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Abstract: Reconfigurable intelligent surfaces are emerging as a cost-effective and power-efficient
solution for future wireless networks. In this paper, a gradient descent-based beam synthesis (GD-
based BS) algorithm is introduced for versatile reflection beam formation in RIS-aided wireless net-
works. The proposed solution optimizes the reflection coefficient vector of the RIS to form one beam
or multiple beams with arbitrary beamwidth and nulling points. To accomplish this task, an objective
function and its gradient are derived. Then, the proposed algorithm obtains the optimal solution by
iteratively updating the reflection coefficient vector using the gradient. Simulation results demon-
strate that the GD-based BS algorithm effectively synthesizes arbitrary reflection beams in the tested
scenarios.
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1. Introduction

In recent years, reconfigurable intelligent
surfaces (RIS) have emerged as a revolutionary
technology to enhance wireless communications
by intelligently controlling the propagation
environment [1, 2]. Unlike conventional active
beamforming technology (i.e., phased array
antenna), RIS passively reflects incident signals
toward desired directions by dynamically
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adjusting their reflection phase shifts. Thus, RIS
enables beamforming and beam synthesis without
costly and power-hungry components (e.g., RF
amplifiers, and RF phase shifters). This feature
allows RIS to be massively and ubiquitously
deployed in wireless networks. Moreover, with
the capability of passive beamforming, RIS helps
to improve spectral efficiency, and enhance signal
coverage. Thus, these attractive features make
RIS a promising solution for future wireless
networks (i.e., B5G or 6G) [3].
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Beam synthesis is a technique that optimizes
the excitation signals of each element in a
radiating array (e.g., an antenna array) to form
a desired beam shape. Thus, this technique
enhances wireless transmission efficiency over a
wider coverage area through wide or multiple
beams or reduces interference by forming null
points. Several beam synthesis works have
been extensively done for conventional phased
array antennas with different configurations [4–
16]. The beam synthesis problem has been
resolved long ago with different approaches such
as an iterative sampling method in [4], a two-
step least squares (LS) method in [5], and convex
optimization in [6]. Recently, several phase-
only-based approaches have been proposed for
linear, planar, and circular arrays [8–10]. In
[11], a new approach based on zeros perturbation
of the radiation pattern has been developed for
both linear and planar arrays. [12] introduced
a novel clustering method for synthesizing
asymmetrically shaped beam patterns in linear
antenna arrays. Authors in [13] presented a
method that leverages the pattern diversity of
dielectric resonator antenna (DRA) to synthesize
the shaped beam pattern of passive antenna
arrays. Different from the other works, [14]
considered the array position certainty in the
beam synthesis problem and proposed a robust
pencil beam synthesis procedure. Besides, a
mapping based optimization in [15] and a convex
optimization in [16] have also been studied.

Similar to antenna arrays, RIS is also an
array of massive passive elements that allows
us to modify the characteristics of the incoming
wave. Thus, synthesizing a reflection beam
is also available and necessary for future RIS-
assited wireless networks. However, unlike
conventional beam synthesis techniques for
active antenna arrays, the ones for RIS must
confront the practical issue of phase limitation
in RIS systems. Some recent works have
been carried out for RIS beam synthesis [17–
21]. Particularly, [18] and [20] proposed two

different approaches to synthesize RIS beam
patterns. Nevertheless, only continuous phase
shift is considered, which is impractical in RIS.
Considering discrete phase constraints in RIS,
[17] introduced a minimization-maximization
(MM) method to resolve the non-convex issues.
However, this work did not comprehensively
analyze the discrete phase shift effect on beam
synthesis ability. Another technique has been
studied for transmissive RIS in [19].

Unlike previous works, our approach exploits
the passive nature of RIS while maintaining high
flexibility in beam pattern synthesis. Existing
approaches often focus on single-beam formation
with idealized continuous-phase models, whereas
our study provides a more comprehensive
evaluation of practical phase quantization effects
and multi-beam generation strategies. Through
extensive numerical simulations, the effectiveness
of the proposed algorithm in various RIS
configurations and its ability to adapt to different
communication scenarios will be demonstrated.

This paper presents a versatile beam synthesis
algorithm for reflection beam formation in
RIS-aided wireless networks. The proposed
algorithm can generate various beam patterns,
including a narrow wide beam (e.g., fan
beams), a large square beam with a broad
null, and multiple narrow beams (e.g., 2-3
beams), to address different wireless transmission
requirements. Furthermore, the impact of
varying quantization phase shift numbers on RIS
beam synthesis performance, providing insights
into the scalability and effectiveness of RIS
configurations will be investigated.

The remainder of this paper is organized as
follows: Section II presents the system model,
including the overall geometric model and RIS’s
reflection characteristics. Section III details the
synthesis of the RIS reflection pattern based
on the gradient descent algorithm. Section
IV provides simulation results and verification.
Finally, Section V concludes the paper and
discusses future research directions.
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2. System Model

2.1. Overall Geometry Model

An RIS-aided wireless communication
system in which the RIS helps to reflect and
form the beams to the desired end users as
depicted in Fig. 1 is being considered. Generally
speaking, the system contains one rectangular
RIS that reflects the transmitted signal from one
transmitter to the desired receivers. The RIS is

Reconfigurable intelligent surface 

Transmitter (Tx)
Blockage Group of user

User

Figure 1. Reflection beam formation in RIS-aided
wireless network.

a M-by-N uniform planar array in which M and
N are, respectively, the number of unit cells in
the x and y directions. The total number of unit
cells in the RIS is denoted by NRIS = M × N.
Let dx and dy denote the element spacing along
the x-axis and y-axis, respectively. Each unit
cell in the RIS is indexed by n = 1, . . . ,NRIS in
the column-major order. The transmitter (Tx)
is equipped with one high-gain antenna (e.g., a
horn), which is located at sTx = (rTx, θTx, ϕTx)T

in the global coordinate in which the center of
RIS is positioned at the origin. The transmitter
and the RIS can communicate through a wireless
or physical link. Therefore, the transmitter can
direct its main beam towards the RIS.

2.2. RIS Reflection Characterization

The Tx antenna radiates electromagnetic
waves (EM waves) that carry communication

data toward the RIS. These EM waves are then
reflected at the RIS before being delivered to the
desired receivers. Under the far-field assumption,
the incident electric field (E-field) vector at the
unit cell n can be expressed as

Einc
n =

ETx(θTx, ϕTx)
rTx exp(− jκrn), (1)

where ETx(θTx, ϕTx) = ETx
θ (θTx, ϕTx)aθ +

ETx
ϕ (θTx, ϕTx)aϕ is the E-field vector of the

Tx in the direction (θTx, ϕTx), aθ and aϕ are,
respectively, the unit vectors in the zenith and
azimuth directions, j is the imaginary unit, κ =
2π/λ is the wave number, λ is the wavelength
at the operating frequency, rn is the distance
between the Tx and the unit cell n in the RIS.
The unit cell n converts the incident EM waves
into guided waves and then manipulates them
by controlling its reflection coefficient before re-
radiating to the free space. In practice, the RIS is
designed with discrete reflection phases to reduce
implementation costs and complexity. Let us
consider a RIS with ξ-bit phase shift that equals
χ = 2ξ available discrete phase shifts. Without
loss of generality, the reflection coefficient of the
unit cell n can be described as

Γn = Λχ
(
exp ( jφn)

)
, (2)

where φn is the continuous reflection phase of
the unit cell n, Λχ(·) is the phase quantization
function. For a complex number z, the phase
quantization is defined as follows

Λχ(z) = |z| exp
(

j
2π
χ

⌊
χ

2π
∠z + 0.5

⌋)
, (3)

where |z| and ∠z are the magnitude and phase
of z. Note that the reflection magnitude is
normalized to 1 since most of practical RIS works
only need to manipulate their reflection phase for
beamforming. Then, the total reflecting E-field
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from the RIS can be written as

Ere(θ, ϕ; g) = Υ0

NRIS∑
n=1

Γn exp( jκpT
n u(θ, ϕ))Einc

n

(4)

= fT (θ, ϕ)g, (5)

where u(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)T

is the spherical unit vector, pn = (px
n, p

y
n, pz

n)T

denotes the position vector of the unit cell n in
the global coordinate, Υ0 = |E0(θ, ϕ)|e jκr/r is the
radiated E-field intensity of a single unit cell at
a point of interest, g is the reflection coefficient
vector of the RIS which is defined as

g = (Γ1,Γ2, . . . ,ΓNRIS )T , (6)

and f(θ, ϕ) is array response vector that is

f(θ, ϕ) = ( f1(θ, ϕ), f2(θ, ϕ), . . . , fNRIS (θ, ϕ))T , (7)

and

fn(θ, ϕ) = Υ0 exp( jκ(px
n sin θ cos ϕ

+ py
n sin θ sin ϕ + pz

n cos θ))Einc
n .

(8)

The directivity of the reflected beam pattern
from the RIS can be defined as one for an antenna.
The directivity toward the direction of (θ, ϕ) in the
far-field zone can be defined as

D(θ, ϕ; g) =
4πU(θ, ϕ; g)

Prad(g)
(9)

where U(θ, ϕ; g) is the radiation intensity of the
RIS toward direction (θ, ϕ) in the far-field zone
that is

U(θ, ϕ; g) ≈
1
2η
|Ere(θ, ϕ; g)|2, (10)

Prad(g) is the total reflection power with the
reflection coefficient vector g at the RIS that is
computed by integrating the radiation intensity
over the entire direction. The total reflection
power can be written as

Prad(g) =
∫

(θ,ϕ)∈S
U(θ, ϕ; g) sin θdθdϕ, (11)

where S = {(θ, ϕ)| 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π} is the
all direction angles. From (5), (9), (10), and (11),
the directivity of the reflected beam from the RIS
can be rewritten as

D(θ, ϕ; g) =
4π|Ere(θ, ϕ; g)|2∫

θ,ϕ)∈S |E
re(θ, ϕ; g)|2 sin θdθdϕ

=
gHF(θ, ϕ)g

gHΣg
,

(12)

where

F(θ, ϕ) = f∗(θ, ϕ)fT (θ, ϕ), (13)

and

Σ =
1

4π

∫
(θ,ϕ)∈S

f∗(θ, ϕ)fT (θ, ϕ) sin θdθdϕ. (14)

It can be deduced from (12) that the
directivity of the reflected beam of the RIS mainly
depends on the array configuration (i.e., f(θ, ϕ))
and the reflection coefficient vector of the RIS
(i.e., g). Intuitively, one can optimize the array
geometry or the reflection response of each unit
cell in the RIS to adjust the directivity in a
particular direction (θ, ϕ). However, in this work,
only the reflection coefficient vector of the RIS is
optimized to achieve our target.

3. Gradient Descent Based RIS Reflection
Pattern Synthesis

In this section, the objective function will
be developed and the gradient descent method
will be applied to seek the optimal solution.
The proposed algorithm optimizes the reflection
coefficient vector for the RIS to form one or
multiple beams toward desired directions and
form null points to undesired directions.

3.1. Objective Function Development
In this subsection, firstly, the objective

function will be defined to be maximized to
achieve the target. Indeed, our target is to form
beams toward desired directions (i.e., users) and
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direct the null points toward undesired directions.
While the beam is an angular region with the
highest directivity compared to the other regions
surrounding it, a null point has the lowest
directivity.

Let us first derive the average directivity over
an angular region. The angular region is a vector
of zenith and azimuth (i.e., (θ, ϕ)). Thus, the
average directivity of the RIS with the reflection
coefficient vector g over a given angular region Ω
can be computed as

A(Ω; g) =

∫
(θ,ϕ)∈Ω D(θ, ϕ; g) sin θdθdϕ∫

(θ,ϕ)∈Ω sin θdθdϕ
(15)

=
gHΞ(Ω)g

gHΣg
, (16)

where

Ξ(Ω) =
1
Q

∫
(θ,ϕ)∈Ω

F(θ, ϕ) sin θdθdϕ, (17)

and Q =
∫

(θ,ϕ)∈Ω sin θdθdϕ. Let Ωb and Ωn denote
the angular regions of a beam and a null point,
respectively. Then, our target is to maximizing
A(Ωb; g) while minimizingA(Ωn; g). The simple
objective function can be defined as

J0(g) = A(Ωb; g) −A(Ωn; g). (18)

Nevertheless, the directivity might be only
maximized or minimized at some points in
the angular region Ωb or Ωn. To ensure the
flatness of the directivity over the target region,
minimization of the variance of the directivity
in the objective function will be considered.
The variance of the directivity V(Ω; g) over the
angular region Ω can be calculated as

V(Ω; g)

=
1
Q

∫
(θ,ϕ)∈Ω

(D(θ, ϕ; g) −A(Ω; g))2 sin θdθdϕ.

(19)

Hence, the objective function is now defined as

J(g) =A(Ωb; g) −A(Ωn; g)

− σ(V(Ωb; g) +V(Ωn; g)),
(20)

where σ is the flatness control parameter.
In addition, for facilitating the problem, the
Kronecker product (⊗) is utilized to simplify the
objective function. Indeed, the variance V(Ω; g)
can be rewritten as

V(Ω; g) =
GHΨ(Ω)G

GHΦG
, (21)

where

G = g ⊗ g, (22)

Φ = Σ ⊗ Σ, (23)

and

Ψ(Ω) =
1
Q

∫
(θ,ϕ)∈Ω

F(θ, ϕ) ⊗ F(θ, ϕ) sin θdθdϕ

− Ξ(Ω) ⊗ Ξ(Ω).
(24)

Thus, from (20), (16), and (21), the objective
function can be rewritten as

J(g) =
gHΞ(Ωb)g

gHΣg
−

gHΞ(Ωn)g
gHΣg

− σ

(
GHΨ(Ωb)G

GHΦG
+

GHΨ(Ωn)G
GHΦG

)
=

gHΞg
gHΣg

− σ
GHΨG
GHΦG

,

(25)

where

Ξ = Ξ(Ωb) − Ξ(Ωn), (26)

and

Ψ = Ψ(Ωb) +Ψ(Ωn). (27)

It can be realized that the objective function
in (20) is a convex function. Therefore, any
optimization method for convex problems can be
used for finding the optimal solution. In the
next subsection, the gradient descent algorithm to
maximize the objective function which is aligned
with our target will be demonstrated.
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3.2. Gradient Descent Algorithm
Gradient descent (GD) is a first-order

iterative algorithm for optimizing differentiable
multivariate functions. The GD approach
iteratively updates the variable that moves toward
the objective function’s maximum or minimum
by using its gradient at the current point. For
example, let us consider a differentiable function
f (x) with the gradient ∇x f . Then, f (x) decreases
fastest if one goes from xi in the direction of the
negative gradient of f at xi, ∇xi f . Thus, the next
point that minimizes f (x) can be updated as

xi+1 = xi − η∇xi f , (28)

where η ∈ R+ is the learning rate. Note that the
subtraction in (28) should change to addition for
a maximizing problem. Hence, the maximum or
minimum of f (x) can be obtained by iteratively
updating the new position of x.

To apply the GD algorithm, the gradient of
the objective function in (20) is firstly obtained
for the optimization variable (i.e., g). Moreover,
the reflection coefficient vector is a complex
vector with unchanged magnitudes and varied
phases. Thus, the gradient of J(g) is only
calculated with respect to the phase variable in g
such that

∇gJ = ∇φJ =

(
∂J

∂φ1
,
∂J

∂φ2
, . . . ,

∂J

∂φNRIS

)T

, (29)

where φ = (φ1, φ2, . . . , φNRIS)T , φn is the phase of
Γn. Applying the chain rule, the gradient in (29)
can be computed as

∂J

∂φn
=
∂Γn

∂φn

∂J

∂Γn
+
∂Γ∗n
∂φn

∂J

∂Γ∗n
, (30)

where Γ∗n = Λχ(exp (− jφn)) is the complex
conjugate of Γn. Thus, to calculate the gradient
of the complex function J(g), an additional
variable h = (h1, h2, . . . , hNRIS) with hn = Γ

∗
n =

Λχ(exp (− jφn)) is introduced. The objective
function can now be expressed as

J(g,h) =
hTΞg
hTΣg

− σ
HTΨG
HTΦG

, (31)

where H = h ⊗ h. In (31), g and h are treated
as two independent variables. Afterward, the
gradient of J(g,h) with respect to g and h can
be obtained as follows [22]

∇gJ =
Ξ∗h(hTΣg) − (hTΣg)Σ∗h

(hTΣg)2

− σ
G′Ψ∗H(HTΦG) − (HTΦG)G′Φ∗H

(HTΦG)2 ,

(32)

where G′ = IN ⊗gT +gT ⊗ IN , and IN is the N×N
identity matrix.

∇hJ =
Ξg(hTΣg) − (hTΣg)Σg

(hTΣg)2

− σ
H′ΨG(HTΦG) − (HTΦG)H′ΦG

(HTΦG)2 ,

(33)

where H′ = IN ⊗ hT + hT ⊗ IN . Furthermore, in
(30) we can also obtain

∂Γn

∂φn
= jΛχ(exp( jφn)) = jΓn (34)

∂Γ∗n
∂φn
= − jΛχ(exp ( jφn)) = − jΓ∗n. (35)

Thus, from (29), (30), (32), (33), (34), and (35),
∇φJ can be derived as follows

∇φJ = jg ⊙ ∇gJ − jh ⊙ ∇hJ , (36)

where ⊙ is the Hadamard product.
Since our aim is to maximize the objective

function J(g), the variable g can be updated as

φi+1 = φi + η∇φiJ (37)

gi+1 = Λχ(exp ( jφi+1)), (38)

where φi and gi are, respectively, the reflection
phase vector and reflection coefficient vectors
in ith iteration. Consequently, the gradient
descent-based beam synthesis algorithm (GD-
based BS algorithm) is obtained and interpreted
in Algorithm 1.
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Algorithm 1: GD-based BS Algorithm
Input:
Number of unit cells NRIS

Transmitter position sTx

Angular region of desired beam Ωb

Angular region of null point Ωn

Number of available phase shift χ
Learning rate η, and iteration number K
Output:
Optimal reflection coefficient vector gopt

Best cost value Jbest

1 Construct the objective function J(g,h)
2 Initialize φ0 ← rand(χ,NRIS)2π/χ
3 g0 ← Λχ(exp( jφ0)
4 k ← 0, and Jbest ← 0
5 while k < K do
6 Compute the gradient ∇gkJ and ∇hkJ

7 Calculate the gradient ∇φkJ

8 φk+1 = φk + η∇φkJ

9 gk+1 = Λχ(exp( jφk+1)
10 Compute J(gk+1)
11 if J(gk+1) > Jbest then
12 Jbest ← J(gk+1)
13 gtmp = gk+1

14 end
15 k = k + 1
16 end
17 gopt ← gtmp

18 return gopt and Jbest

4. Simulation and Verification

This section presents an evaluation of the
proposed algorithm through various simulation
scenarios. First, its effectiveness in generating
the intended beam and accurately positioning
the null point is being assessed. Next, the
influence of the number of discrete phase shifts
on the algorithm’s performance will be examined.
Lastly, the capability to form broad nulls and
multiple beams is being demonstrated.

In the simulation, the RIS is a planar array
with 12×12 unit cells and positioned at the origin

of the global coordinate. The adjacent unit cell
spacing in RIS is set to 0.55λ in both x and y
directions (λ is the operating wavelength). The
transmitter (Tx) is placed at (3 m, 30◦,−45◦) in
the global coordinate. The learning rate (η) is set
to 0.35. In addition, the iteration number (K) is
100. The above setup is consistent throughout
this section; the other configurations will be
stated in the subsection.

4.1. Beam and Null Formation

(a)

(b)

Figure 2. Normalized directivity: (a) (θ, ϕ) plane, (b)
u-v plane.

To evaluate the ability of beam and null
formation, the angular region for a beam at Ωb =

[(θb, ϕb)| 30◦ ≤ θb ≤ 50◦, 45◦ ≤ ϕb ≤ 90◦] and
a null at Ωn = [(θn, ϕn)| 60◦ ≤ θb ≤ 80◦, 100◦ ≤
ϕb ≤ 150◦] is being set. A 3-bit RIS or 8 available
phase shifts in the RIS is being considered.
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Fig. 2 shows the simulation results of
the normalized directivity in (θ, ϕ) plane (i.e.,
Fig. 2(a)) and u-v plane (i.e., Fig. 2(b)) for this
scenario. It is clear that the proposed algorithm
can effectively yield a wide rectangular-shaped
beam and a broad null at the desired angular
regions. The gap of the directivity between the
main beam and the null is around 25 dB. In
other words, the transmission for desired users
is ensured in the main beam region while the
interference to the undesired users is suppressed
at the null region.
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Figure 3. Beam pattern with respect to θ and ϕ at the
beam region.

Fig. 3 and Fig. 4 detail the beam pattern
with respect to zenith and azimuth directions at
the beam and null, respectively. These results
are sampled at the middle of the beam and null
angular regions. For example, the subfigure at
the top of Fig. 3 is the beam pattern with respect
to azimuth angle (i.e., ϕ (deg.)) and θ = (θbl +
θbu)/2 = 40◦, where θbl and θbu are the lower
and upper boundaries of θb, respectively. Fig. 3
demonstrates that a beam is well formed toward
the azimuth direction between 40◦ and 90◦ and
zenith angles from 30◦ to 50◦, which meet well
with the target angular region. On the other
hand, a broad null is clearly established at the
angular region of the target null as shown in
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Figure 4. Beam pattern with respect to θ and ϕ at the
null region.

Fig. 4. These results confirm the effectiveness of
the proposed algorithm in forming a beam and a
null simultaneously.

Figure 5. Convergence of the proposed method with
different learning rate.

The convergence rate of the proposed method
with different learning rates is shown in Fig. 5. In
this simulation, we vary the learning rate from 0.1
to 0.7. As the learning is set to 0.1, the method
slowly converges to the optimal point. The
method converges quickly as the learning rate
gets bigger. Nevertheless, the method oscillates
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over the optimal point when the learning rate is
0.7. Thus, the optimal learning rate value lies
between 0.3 and 0.5. It shows that the cost
value approaches a stable value after around 85
iterations with the learning rate ranging from 0.3
to 0.5. It means that the proposed method has
converged.

The corresponding reflection phase of the RIS
after accomplishing the algorithm is given in
Fig. 6.
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Figure 6. Optimal RIS reflection phase.

4.2. Quantization Phase Effect

This subsection analyses the impact of the
RIS quantization phase shift on the proposed
algorithm’s performance. Four different phase
shift numbers, 2, 4, 8, and 16, are considered
in this simulation. In other words, these four
different phase shifts correspond to “1-bit”, “2-
bit”, “3-bit”, and “4-bit” phase changes. For
notation convenience, the latter is named after
the corresponding results. Furthermore, this
investigation only performs with one broad beam
formation of the proposed algorithm. Indeed, the
desired beam is set at Ωb = [(θb, ϕb)| 30◦ ≤ θb ≤
40◦, 40◦ ≤ ϕb ≤ 120◦].

The simulation beam patterns with different
quantization phase shifts are depicted in Fig. 7.
It can be observed that though the phase shift is
limited to 1-bit, our algorithm can still synthesize

(a)

(b)

Figure 7. Beam pattern with respect to: (a) azimuth
angle (ϕ); (b) zenith angle (θ) at the beam region.

a broad beam matched with a target angular
region. Specifically, the “4-bit” case yields the
best results with sharp and clear beam over the
desired angular region. On the other hand, due
to the limited phase shift, the beam pattern shape
in 1-bit RIS flucates over the desired range (see
Fig. 7(a)). In addition, the directivity of the
“1-bit” case is lower than that of the higher
phase shift resolution. It is obvious since the
composite reflected EM waves at the beam region
are constructively but not ideally added up with
limited phase shift. However, a broad beam can
be witnessed at the target angular region. The
corresponding optimal reflection phase shifts of
these four cases are given in Fig. 8.
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(a) (b)

(c) (d)

Figure 8. Normalized directivity over 2D
zenith-azimuth angles: (a) 1-bit; (b) 2-bit; (c) 3-bit;

(d) 4-bit.

The corresponding normalized directivity
over zenith and azimuth directions of the four
phase shifts is presented in Fig. 9. While distorted
wide beams with high side lobes are formed for
“1-bit” and “2-bit”, well-shaped wide beams are
formed for both “3-bit” and “4-bit” cases. The
beams in the latter two cases are almost the
same, showing the saturation of the phase shift
number. In other words, increasing RIS phase
shift resolution, which is beyond “3-bit” does not
make much improvement in beamforming.

4.3. Multiple Reflection Beam
In this subsection, the capability of forming

multiple reflection beams of the proposed
solution is being tested. Particularly, three
different beams are being formed at three different
angular regions that are

Ωb
1 = [(θb1, ϕ

b
1)| 20◦ ≤ θb1 ≤ 30◦, 30◦ ≤ ϕb

1 ≤ 50◦],
(39)

Ωb
2 = [(θb2, ϕ

b
2)| 40◦ ≤ θb2 ≤ 50◦, 60◦ ≤ ϕb

2 ≤ 80◦],
(40)

Ωb
3 = [(θb3, ϕ

b
3)| 60◦ ≤ θb3 ≤ 70◦, 90◦ ≤ ϕb

3 ≤ 110◦].
(41)
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Figure 9. Optimal RIS reflection phase distribution:
(a) 1-bit; (b) 2-bit; (c) 3-bit; (d) 4-bit.

The available phase shift number is set to 4
or equivalent to 2-bit. Fig. 10 indicates the
simulation results of multiple beam scenario. As
can be seen from Fig. 10(a), three beams is
exactly synthesized at the target regions. There
is one specular lobe formed around −90◦ ≤ ϕs ≤

−110◦ and 60◦ ≤ θs ≤ 90◦. This is an issue
of the quantization effect in RIS, which can be
addressed by setting the objective function to
eliminate the beam at the specular direction.

4.4. Complexity Analysis and Comparison

As we have investigated, gradient descent
(GD) is one of the most popular optimization
techniques for convex optimization problems due
to its low complexity and rapid convergence
rate. Indeed, the computation complexity of our
algorithm is O(NKP), where N = NRIS is the
total number of unit cell, K is the number of
iterations, P is the total grid points in the beam
and null regions.

Table 1 shows the comparison between our
proposed approach with the other existing works.
It can be observed that our GD-based BS method
has low complexity, versatile beam, and null
formation ability. Moreover, our algorithm
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Table 1. Comparison between our proposal and previous existing works

Approach Optimization
Method Complexity Formation Ability RIS Phase RIS

ConfigurationBeam Null
[17] MM O(N3KP) wide NA 1-bit passive (UPA)
[18] ADMM O(K(NP + N2 + N3)) wide narrow continuous active (ULA)

[19] BIS O(NKP)
wide,

multiple
narrow continuous passive (ULA)

This work GD O(NKP)
wide,

multiple
wide,

multiple
quantized passive (UPA)

Note: K: number of iterations, N: number of unit cells in RIS,
P: total number of grid points in the beam/null regions.
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Figure 10. Multiple beam simulation results: (a)
normalized directivity over zenith and azimuth

directions; (b) RIS optimal reflection phase shift.

can effectively work with passive and quantized
phase UPA-shaped RISs, which is more practical
compared to [18] and [19].

5. Conclusion

In this paper, a gradient descent-based beam
synthesis (GD-based BS) algorithm has been
designed for multi-functional beamforming in
RIS-aided wireless networks. A closed-form
expression for the objective function and an
iterative solution have been derived. Numerical
simulations under various scenarios have been
conducted to evaluate the performance of the
algorithm. The results show that the proposed
algorithm is capable of generating arbitrary
beams and nulls that satisfy specified targets.
In particular, it can optimize the RIS to
create a rectangular-shaped beam with a null,
a broad beam, and multiple beams. Moreover,
the study has examined the influence of the
number of available phase shifts on performance,
demonstrating that the algorithm effectively
forms the desired beam and null patterns even
when the phase shift resolution is limited.
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