete emotion classification
model, which, due to data limitations, will
classify four common emotional states:
Happiness, Sadness, Fear, and Neutral. By
combining both signal types, this approach
addresses the weaknesses inherent in each,
improving the overall accuracy of emotion
recognition.

2. Related Work

2.1. Facial Expression Recognition

Facial expression recognition has become a
prominent research area in the field of artificial
intelligence and computer vision. In recent
years, two main approaches have emerged:
(i) classical methods, which involve image
processing, feature extraction, and the application
of traditional machine learning algorithms, and
(ii) deep learning methods, where convolutional
neural networks (CNNs) are applied, leveraging
advances in computational power.

A typical traditional facial expression
recognition system follows a multi-step
process: image collection, preprocessing, feature
extraction, and then classification using models
such as K-nearest neighbors (KNN), Support
Vector Machine (SVM), Random Forest, or
linear regression. However, traditional methods
have notable limitations. One challenge is to
find features that generalize well across a wide
range of emotions and diverse topics, considering
factors such as age, gender, and culture.
Additionally, the extraction and classification
stages are typically handled separately, making
it difficult to improve the overall performance of
the system.

In contrast, deep learning methods address
these issues by using end-to-end learning with
automatic feature extraction, thus eliminating
the need for manual feature engineering
and overcoming the optimization challenges
faced by classical approaches. Today, deep
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learning methods dominate the field of emotion
recognition and classification, with convolutional
neural networks (CNNs) and recurring neural
networks (RNNs) being among the most popular
architectures. Additionally, newer approaches
such as multitask networks and generative
adversarial networks (GANs) have also gained
attention because of their potential to enhance
recognition accuracy and generate synthetic data
for training.

Data are critical in deep learning; the larger
and more diverse the dataset, the better the
model performance. Several facial emotion
recognition datasets have been developed to
support deep learning, including the Facial
Emotion Recognition 2013 (FER 2013) dataset
and the Extended Cohn-Kanade Dataset (CK+).
Data augmentation techniques are also commonly
used to expand the dataset and improve model
performance.

2.2. EEG-based Emotion Recognition

EEG signals are considered reliable
physiological indicators, as they reflect the
electrical activity of neurons in the human
cerebral cortex. Compared to non-physiological
data (such as facial expressions or gestures), EEG
signals provide a more objective and consistent
source of information for emotion assessment.

Emotion recognition methods based on EEG
signals can be broadly categorized into two
primary approaches: feature extraction combined
with traditional machine learning and deep
learning.

In traditional machine learning-based
methods, features are manually extracted from
EEG signals and subsequently fed into classifiers
such as Naive Bayes, Support Vector Machines
(SVM), and others for emotion recognition. Lin
et al. (2018) [1] outlined the typical workflow for
emotion recognition using traditional machine
learning, which includes steps such as emotional
stimulus presentation, signal acquisition, feature
extraction, and classification. However, a

significant limitation of these methods lies
in their reliance on linear models, which
struggle to effectively handle the non-linear,
high-dimensional nature of EEG data, making
it difficult to accurately distinguish between
emotional states.

In contrast, deep learning-based approaches
automate the feature extraction process and use
models such as Convolutional Neural Networks
(CNN), Long Short-Term Memory (LSTM)
networks, and Recurrent Neural Networks (RNN)
[2] to perform end-to-end emotion recognition.
Deep learning methods excel at addressing
the non-linearity of EEG signals by learning
complex, hierarchical feature representations,
enabling more accurate and efficient emotion
classification. Furthermore, deep learning models
can perform full mappings from input to output,
which significantly simplifies the recognition
process compared to traditional methods. [3]
demonstrated the effectiveness of Deep Belief
Networks (DBN) in emotion recognition from
EEG signals, highlighting the potential of deep
neural architectures for this task.

Recently, advanced deep learning techniques,
including CNNs, LSTMs, Generative Adversarial
Networks (GANs), and other neural network
models, have gained widespread adoption
in emotion recognition research using EEG
signals, showing considerable improvements in
accuracy and robustness compared to traditional
approaches [4].

In emotion classification research, two
primary approaches are typically employed:
intra-subject and inter-subject classification.
Intra-subject classification involves training and
testing the model using data from the same
individual, meaning the model is optimized to
recognize emotions based on the specific neural
patterns of that person. In contrast, inter-subject
classification involves training the model on data
from one group of individuals and testing it on
data from different individuals. This approach
presents a greater challenge, as the model must
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Figure 1. Flowchart Illustrating the Facial Expression Recognition Methodology.

generalize across individuals, making it possible
to perform emotion classification for a subject
without prior training on that subject’s data.

Inter-subject classification is inherently more
difficult due to the significant variability in
EEG signals across individuals. EEG data does
not exhibit a fixed correlation with emotional
responses between different individuals, as
emotional expression is influenced by numerous
personal factors such as personality, culture,
gender, education, prior experiences, and
environmental context. As a result, individuals
may exhibit distinct neurophysiological or
behavioral responses, even when exposed to
the same emotional stimulus. Consequently,
the EEG signature of a given emotional state
is unlikely to be consistent across individuals,
which complicates the development of a
universal classifier that can accurately predict
emotions for any person. This issue—designing
a robust, generalized emotion recognition
model that performs well across diverse
individuals—remains a significant challenge
in the field.

Moreover, the use of EEG for emotion
classification is subject to certain technical
limitations. Different EEG systems may employ
varying electrode types and configurations,
which can influence both the quality and
duration of the signal collection, thus introducing
variability in the data. Additionally, EEG
measurement is highly sensitive to motion

artifacts; even slight body movements during data
collection can introduce significant interference.
Environmental factors, such as background noise
or electromagnetic interference from nearby
electronic equipment, can also distort the
signals, leading to false or misleading results.
These challenges underscore the complexity of
developing reliable emotion recognition systems
based on EEG data.

2.3. Multimodal Data Fusion for Emotion
Recognition.

Recently, there has been a growing trend
of emotion recognition models that integrate
EEG data with recorded facial feature videos,
as combining multimodal features can enhance
performance. Tan et al. (2021) [5] introduced
a multimodal emotion recognition approach
that leverages both facial expression images
and EEG data to develop a human-robot
interaction system. In a similar vein, Aguinaga
et al. (2021) [6] proposed a two-stage deep
learning model for emotional state recognition
by linking facial expressions with brain signals.
They used facial expressions as indicators of
emotional responses, which were then used
to extract corresponding EEG segments for
analysis. Saffaryazdi et al. (2022) [7] found that
facial micro-expressions are more reliable than
macro-expressions in conveying emotions and
suggested combining these micro-expressions
with brain and physiological signals for more
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accurate emotion detection. Sun et al. (2020)
[8] investigated the relationship between
spontaneous human facial expressions and
multimodal brain activity, using wearable sensors
to capture data from functional near-infrared
spectroscopy (fNIRS) and electroencephalogram
(EEG) signals. Lastly, Wang et al. (2023) [9]
proposed a deep learning model for multimodal
emotion recognition that extracts both facial
features and spatial information from EEG
signals, merging these two types of data before
passing them through a classifier to identify
emotions.

3. Image-based Emotion Recognition

Figure 1 illustrates the workflow for facial
expression recognition in our study. The initial
step involves detecting faces within a video and
subsequently extracting face images from each
frame. These images are then preprocessed
and fed into our proposed model for emotion
recognition. For face detection, the YOLOv8
algorithm [10] was employed due to its real-
time processing capabilities and high accuracy.
The extracted faces were resized to 112 pixels in
width and height and normalized.

The deep learning model for facial expression
recognition was developed based on the
architecture presented in [11]. Our proposed
model builds upon the MobileNetV2 architecture
by integrating a patch extraction block and a self-
attention layer. From the original MobileNetV2
architecture, we removed the final 29 layers,
which were deemed unsuitable for our task, and
froze the remaining layers. Freezing the original
network’s layers accelerates the training process,
as a higher learning rate can be used compared to
fine-tuning the weights.

The initial layers derived from MobileNetV2
are responsible for extracting the basic features
of the input, while the patch extraction block
is subsequently concatenated to learn detailed
features. This block comprises three distinct

layers: two depth-wise separable convolutions
and one point-wise convolution. The two
consecutive depth-wise convolution layers divide
the preceding layer’s feature map into four
smaller patches and learn higher-level features.
The use of depth-wise separable convolutions
helps improve the model’s performance while
reducing the number of weights. The point-wise
convolution at the end of the block is responsible
for aggregating features from different channels
and creating new features. The output feature
map of the truncated MobileNetV2 is appended
with the layers of the patch extraction block, as
shown in Figure 2.

The classifier is designed with three main
layers, including two fully connected layers and
one self-attention layer. Specifically, the self-
attention layer is inserted between the two fully
connected layers to enhance the model’s ability
to learn from features. This self-attention layer
operates based on the dot product of vectors
derived from the features to calculate attention
weights. The softmax activation function is used
to normalize these attention weights, ensuring
that they have positive values and sum to one.
These attention weights represent the importance
of each feature, enabling the model to focus on
the most relevant features.

4. EEG-based Emotion Recognition

Effective analysis of raw EEG signals, which
are 1D time series, demands a specialized
approach. Unlike conventional signals, EEG
is characterized by its multi-channel nature,
with electrode locations corresponding to crucial
cortical areas. Furthermore, different frequency
bands (such as alpha, beta, theta, and delta
waves) within EEG carry distinct information.
Therefore, to fully harness EEG’s potential, it
is imperative to capture its temporal, frequency,
and spatial dimensions. Our method for
extracting temporal and frequency information
involves transforming EEG into a time-frequency
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Figure 2. Integration of the Patch Extraction Module with the Truncated MobileNetV2 Backbone.

representation (spectrogram). This spectrogram
is then fed into the Inception V3 network.
InceptionV3, originally designed for image
recognition, proves highly effective here because
its inception modules excel at identifying the
intricate, multi-scale patterns present in the time-
frequency characteristics of EEG. Our detailed
signal processing framework is outlined below.

4.1. Pre Processing
Signal preprocessing and feature extraction

are crucial for raw EEG signals obtained from
the headcap system. Typically, optimal frequency
bands for EEG-based emotion recognition range
from 1 to 51 Hz, with a particular focus on the
beta and gamma bands [12].

Initially, raw signals are sampled at 200 Hz,
and a Butterworth band-pass filter is applied to
separate the signals into three distinct bands: 1-
14 Hz (delta-theta-alpha), 14-31 Hz (beta), and
31-51 Hz (gamma). These correspond to the
respective spectra, and the preprocessing steps are
depicted in Figure 3. Subsequently, the filtered
signals are normalized to the range [0, 1]. The
three spectral signals are then split into smaller
segments and transformed into three (229 × 229)
2D spectrograms. These spectrograms are used
as input to the InceptionV3 model for feature
extraction. Finally, the extracted features are
aggregated and arranged in a spatial map. The
details of these transformations are presented in
the following sections.

4.2. Spectrogram Generation

The transformation of signals from the time
domain to 2D spectrograms visualizes the signal
amplitude across time and frequency, while also
enabling the efficient integration of these signals
into a deep learning model for feature extraction.
After normalization, the signals are segmented
into n non-overlapping samples. The value of
the variable n and the frame size (window size)
used in the Short-Time Fourier Transform (STFT)
are determined by the desired dimensions of the
spectrogram and the hop size. The hop size
represents the number of samples by which the
window shifts during each STFT computation.
Selecting an appropriate hop size is critical; a
value that is too small results in consecutive
windows containing highly redundant signal
segments, whereas a large hop size creates
a spectrogram that is sparse and deficient in
temporal resolution. The transformation includes
the following steps: performing STFT to convert
the signal from the time domain to the frequency
domain; computing the spectral power; and
converting the spectral power to a logarithmic
scale (dB).

4.3. Feature Map Generation

To extract the features from data in the form
of images (2D spectrograms), convolutional
neural networks such as ResNet and Inception
are commonly used. According to the experiment
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Figure 3. The Preprocessing Pipeline for EEG
Signals.

from [13], Inception Net extracts all the
features captured by Resnet backbone, along
with extra features thanks to its multi-scale
convolution architecture; therefore, this study
adopted a pretrained InceptionV3 model
as a feature extractor. The EEG signals
employed in this study comprised 28 channels.
After processing these channels sequentially
through the InceptionV3 model, we obtained

28 corresponding feature vectors. The spatial
distribution of these channels on the scalp, as
defined by the 10-20 electrode placement system,
allowed us to arrange the feature vectors into a
spatial map. This map, representing a top-down
view of the scalp, effectively embeds the spatial
information of the channels, thereby enhancing
the deep learning model’s ability to learn features
from adjacent channels. We found that a (7 × 5)
map provided an optimal representation for the
28 channels. Considering that the InceptionV3
model produces output vectors of dimension
2048, the spatially arranged feature vectors
formed a map that can be conceptualized as a
(7 × 5) image with 2048 channels.

4.4. The Recognition Model

The signals are transformed into maps with
dimensions (7 × 5 × 2048), necessitating a
deep learning classification model specifically
designed for this input format. The network
architecture is straightforward, commencing with
three sequential convolutional layers for spatial
feature extraction, utilizing kernel sizes of (3×3),
(2 × 2), and (1 × 1), respectively. These layers
are followed by a max-pooling layer to reduce
computational complexity and a flattening layer
to convert the data from a three-dimensional to a
one-dimensional format. The classifier comprises
two fully connected layers (FCLs), with the
second layer serving as the final classification
layer to compute probabilities for the four
emotion labels.

5. Experiments and Results

5.1. Dataset

Facial Expression Dataset: For facial
expression-based emotion recognition, we
utilized images from the Real-world Affective
Database (RAF-DB). This large-scale, diverse
database, collected from internet sources, features
varying lighting conditions and demographics.
The RAF-DB dataset includes 52% female, 43%
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male, and 5% uncertain gender. Racially, it
comprises 77% White, 8% African-American,
and 15% Asian individuals. While RAF-DB
contains images depicting seven common
emotional states (happiness, sadness, surprise,
fear, anger, disgust, and neutral), this study
focused on four: happiness, sadness, fear, and
neutral.

EEG Signals Dataset: To enhance data
diversity, we independently collected an EEG
signal dataset in the Signal and Systems
Laboratory at the Faculty of Electronics and
Telecommunications, University of Engineering
and Technology. We conducted EEG data
collection from 15 students, but due to the
connection between the EEG measurement
equipment and the scalp, it is sometimes not
good; resulting in a very noisy signal. Using
these data can lead to errors in the deep
learning machine learning model. Therefore,
after reviewing all the recordings; we selected
data from 7 people, whose data collection process
achieved a signal quality reported by the device of
80% or higher. In addition, the data participants
also watched many different video clips; and
the data collection process was very long (15-
20 minutes). In summary, our EEG data were
measured from 7 subjects, all of whom were
male aging from 20 to 22 years old. For
comparison, the SEED dataset [14] has a total of
15 subjects, and the DEAP dataset[15] contains
signals from 32 participants. This dataset focused
on the recognition of four emotional states:
happiness, sadness, fear, and a neutral state. This
selection was made because certain emotions are
challenging to reliably induce through video or
short clip stimuli, leading us to collect data for
three strong emotions (happy, sad, scared) and a
neutral resting state.

The experimental setup, illustrated in Figure
4, involved recording data from individual
participants. Each participant wore an EEG
headset and sat before a computer screen, with
facial expressions captured by a synchronized

camera. Participants watched emotion-eliciting
videos corresponding to the target emotion.
Although the FLEX 2 Saline headset has 32
channels, only 28 were available for analysis after
accounting for synchronization channels. Due
to challenges with signal quality related to thick
hair, the final EEG dataset included only male
participants, aged 19 to 22, who met the data
quality standards.

Figure 4. The Experiment Setup.

5.2. Emotion Recognition Using Facial
Expression

These EEG data were then mixed for
processing. 80% of the data was used for
training and 20% for testing. The training was
conducted for a maximum of 30 epochs, with
early stopping implemented to terminate training
if no improvement in validation accuracy was
observed over a consecutive number of epochs.
The initial learning rate was set to (1 × 10−3).
To mitigate overfitting, the learning rate was
configured to decrease when the model exhibited
no improvement, with a minimum allowable
value of (1 × 10−6).

The trained model achieved strong
performance, with training and validation
accuracies of 95% and 90%, respectively.
The evaluation metrics for the test dataset are
presented in Table 1. When evaluated on the
test dataset, the model achieved an accuracy
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exceeding 92%. The minimal difference
in accuracy across the training, validation,
and test datasets indicates that the model
effectively learned the underlying data features,
demonstrating good generalization, and avoiding
over-fitting. With this high accuracy, the model
fulfills the requirements for practical emotion
recognition applications.

Table 1. Quantitative Results on Facial Expression
Dataset (%)

Accuracy Precision Recall F1 Score
92 92 92 91

As shown in Figure 5, the model’s
performance on the test set reveals a tendency
to confuse sadness with the neutral state and
sadness with fear. This can be attributed to the
fact that subtle expressions of sadness are often
difficult to discern from a neutral expression,
leading to misclassification. Similarly, while
fear is often visibly expressed, it shares some
visual similarities with sadness, particularly
when tears are present. In contrast, happiness
exhibits distinct facial features, resulting in more
accurate classification. The model demonstrates
high accuracy in recognizing happiness and
neutral emotions, but lower accuracy for sadness
and fear. Specifically, the model frequently
misclassifies faces expressing sadness and
fear. Conversely, it rarely misclassifies neutral
emotions, but often incorrectly classifies other
emotional states as neutral. This evaluation
highlights the importance of combining facial
expression data with EEG signals in this research.
By integrating both sources of information, the
system aims to improve emotion recognition
accuracy, especially in cases where emotions are
not clearly visible in facial expressions.

5.3. Emotion Recognition Using EEG Signal
The EEG dataset was initially split into

15% for testing. The remaining 85% was
further divided into 85% for training and 15%

Figure 5. Confusion Matrix of the Facial Expression
Recognition Model.

for validation, resulting in final proportions of
72.25% training, 12.75% validation, and 15%
testing. The model was trained for up to 100
epochs with an initial learning rate of (1 ×
10−4). The learning rate was gradually decreased
during training if no improvement in validation
performance was observed, with a minimum
allowable value of (1 × 10−6). Due to the
application of early stopping, the training process
terminated before reaching the 100th epoch, and
the weights of the best-performing model were
restored instead of the final state’s weights.

The optimal model achieved accuracies
of 99.91% and 98.98% on the training and
validation datasets, respectively. Evaluation
metrics for the test dataset are presented in
Table 2 and Figure 6. The results indicate
that the model exhibited lower accuracy for
samples associated with happiness compared to
other emotional states. Conversely, the neutral
state displayed the lowest recall value, indicating
that the model frequently failed to detect signal
segments representing this state.

Despite achieving favorable evaluation
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Table 2. Quantitative Results on EEG Dataset (%)

Accuracy Precision Recall F1 Score
98.71 98.71 98.77 98.72

metrics, the trained model exhibits several
limitations. Due to inter-individual variability
in EEG signals within the same emotional state,
a model trained solely on data from a single
individual demonstrates poor generalization
when tested on signals from other individuals.
Furthermore, the model’s performance is not
consistent throughout the entire EEG signal
recording. This inconsistency stems from the
participants’ difficulty in maintaining a sustained
emotional state during the measurement process,
leading to intermittent emotional responses.
Lastly, the time-intensive preprocessing of EEG
signals renders the current model unsuitable for
real-time applications.

Several feasible approaches are proposed
for future work to mitigate the issue of inter-
subject variability in EEG signals. First, we
can augment and diversify our dataset by
collecting EEG signals from individuals of
different age groups, genders, and cultural
backgrounds. In parallel, we can leverage
advanced machine learning techniques to
improve model generalization. Specifically,
domain adaptation and transfer learning are used
to better align data distributions and optimize
deep learning model performance. Additionally,
we are exploring the use of generative models,
such as GANs, for data augmentation. Another
strategy involves incorporating time-domain
features into the model architecture. These
features are processed through fully connected
and attention layers, and then concatenated with
the output of convolutional layers before the final
classification stage.

To benchmark our proposed method, we
trained two established models, EEG-ITNet [16]
and SST-EmotionNet [17], using data collected
in our laboratory. These models are specifically

Figure 6. Confusion Matrix for EEG-based Emotion
Recognition Model.

designed for EEG-based emotion recognition
and have demonstrated strong performance on
widely used datasets such as SEED, SEED-
IV, and OpenBCI. A comparative analysis of
the results is presented in Table 3. Our
proposed method outperformed both EEG-ITNet
and SST-EmotionNet across all four evaluation
metrics, validating its effectiveness for emotion
recognition from small EEG datasets. EEG-
ITNet also yielded positive results, albeit
with lower performance than our proposed
method. SST-EmotionNet, however, exhibited
significantly lower performance, indicating its
limited suitability for our experimental data.
While SST-EmotionNet may be optimized for
larger datasets, such as SEED or SEED-IV, it
appears less effective for smaller datasets.

5.4. Results of Multimodal Fusion
As previously mentioned, both facial

expression-based and EEG-based emotion
recognition models possess distinct strengths and
limitations. Integrating these two data modalities
leverages the advantages of each, resulting in
more accurate and reliable outcomes. During
experiments, it was observed that there was a



26 L. N. Thanh , N. H. Thinh / VNU Journal of Science: Com. Science & Com. Eng., Vol. 41, No. 2 (2025) 16–28

Figure 7. Multimodal Fusion Results: Combining EEG and Facial Expressions.
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Table 3. Performance Comparison (%)

Method Accuracy Precision Recall F1 Score

SST-EmotionNet 74.15 77.41 73.03 74.60
EEG-ITNet 94.61 94.81 93.89 93.62
Proposed method 98.71 98.71 98.77 98.72

2-second delay between the facial expressions
captured by the camera and the corresponding
EEG signals displayed in the Emotiv software.
This was due to the delay in the wireless
connection and data transmission from the EEG
helmet ( Emotiv Flex 2) and the computer to
receive the data. To ensure synchronization, the
first 2 seconds of EEG data were discarded to
compensate for the observed 2-second delay in
the EEG signal relative to the video recording.

For each evoked emotion, a 3-second
EEG segment was selected to ensure sufficient
information for preprocessing and input modeling
(3 s is the duration of each EEG epoch
used in the framework for preprocessing and
extraction features [18]). While real-time
emotion recognition from videos is feasible,
the average time required for raw EEG signal
preprocessing and inference was 1.5 seconds.

In Figure 7, happiness, neutral, and fear
have clear facial expressions, thus, the image-
based model can accurately recognize these
emotions. Simultaneously, predictions based
on the corresponding EEG signal segments also
show similar emotional states, demonstrating
the compatibility between the two data types.
However, for sadness, the participant did not have
significant expressions. This led the image-based
model to misclassify it as neutral. However,
the predictions based on the EEG signal segment
correctly identified the emotional state as sadness.
These findings highlight the crucial role of EEG
signals in overcoming the limitations of image-
based methods, particularly for emotions with
subtle or unclear expressions.

6. Conclusion

In this paper, we present a novel framework
for emotion recognition that combines facial
expressions with EEG signals. For facial
expression analysis, we introduce a new network
architecture based on MobileNet, enhanced with
an Attention mechanism. This design not
only improves recognition performance, but
also ensures that the model remains compact
and efficient, making it suitable for real-
world deployment with limited computational
resources.

For EEG signal processing, we propose a
method that generates spectral maps, preserving
critical information within each frequency band
while maintaining the spatial distribution of
signal power across electrode locations. This
approach enables more effective encoding of
EEG data compared to raw signal inputs, leading
to enhanced performance when processed by
deep learning models.

By fusing the emotion recognition outputs
from both facial expression and EEG data,
our system achieves superior performance,
particularly in cases where emotional expressions
are subtle or ambiguous. The flexibility of
our framework allows for future extensions
to recognize a wider range of emotions and
accommodate diverse subject characteristics.
Additionally, due to its compact architecture,
the system is ideally suited for embedded
applications, such as robotic systems, where
resource constraints are a key consideration.
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