
VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

Original Article

An Efficient Spatial Grid Method for View Synthesis and
Hidden Surface Reconstruction

Ma Thi Chau1∗, Dao Viet Anh2

1 VNU University of Engineering and Technology, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 23rd April 2025;
Revised 30th July 2025; Accepted 10th December 2025

Abstract: The article introduces a solution integrating ray casting in spatial grids with multi-layer
perceptron models to synthesize novel views and reconstruct implicit surfaces. This method employs
grid-based querying to enhance geometric reconstruction and overall model performance. It starts
with 2D images captured from various viewpoints, which are transformed into new 3D views. The
process begins with camera calibration to derive camera matrices. Rays are then extracted, including
their origins, direction vectors, colors, and a specified region of interest in a spatial grid for 3D
reconstruction. A ray-space projection technique samples space elements and queries signed distance
function values representing surface geometry, along with colors from features stored at each spatial
grid node. Density is computed based on signed distance values, and the ray color is synthesized
from all elements along the ray, weighted by density and color. A Neural Radiance Fields model
combined with a spherical Gaussian function models areas outside the region of interest to improve
representation in unbounded scenes. Tested on the BlendedMVS and DTU datasets, the method
demonstrates high performance in novel view synthesis and implicit surface reconstruction, achieving
enhanced efficiency without compromising quality.

Keywords: View synthesis, hidden surfaces, NeRF, NeuS.

1. Introduction

3D technology is essential across various
fields, including entertainment, healthcare,
engineering, and education. However, 3D
reconstruction faces challenges. It often requires
significant investment in expensive hardware,

∗Corresponding author.
E-mail address: chaumt@vnu.edu.vn
https://doi.org/10.25073/2588-1086/vnucsce.4909

making it inaccessible for budget-limited
organizations. Additionally, the reconstruction
process is complex, involving multiple stages
from data collection to image recreation, which
increases time and costs, limiting adoption in
small and medium-sized industries.

A modern approach to 3D reconstruction
from 2D images combines machine learning with
traditional volumetric rendering techniques,

29

30 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

exemplified by Neural Radiance Fields (NeRF)
[1]. NeRF employs deep neural networks
to simulate light and density in a 3D scene,
reconstructing images from a set of 2D images
taken from various views. Its key advantage
is the ability to recreate images with high
detail and quality, effectively handling complex
surfaces and reflective lighting. However,
NeRF’s high computational demands present
challenges for hardware-constrained systems, and
it still struggles with accurately reconstructing
object shapes. In contrast, Neural Implicit
Surface Reconstruction (NeuS) [2] uses a deep
learning model to not only recreate lighting
but also simulate hidden surfaces of objects
in 3D space based on the signed distance
function (SDF). This enhances shape recovery,
particularly for objects with surfaces not visible
from certain views. NeuS can capture intricate
surface details and hidden 3D structures, yielding
improved results in scene reconstruction from
2D images. Nevertheless, NeuS also requires
significant computational resources and long
training times, which may limit its application
in fast-paced environments. Additionally,
solutions utilizing spatial grids have emerged as
crucial for enhancing computational efficiency
in 3D reconstruction models. Spatial grids
effectively partition 3D space into smaller
cells, facilitating intuitive modeling of objects
and scenes. Techniques like Direct Voxel
Grid Optimization (DVGO) [3] and Plenoxel
harness spatial grid flexibility to accelerate
3D reconstruction without sacrificing quality.
Despite these advancements, DVGO and voxel-
based methods still face challenges related to
memory optimization and processing capabilities
in complex spatial scenarios or when high
resolution is required.

In this article, a method for view synthesis
and hidden surface reconstruction using spatial
grid and two Multi-Layer Perceptron (MLP)
models of color and signed distance function (sdf)
is proposed. Our goal is to recover new views

and 3D information from 2D images captured
from multiple viewpoints while reducing the time
and maintaining the quality. The central idea
is to employ the benefits of grid-based querying
alongside implicit surfaces to enhance geometric
reconstruction and model performance.

The article is structured as follows: Section
2 reviews foundational knowledge relevant to the
method’s development. Section 3 details the
proposed method for view synthesis and hidden
surface reconstruction using spatial grid. Section
4 presents the practical implementation of the
method and demonstrates its effectiveness and
performance. Finally, Section 5 concludes the
article.

2. Background and Related Works

2.1. Background

Volume rendering and Volume ray casting:
Volume rendering is a key technique in computer
graphics [4, 5] used to create images from 3D
data, typically represented as scalar fields or
volumetric data. Unlike traditional rendering
methods, volume rendering effectively simulates
complex internal structures, capturing details
such as transparency and refraction. In view
synthesis, this technique generates images from
various viewpoints based on the same 3D data,
eliminating the need for additional data collection
and enhancing the accuracy of reproducing
viewpoints from multiple input images.

Volume ray casting [6] is a widely used
technique for processing three-dimensional
volumetric data. It works alongside splatting and
texture-based rendering, excelling at producing
high-resolution images with excellent quality
while simulating reflection, scattering, and
refraction. However, it requires significant
computational resources and time. The volume
rendering process using ray casting involves four
main steps: (i) Ray casting, (ii) Ray sampling,
(iii) Shading, and (iv) Color compositing. Ray
casting is the process of projecting a ray from the

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 31

camera center through a pixel Ii on the image and
into the volumetric space, traveling through the
entire volume and exiting it. A ray r in space is
characterized by its origin at the camera center o
and its direction d:

r : x(t) = o + td (1)

where, t is the parameter of the line equation,
satisfying the condition t ≥ 0. Only consider
points that lie in front of the origin o are
considerd.

In addition to ray casting, ray tracing [4] and
ray marching [7, 8] are fundamental methods for
simulating light movement in three-dimensional
space. Both methods used in volume ray casting
model light with rays but differ in how they
compute intersection points and sampling. Ray
tracing represents a light ray as a straight line
in 3D space and solves intersection problems by
verifying geometric conditions. In volumetric
environments, this complexity increases due to
optical properties like density and absorption,
often requiring approximations or optimizations,
such as voxel division to limit checks. In contrast,
ray marching samples along the light ray by
taking small incremental steps through space,
rather than finding exact intersection points.

xi+1 = xi + sd (2)

where xi represents the current position on
the ray at step i, and s is the step size in the
direction of the ray d. The ray marching method
does not require precise intersection calculations;
instead, it checks environmental information at
the sampled points xi.

Ray casting, ray tracing, and ray marching
all emit rays from a source and process them
along their paths, but they serve different
purposes and are suited to various problems. Ray
tracing provides high accuracy for well-defined
objects but requires significant computational
resources due to complex intersection
equations. Ray marching is more versatile

and effective in heterogeneous environments
with continuous optical properties, but it needs
careful management of parameters like step
size and convergence threshold to maintain
accuracy. Ray casting is the simplest and least
resource-intensive method, often preferred in
modern rendering algorithms, especially with
advancements in machine learning.

Monte Carlo sampling [8] is a computational
method based on probability theory used to
solve complex integral problems through random
sampling. It simulates light phenomena in
volumetric environments by approximating
calculations related to light and materials. Rather
than using impractical analytical methods in
heterogeneous environments, Monte Carlo
sampling employs strategically distributed
sample points to average the light function’s
value, approximating the integral. Each sample
point evaluates light interactions influenced
by absorption, emission, and scattering, with
results combined to simulate global lighting
effects. This method is particularly effective in
environments with varying optical properties,
making it ideal for applications like medical
imaging and physical simulations. Monte Carlo
sampling approximates the integral value by
randomly selecting N points x1, x2, . . . , xN from
the domain D and calculates the light:

I =
1
N

N∑
i=1

f (xi) (3)

To enhance computational efficiency, this
method often employs an appropriate probability
distribution p(x) for selecting sample points. In
this context, the integral is approximated as
follows:

I =
1
N

N∑
i=1

f (xi)
p(xi)

(4)

The method, referred to as importance
sampling, reduces variance by focusing
more sample points in areas that significantly
contribute to the integral. In volume ray casting,

32 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

it serves as a crucial tool for managing complex
environments with high precision, all while
avoiding an unnecessary increase in the number
of sample points.

Color compositing determines the final color
of each ray as it passes through a volumetric
medium. This method accumulates color
values along the ray, using colors from the
shading of sampled elements while simulating
light absorption, emission, and transmission
through the medium. Color compositing is
typically achieved through continuous integration
or approximated in a discrete form to manage
lighting effects effectively. Mathematically,
it involves solving optical integrals along the
light ray’s path, where the ray is sampled at
specific points for approximation. The discretized
formula for color compositing can be expressed
as follows:

C ≈
N∑

i=0

ciTi∆ti (5)

where ci is the color at the ith sample
point, Ti represents the transmitted value at that
sample point, and ∆ti is the distance between
consecutive sample points along the ray. The
propagation function at the ith sample point is also
approximated using the discrete formula:

Ti =

i−1∏
j=0

exp
(
−τ j∆t j

)
(6)

where τi is the absorption coefficient at the
jth sample point. This formula indicates that
the transmitted value at each point depends on
the cumulative absorption values accumulated
along the ray’s path. A key consideration in
the discrete color compositing technique is the
choice of sample distance ∆ti. This distance
must be small enough to accurately simulate
variations in the volumetric medium. If ∆ti is too
large, important spatial details, such as regions
with high absorption density, may be missed,
resulting in inaccurate outcomes. Conversely,
if ∆ti is too small, the number of samples

that need to be computed increases significantly,
which can degrade the overall performance of
the algorithm. A common enhancement in
color compositing is to actively accumulate
emission and absorption intensities, rather than
calculating each step independently. This can
be accomplished by updating the accumulation
directly at each sample computation step, for
example:

Ci+1 = Ci + ciTi
(
1 − exp

(
−τ j∆t j

))
(7)

where Ci represents the accumulated color
value up to the ith sample point. This formula
facilitates efficient color compositing by reducing
the number of necessary calculations, utilizing
the values that have already been accumulated
from previous steps.

2.2. Related Works
The Structure-from-Motion (SfM) Algorithm

[9] enables the recovery of three-dimensional
structures in a computer-generated space by
utilizing the movement and acquisition of two-
dimensional images of those structures. This
fundamental problem in computer vision aims
to create a 3D model of a scene from sets
of 2D images captured from different views.
The process involves several steps, including
feature extraction, feature matching, geometric
reconstruction, and global optimization, to ensure
an accurate and consistent model. The initial
step in the SfM algorithm is to extract features
from the input images. These features typically
include prominent points such as corners, edges,
or high-contrast areas, as they are easily
identifiable and can be matched across images.
Common algorithms for this step are SIFT
(Scale-Invariant Feature Transform) [10], SURF
(Speeded-Up Robust Features) [11], and ORB
(Oriented FAST and Rotated BRIEF) [12]. After
feature extraction, the next step is to match
features between pairs of images. This involves
comparing feature vectors to find pairs of points
with the highest similarity, often measured using

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 33

Euclidean distance. Pairs with a distance below
a defined threshold are considered matches.
However, due to potential noise or outliers
in the data, the RANSAC (Random Sample
Consensus) algorithm [13] is frequently used to
eliminate incorrect matches. To ensure accurate
reconstruction, it is crucial to identify image
pairs with strong feature correspondences and
sufficiently different viewing angles, thereby
enhancing the stability of subsequent processing
steps. Evaluation criteria for image pairs can
be based on the number of valid matches or
their spatial distribution across the images. The
fundamental matrix F represents the geometric
relationship between two images taken from
different angles and is calculated from the
matched point pairs, satisfying the epipolar
equation, where x and x′ are the coordinates
of a point in the first and second images,
respectively. The Eight-Point Algorithm or
enhanced nonlinear methods are commonly used
to compute F. The essential matrix E is derived
from the fundamental matrix F. Then, it can
be decomposed into the intrinsic matrix K and
the extrinsic matrix [R|t], where R is the rotation
matrix and t is the translation vector. The intrinsic
matrix K describes the internal parameters of
the camera, such as focal length f , pixel size,
and optical center. The extrinsic matrix P
is composed of the rotation matrix R and the
translation vector t, which together describe the
camera’s position and orientation in world space.
Once the intrinsic and extrinsic matrices are
established, the 3D coordinates of points in space
can be calculated using triangulation. Let P1 and
P2 be the projection matrices of two cameras, and
x1 and x2 be the coordinates of a point in the
corresponding images. The 3D coordinates X are
computed by solving the equation:

AX = 0 (8)

where A is constructed from P1, P2, x1 and
x2. This system is typically solved using the Least
Squares method. The final step in the process is

global optimization through Bundle Adjustment,
which aims to refine both the 3D coordinates of
the points and the camera parameters to minimize
the overall projection error:

Minimize
∑
i, j

∥xi j − π(P j,Xi)∥2 (9)

Where, xi j is the observed pixel position,
π(P j,Xi) is the predicted position through the
camera model, and ∥ · ∥ denotes the Euclidean
norm. Common optimization techniques include
Levenberg-Marquardt and gradient descent.

The original NeRF [1] represents a
significant advancement in 3D rendering
technology, utilizing a fully connected deep
neural network to model a continuous function
of 3D scenes. This model takes a 3D point
and a viewing direction as inputs and produces
corresponding color and density values as
outputs, effectively transforming spatial data into
visual representations. NeRF models shadowing,
along with scattering, refraction, and reflection
phenomena, using a function that maps 5D input
- comprising the spatial coordinates of a point
and the viewing direction - to RGB color and
density.

F(x, y, z, θ, ϕ)→ (R,G, B, σ) (10)

where, (x, y, z) represents the spatial
coordinates, (θ, ϕ) is the view direction, (R,G, B)
is the output color, and σ is the density at any
point in space. The neural network employed is a
fully connected network, also known as a Multi
layer perception (MLP), which approximates the
shadowing model along with the properties of
scattering, refraction, and reflection phenomena.
It is trained on a dataset of 2D images captured
from multiple angles of the scene. Through
this training, NeRF can reconstruct complex
scenes with high levels of detail and accuracy,
effectively handling challenges such as shading,
reflections, and scattering that traditional
rendering methods often struggle to address. A

34 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

key aspect of the NeRF method is its rendering
technique, which is similar to the volume
rendering method discussed in the foundational
knowledge section. Rays are emitted from
the camera’s viewpoint into the scene, with
color and density sampled continuously along
these rays. The neural network generates color
and density values at every point in 3D space.
Finally, the cumulative color along the ray
is calculated using the discrete Monte Carlo
propagation. Although discretized volume
rendering introduces discrete errors, it remains
effective for rendering complex scenes and is
widely employed in practical implementations
of NeRF. The optimization process in NeRF is
enhanced by position embedding techniques,
which improve the model’s capacity to represent
high-frequency details. This process transforms
the input coordinates and viewing direction into
a higher-dimensional space, enabling the neural
network to capture fine details more effectively.
The position encoding for a vector x is defined as
follows:

PE(x) =
(
sin(20πx), cos(20πx), . . . ,

sin(2L−1πx), cos(2L−1πx)
)

(11)

Where L represents the number of frequency
levels. The transform enhances the model’s
ability to learn spatial variation.

The training process for NeRF utilizes
gradient descent algorithms to adjust the neural
network’s weights, minimizing the mean squared
error between the colors generated by the model
and the observed colors in the training images.
This iterative optimization of the loss function
allows the neural network to accurately map the
5D input to color and density values, producing
realistic images of the scene.

One of the primary limitations of NeRF is
its significant computational and time demands
during optimization and deployment. For a digital
image sized 500 × 500 pixels, and averaging
192 samples per ray through space raycasting,

NeRF must recompute the MLP model for
each sampled element. This means that during
the processing of a single image, NeRF runs
the MLP model up to 500 × 500 × 192 =

48, 000, 000 times. Consequently, NeRF’s speed
is considerably reduced compared to traditional
methods. Additionally, NeRF’s MLP model
has a two-stage structure. The first stage
processes the spatial coordinates x(t) to compute
the density σ and the features Ffeat, while the
second stage predicts color based on Ffeat and the
viewing direction d. As a result, NeRF requires
substantial computational resources to optimize
each stage. For each optimization process on
a 2D input image dataset, NeRF typically takes
between 20 to 40 hours to achieve optimal results,
presenting a significant barrier to its practical
application. Another challenge with NeRF is
its ability to reconstruct geometry, particularly
in accurately recovering the surfaces of objects
in the scene. This limitation partly stems
from NeRF’s design, which primarily focuses
on synthesizing new viewpoints. While simple
solutions, such as setting density thresholds
to define object surfaces, can be used, these
methods often introduce unwanted noise, leading
to fragmented and flawed object geometries.

The NeRF++ model [14] further refines
the original NeRF framework by integrating
additional features such as spatially varying
reflectance and implementing auxiliary tasks
to enhance training efficiency. The primary
objective of NeRF++ is to improve the quality of
generated images while ensuring robustness and
operational efficiency. This model represents a
critical step forward in the pursuit of high-quality
visual rendering.
αSurf [15] represents a significant

advancement in implicit surface reconstruction,
particularly for semi-transparent and thin objects.
Its innovative approach to decoupling geometry
and opacity offers enhanced accuracy and
robustness, making it a valuable contribution
to the field. The authors introduce method

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 35

designed specifically to handle the challenges
posed by semi-transparent and thin objects. It
emphasizes the separation of geometric and
opacity information, leading to more accurate
reconstructions. αSurf effectively separates
geometric information from opacity, allowing
for more nuanced representations of thin and
semi-transparent materials. The method utilizes
implicit surfaces, which provide flexibility and
robustness in reconstructing complex shapes.
By focusing on semi-transparent objects,
αSurf addresses a significant gap in existing
reconstruction techniques that often overlook
these materials. The decoupling of geometry and
opacity results in more precise reconstructions,
particularly for challenging materials. The use
of implicit surfaces enhances the robustness of
the method against noise and irregularities in
the data. The approach is applicable to a wide
range of objects, from delicate fabrics to glass-
like materials, expanding its utility in various
fields. However, the method may incur higher
computational costs, especially in real-time
applications, due to the intricate processing of
opacity and geometry. In addition, high-quality
input data is essential for achieving optimal
results, which may not always be available in
practical scenarios.

Unisurf [16] represents a significant
advancement in multi-view reconstruction,
effectively merging neural implicit surfaces
and radiance fields. Unisurf enhances
both accuracy and efficiency, paving the
way for future developments in 3D scene
representation. The method offers improved
representation and rendering of complex 3D
scenes. Unisurf combines neural implicit
surfaces and radiance fields, allowing for
seamless integration of shape and appearance
information. The framework ensures consistency
across multiple views, enabling more accurate
and coherent reconstructions. By leveraging
implicit representations, Unisurf reduces the
computational burden typically associated with

traditional rendering techniques. The integration
of implicit surfaces allows for more precise shape
representations, improving the quality of the
reconstructed scenes. The framework can adapt
to various types of scenes, from simple objects to
complex environments. Unisurf shows promise
for real-time applications, making it suitable for
interactive graphics and virtual reality. However,
the unified approach may introduce challenges in
training, requiring careful tuning of parameters
to achieve optimal results. High-quality input
data is crucial for effective reconstruction, which
may limit its applicability in certain situations.

DVGO [3], developed by Cheng Sun and
colleagues, represents a significant advancement
aimed at overcoming the performance and
computational time limitations of the NeRF
model. DVGO takes a novel approach by
replacing the fully connected MLP network
in NeRF with a voxel grid interpolation
method, enabling it to learn continuous spatial
representations. This approach effectively
reduces the required computational resources and
accelerates processing speed while preserving
the ability to reproduce details in three-
dimensional space. DVGO enhances NeRF
by prioritizing super-fast convergence in radiance
field reconstruction. The authors introduce a
DVGO method that streamlines the convergence
process during NeRF training. The training
paradigm is centered around optimizing the
neural network using rendering loss, which
ensures effective learning. DVGO is well-
suited for a range of applications, including
3D modeling, computer graphics, and real-time
rendering, where rapid and accurate results are
essential. DVGO structures the space using
two distinct voxel grids, each designed to store
different types of information for the image
reconstruction process. The first voxel grid is
utilized to store the density values σ at each
leaf node. The density at a spatial element is
computed through trilinear interpolation based
on the values stored in the grid, followed by the

36 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

application of an activation function to ensure
the data’s usability. The second voxel grid in
DVGO stores features related to light and color
information at each leaf node. Similar to the
density grid, these features are interpolated in
three dimensions to compute values at the spatial
elements. However, rather than directly using the
interpolated values to determine color, DVGO
combines them with the position x(t) and the
viewing direction d as input to a shallow MLP
network. This MLP network is responsible for
calculating the RGB color at each element. The
final color of the ray is synthesized from the
elements along the ray using an accumulation
method asking to NeRF. Storing information on
a voxel grid provides substantial advantages in
terms of resource efficiency and computation
time. Rather than running the MLP network
for each element, DVGO requires only simple
inference from the values stored at the leaf nodes
of the grid, significantly reducing the number of
computations needed. Moreover, by employing a
shallow MLP instead of a fully connected MLP
like in NeRF, the color inference process at each
element is accelerated. Additionally, DVGO
separates the calculations of density and color
into two independent voxel grids. This approach
not only minimizes dependencies between the
data but also eliminates the need for a two-stage
model as used in NeRF. Consequently, DVGO
can directly optimize the stored values at each
node of the voxel grid without relying on a
pretrained MLP. However, like NeRF, DVGO is
primarily focused on synthesizing novel views,
which limits its effectiveness in recovering
geometry.

Learning neural implicit surfaces by volume
rendering for multi-view reconstruction (NeuS)
[2], developed by Peng Wang et.al., is an
advanced method aimed at improving geometric
reconstruction capabilities in novel view
synthesis models, specifically targeting the
limitations of NeRF. Rather than directly
learning the density values at each point in

space, as NeRF does, NeuS employs an indirect
approach through the SDF. This method enables
NeuS to represent implicit surfaces more
efficiently by leveraging the properties of the
SDF to determine weights at spatial points, thus
recovering detailed object geometry. The surface
of the object is defined at the point where the
SDF equals zero, sdf(x(t∗)) = 0, where x(t∗)
represents the intersection of the ray with the
surface. One of the key contributions of NeuS
is the development of the weight function w(t),
which describes the influence of a point on the
ray on the synthesized color, based on the SDF
value. The weight w(t) achieves its maximum at
the surfaces, specifically at the position t∗, and
can be represented as a bell-shaped distribution.
Common functions of this type include the
Gaussian distribution, Laplace distribution,
and the derivative of the Sigmoid function. In
NeuS, a normalized form of the derivative of
the Sigmoid function is employed to compute
the weights. However, NeuS also needs to
address the challenge of prioritizing surfaces that
are closer to the camera when a ray intersects
multiple surfaces. This is in line with the near-far
law, which dictates that the influence of nearby
surfaces should be emphasized more than that
of distant surfaces. NeuS continues to employ a
fully connected MLP, like NeRF, for computing
color values, while the SDF values are learned
through an optimization process. To ensure
that the reconstructed surfaces are not noisy
or exhibit significant artifacts, NeuS applies
the Eikonal constraint, which guarantees that
the SDF values conform to the properties of a
distance function, with gradients maintaining a
magnitude close to 1. This approach contributes
to smoother and more accurate reconstructed
surfaces. Despite these advancements in surface
reconstruction capabilities, NeuS has some
limitations. First, it still relies on NeRF’s spatial
rendering solution, which involves using a fully
connected MLP, resulting in high computational
resource and time demands. Second, in cases

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 37

of low-density surfaces, such as mirrors or less
textured areas, the weight w(t) often fails to
reach a clearly maximal value. This leads to
biased learning of the SDF values, which do not
accurately represent the necessary sign changes
of the function, making it difficult for NeuS to
reconstruct these surfaces accurately.

Plenoxels [17] presents an approach to
rendering 3D scenes using a method that
diverges from traditional neural network-
based techniques. The authors introduce a
technique that utilizes voxel grids to represent
3D scenes, eliminating the need for complex
neural networks. This method aims to improve
efficiency and simplify the rendering process
while maintaining high-quality visuals. Plenoxels
ultilize voxel grids, allowing for faster access
and manipulation of 3D data compared to neural
networks. The method demonstrates significant
improvements in rendering speed, making real-
time applications more feasible. Despite the
simplified architecture, Plenoxels achieve high-
quality outputs that are competitive with state-of-
the-art neural rendering methods. The approach
is more computationally efficient, which is
crucial for applications in real-time rendering
and interactive applications. By avoiding the
complexity of neural networks, the method
is more accessible for implementation and
understanding. The technique shows robustness
in various lighting and scene conditions,
providing consistent results. However, the
method may struggle with extremely large or
complex environments. The resolution of the
voxel grid can impact the detail of the rendered
images, potentially leading to limitations in
highly detailed scenes.

3. Spatial Grid-Based Synthesizing New
Views and Reconstructing Hidden Surfaces

3.1. Proposal

An enhanced method, including two MLP
models, is proposed (Fig. 1) to tackle the

challenge of synthesizing novel viewpoints and
reconstructing hidden surfaces in 3D space,
utilizing a spatial grid. This method focuses
on optimizing the reproduction of 3D scenes
from a collection of 2D images captured from
different views. The system’s input consists of 2D
images along with information about the camera
positions and relevant parameters. The input data
can be either masked or unmasked; for masked
images, the model targets synthesizing new
viewpoints and recovering hidden surfaces within
the masked areas. Conversely, for unmasked
images, the model must reconstruct both the
background space behind the object and the scene
within the RoI. The RoI refers to the area of the
object’s image. In the case of masked images, it
specifically denotes the portion of the image that
corresponds to the mask. The training process
results in a spatial grid that retains features at the
nodes, alongside two MLP models: MLPsdf and
MLPcolor.

MLPsdf consists of five hidden layers, each
with 128 neurons and ReLU activation functions.
The output is a scalar value representing the
signed distance function (SDF). MLPcolor also
contains five hidden layers with 128 neurons
per layer. It outputs three RGB color values,
normalized using the sigmoid activation function.
The inputs to both models include positional
encodings of spatial coordinates (with frequency
level L = 10), the view direction (also encoded),
gradients from the SDF field (only for MLPcolor),
and features interpolated from the spatial grid
(denoted f sdf-color). Both models are trained
using the Adam optimizer with a learning rate
of 5 × 10−4 and a batch size of 8192. This
configuration enables fast training and accurate
SDF and color prediction.

The model’s output includes the synthesized
novel viewpoint and the hidden surface
represented by the sdf values. Processing
starts with camera calibration using the SfM
algorithm to analyze and extract key information
from input data, including extrinsic and intrinsic

38 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

Figure 1. Our proposal.

matrices. These two matrices are essential
for projecting from the 2D image space into
3D space, ensuring high accuracy in scene
reconstruction. After the camera calibration step,
the collected data is input into the main model
for training. This phase involves optimizing the
model’s parameters, such as the density values
and characteristics of the voxel grid, using deep
learning algorithms. The voxel grid acts as
the representation space, storing information
about the density and properties of each spatial
element. The spatial grid is updated by two
MLP models: MLPsd f and MLPcolor. Rays are
casted from the images into space using a ray
casting algorithm. Points along these rays are
then sampled using the Monte Carlo method.
Information at each point is interpolated on the
grid and fed into the MLP models to predict key
parameters, including density σ for background

points, sd f for points within the RoI, and color
for each point. Thesd f values are converted into
density and transmittance α ensuring adherence
to the physical principles of the environment. A
cumulative propagation function is subsequently
applied to synthesize color from the discrete
points. The error between the synthesized color
and the ground truth, along with constraints
such as the Eikonal equation [18] for signed
distance sdf and mask errors, is calculated
and used to optimize the voxel grid and the
MLP models. Once the optimization process is
complete, the model can perform two primary
tasks: novel view synthesis and hidden surface
reconstruction. To generate new viewpoints,
the model leverages the learned information to
predict color and transparency at each point in
space, then synthesizes rays at specific angles
to produce new 2D images. Concurrently,
the marching cubes algorithm is employed to
construct a polygonal mesh from the voxel grid.
This approach enables high-detail reconstruction
of hidden surfaces of objects in three-dimensional
space, enhancing representation and ensuring
accurate reproduction of the objects.

3.2. Camera Calibration

The input is a set of images of the same
scene captured from various viewpoints. Each
2D image contains information about lighting and
color from a specific view, providing essential
data for constructing a 3D scene. This dataset
is vital for enabling the model to learn the
characteristics of the 3D space from the 2D
images. SfM algorithm analyzes the relationships
between these images by identifying common
feature points, thus reconstructing a 3D point
cloud that represents the scene. During this
process, SfM computes and outputs the extrinsic
and intrinsic matrices for each image. SfM
not only generates these matrices but also
reconstructs a sparse 3D point cloud that captures
the key features of the scene from the set
of images. After acquiring the point cloud

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 39

from SfM, the next step is to crop the data to
identify the RoI. This process aims to eliminate
unnecessary parts in the 3D space, concentrating
on areas that contain important information or
objects that need reconstruction. The RoI is
defined based on the spatial bounds of the point
cloud, utilizing spatial cropping algorithms such
as Bounding Volume Hierarchy (BVH) or Octree.
This approach helps narrow the processing space,
reducing computational resource requirements
while improving the accuracy of hidden surface
reconstruction. Data regarding the intrinsic
matrix K and extrinsic matrix P obtained from
SfM is then used to calculate the centers of the
cameras in world space, as well as the direction
d of each ray corresponding to each pixel.
Specifically, the camera center o is determined
from the extrinsic matrix:

o = −RT t (12)

The direction d of the rays is determined
by the relationship between the coordinates of
the image point on the image plane and the
corresponding region in world space. For a pixel
p = (u, v), the ray direction vector is given by:

d = RT K−1

uv
1

 (13)

Simultaneously, the correlations between the
rays and the RoI are determined by back-
projecting the pixels from the image plane into
three-dimensional space. This approach focuses
on the spatial areas that the rays from the
camera traverse, minimizing the involvement of
irrelevant regions. As a result, the necessary data
is gathered efficiently, providing better support
for the subsequent processing steps. The outcome
of these processes is a collection of RoI, a
3D space that clearly defines the boundaries
containing important features, along with a set of
camera centers o and ray directions d projected
into this space. This RoI is utilized to construct a

Figure 2. Ray casting.

spatial grid or voxel grid, offering clear guidance
for the subsequent geometric reconstruction and
new view synthesis steps. Together with the
centers and directions of the rays, the RoI
serves as a foundational element, bridging the
information between the 2D and 3D spaces.

3.3. Initializing The Spatial Grid and Performing
Ray Casting

The spatial grid is utilized to represent values
of interest, such as density, color, and features,
at its leaf nodes, leveraging its efficiency. This
results in a clear and visual structure that
optimizes the process of querying information
at any point in three-dimensional space through
an interpolation function. The general formula
for this interpolation function is expressed as
follows:

interp(x,V) : (R3,RC×Nx×Ny×Nz) (14)

where x represents the position of the
element to be queried, V denotes the spatial
grid, C indicates the number of dimensions
representing the value, and Nx, Ny,Nz, are the
respective numbers of voxels along the x, y,
and z dimensions. By default, three-dimensional
linear interpolation is employed, ensuring high
efficiency in computation and scalability.

A ray r in space is defined by the formula
(1), which describes a straight line, where t
is the parameter that determines the position
of an arbitrary element x(t) on the ray r (Fig.
2). To limit the space to be processed, the

40 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

intersection of the ray with the space is calculated
using the AABB (Axis-Aligned Bounding Box)
intersection algorithm [19]. The values tn and t f

represent the parameters at the two intersection
points of the ray with the region of interest V .
Once these values are known, the origin of the
ray can be updated by replacing the camera center
o with a new origin o′, calculated using the
following formula:

o′ = o + tnd (15)

This restricts the parameter t to the range
0 ≤ t ≤ t f − tn, optimizing sampling in space
and concentrating on the region of actual interest.
This approach not only reduces the volume of
data that needs to be processed but also improves
performance and accuracy when reconstructing
the 3D scene.

The important sampling strategy of the
proposed method is designed to balance
minimizing computational costs with ensuring
accuracy in spatial simulation. This approach
emphasizes covering the entire region of interest
while also focusing on detecting and sampling
details in key areas. The process begins by
uniformly sampling 64 points along each ray,
with points evenly spaced in space. This initial
distribution ensures comprehensive coverage,
establishing a solid foundation for subsequent
processing steps. Following the first step,
the process continues with four consecutive
rounds of focused sampling. In each round, the
method queries the sd f values at the sampled
points to identify areas with sign changes or
significant gradients. These regions typically
correspond to locations near hidden surfaces,
where higher accuracy is essential during
simulation. To enhance detail in these areas,
an additional 16 sample points are selected and
distributed around the marked regions. This
approach ensures that regions with complex
geometric features or potential surfaces are
not overlooked during reconstruction. At the
conclusion of the four iterations, the total number

of sample points along each ray increases to 128,
creating a denser point network that particularly
targets high-importance areas. Each ray is
defined by ti ∈ ti1, ti2, ..., ti128 , with being the
parameter on the tth ray. For scenes with specific
characteristics, such as images with infinitely
extending backgrounds or environments with
unrestricted depth, this strategy also incorporates
an additional 32 sample points outside the main
region of interest. The goal of this step is to
ensure accuracy in synthesizing background
colors while maintaining high quality in the
overall spatial reconstruction. The combination
of important sampling, and flexible processing
for specific conditions makes this method both
efficient and robust across various application
contexts.

3.4. Background Synthesis

The space outside the RoI, known as the
background space, will be processed separately
using a simple MLP model to synthesize
colors, ensuring both efficiency and accuracy
in representation. In the background space, the
MLPbg model will be employed to simulate
physical phenomena such as shadowing,
scattering, refraction, and reflection (Fig. 3). The
MLPbg takes as input a 4-dimensional vector
A′ and maps from a six-dimensional space,
which includes position and viewing direction
information, to a four-dimensional space
representing color and density. To minimize
computational costs, the MLPbg is designed as
a single-stage model that directly predicts the
density σ and the coefficient k of the Gaussian
function.

σ, k = MLPbg(xhomo) (16)

In this context, xhomo refers to the coordinate
normalized using homogeneous transformation.
The color of each element in the background
space is determined by the coefficient k, the basic
components p, the parameter λ optimized during
the learning process, and the viewing direction d

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 41

through the Gaussian function:

C(d) ≈
n∑

l=0

klGl(d, p, λ) (17)

With Gl(d, p, λ) = eλ(d.p−1). The function
Gl(d, p, λ) is a normalized Gaussian function,
where C(d) represents the color in the viewing
direction d. The color in the background space is
ultimately synthesized through an accumulation
propagation function.

Figure 3. Back ground color and density.

3.5. New View Synthesis
Following the approach of the NeRF++

study, the RoI is encompassed within a sphere of
radius r = 1. Within this area, the coordinates and
properties of the rays are preserved and computed
as usual. For elements located outside this spatial
region, the coordinates will be transformed into
homogeneous form to normalize the values to
the range [−1, 1]. The MLP models (Fig. 4)
consists of two primary components: MLPsd f ,
which calculates the signed distance function, and
MLPcolor which determines the color at sampled
points along the rays. The model’s loss function
comprises three main components: color loss,
Eikonal loss, and mask loss. Each component
adjusts the model’s parameters to ensure accuracy
and alignment with real-world data.

L = Lcolor + λ1LEikonal + λ2Lmask (18)

where λ1 and λ2 are weighting factors,
typically set to 0.1 to balance the contributions
of each loss component. This formulation
ensures that the model accurately reconstructs
colors while maintaining geometric properties
and clearly distinguishing the region of interest.
Color loss is defined as the distance between
the colors synthesized by the model along the

rays and the actual colors in the image (ground
truth). This distance is measured using the
L2 norm (Euclidean distance) to ensure that
the synthesized colors align closely with the
real image. Eikonal loss ensures the geometric
properties and consistency of the sdf. According
to this principle, the magnitude of the gradient
(normal vector) at every point in the SDF
must equal 1. This condition helps ensure a
continuous surface reconstruction and prevents
the emergence of unwanted noise regions. Mask
loss is calculated using a background separation
mask, which classifies important areas in the
image. Points marked as 1 in the mask represent
the region of interest, where color contributes
to the synthesized image, and the total weight
on rays passing through this area sums to
1. Conversely, regions marked as 0 do not
participate in the color synthesis process and are
treated as transparent. The position encoding
PE(s) for a coordinate x(ti) or a viewing direction
d is defined based on the formula (11). After
encoding, the signed distance function value sd fi
and the gradient gradienti at the position x(ti)
are computed. This is done by concatenating
the position encoding at x(ti) with the feature
retrieved from the spatial grid f eatsd f−color ,
and then passing it through the MLPsd f . The
output gradienti is a vector that serves as the
surface normal at x(ti) while also determining the
direction of variation of the sd fi value.

sd fi = MLPsd f (stack(PE(x(ti)), f eatssd f−color))
(19)

When utilizing the MLPsd f model to predict
the sd f value, the gradient of the sd f with
respect to the input coordinates is also calculated.
This gradient is crucial not only for defining the
surface geometry to ensure smoothness, but it
is also incorporated into the MLPcolor model to
compute color. The inputs to MLPcolor consist
of the position encoding PE(x(ti)), the normal
gradient gradienti , the viewing direction d,

42 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

and the feature f eatssd f−color. The computation
process is as follows:

color′i “ = MLPcolor(stack(PE(x(ti)),

PE(d), gradienti, f eatssd f−color))
(20)

Finally, the Sigmoid activation function is
applied to normalize the output value color′i to the
range [0, 1], providing the color of the element at
ti.

colori = S igmoid(color′i) (21)

This process not only guarantees accuracy
in the computation of geometry and color
but also optimizes the model for accurately
simulating complex details in three-dimensional
space. Incorporating the gradient at x(ti) as
an additional parameter significantly improves
the model’s performance in simulating lighting
phenomena such as scattering, refraction, and
reflection, leading to more realistic results during
the synthesis of new viewpoints.

Figure 4. RoI color and density.

3.6. Reconstructing Hidden Surfaces

After completing the model training
process and the spatial grid, a detailed spatial
representation of the object is obtained to be
simulated. To convert the hidden surfaces
in this representation into a polygonal mesh,
the Marching Cubes algorithm is employed
[20]. This algorithm facilitates the extraction
of isosurfaces from scalar fields, transforming
numerical values into a polygonal mesh that can
be easily visualized on a computer. This process
not only serves the purpose of visualization but
also aids in the evaluation and analysis of the

model. Specifically, during the evaluation of the
polygonal mesh, the Marching Cubes algorithm
on a grid with a resolution of 512 × 512 × 512
is applied using an isosurface threshold of 0.
The nodes in this grid are assigned SDF values
through linear interpolation queries on the spatial
grid, as detailed in previous sections. The
outcome of this process is a polygonal mesh that
accurately represents the surfaces of the object in
space.

4. Experiment and Evaluation

4.1. Datasets
The DTU dataset1 is a key resource in

3D reconstruction research, collected in a
controlled environment by scanning 124 diverse
objects from multiple viewpoints with a precise
camera and depth sensor. Its main advantages
include high accuracy of depth information,
which supports reliable evaluation of surface
reconstruction models, as well as included
lighting parameters and viewpoints for studying
model performance under different conditions.
However, because it was gathered in a controlled
setting, the dataset may not fully capture real-
world complexities like uneven lighting or
unexpected obstacles.

The BlendedMVS2 dataset is a synthetic
resource designed for 3D reconstruction research,
featuring 10 scenes of varying complexity. Each
scene includes 20-50 images from different
viewpoints, along with depth information and
object masks that define areas of interest,
improving surface reconstruction accuracy. A
key advantage is its provision of both masked
and unmasked versions, challenging models to
distinguish objects from backgrounds without
masks. This makes BlendedMVS valuable
for evaluating algorithms under ideal and more
realistic conditions where mask information may
not be available.

1https://roboimagedata.compute.dtu.dk/? page id=36
2https://github.com/YoYo000/BlendedMVS

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 43

4.2. Measurements
4.2.1. View Synthesis

Peak Signal-to-Noise Ratio (PSNR) is a
widely used metric for assessing the quality of
reconstruction in image and video compression.
It measures the ratio between the maximum
possible power of a signal (such as an image)
and the power of corrupting noise that affects the
fidelity of its representation.

PS NR = 10log10(
R2

MS E
) (22)

Where, R is the maximum possible pixel
value. MS E is the Mean Squared Error between
the original and distorted images, calculated as:

MS E =
1
N

N∑
i=1

(I(i) − K(i))2 (23)

where, I is the original image, K is the
degraded image, and N is the total number of
pixels. Typical PS NR values range from 20 to
50 dB, with higher values being better. A higher
PS NR value indicates better quality, meaning the
reconstructed image is closer to the original.

Structural Similarity Index Measure (SSIM)
is a metric used to assess the quality of images,
particularly for comparing a reference image to a
distorted one. SSIM measures similarity between
two images based on three key components:
Luminance, Contrast, and Structure.

S S IM =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

x + σ
2
y +C2)

(24)

Where, µx and µy are the mean luminance of
the two images. σx and σy are the variance of
the two images, σxy is the covariance between the
two images. C1 and C2 are two small constants
to avoid division by zero. SSIM values range
from −1 to 1. A value of 1 indicates that the two
images are identical. Values lower than 1 indicate
differences between the images.

Learned Perceptual Image Patch Similarity
(LPIPS) is a metric used to evaluate the

perceptual similarity between images. LPIPS
leverages deep learning to better align with
human visual perception. LPIPS is designed
to measure how similar two images appear
to human observers, making it more relevant
for applications in image generation and
compression. It uses pre-trained CNNs to extract
features from the images. The differences in these
features are then used to compute a similarity
score. LPIPS compares images in a learned
feature space rather than the original pixel space.
This allows it to capture higher-level perceptual
differences. The LPIPS score is computed by
extracting features from both images using a
CNN, next calculating the Euclidean distance
between the feature representations of the
images, and then combining these distances with
learned weights to produce a final similarity
score. A lower LPIPS score indicates greater
similarity between the images, while a higher
score suggests they are more different.

4.2.2. Implicit Surface Reconstructing
Chamfer distance is a metric used primarily

in the context of image processing and computer
vision, particularly for evaluating the similarity
between images or patterns. The Chamfer
distance between two point sets, X and Y , is
defined by the following formula.

C(X,Y) =
1
|X|

∑
x∈X

min
y∈Y
∥x−y∥2+

1
|Y |

∑
y∈Y

min
x∈X
∥x−y∥2

(25)
where ∥x−y∥2 denotes the Euclidean distance

between points x and y, and |X|, |Y | are the number
of points in sets X and Y , respectively. The
operation minx∈X |x−y|2 finds the shortest distance
from a point x to any point in set Y .

4.3. Experiments

The camera calibration process in COLMAP
starts with loading images and extracting SIFT
features. After feature extraction, RANSAC is

44 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

used to match features between images. From
the matched points, the initial spatial structure is
reconstructed by calculating the fundamental and
essential matrices, which are then decomposed
into extrinsic and intrinsic matrices. The output
includes camera matrices and a point cloud, with
RoI defined as a sphere of radius 300 around areas
of high point cloud density.

Each feature in the spatial grid has specific
dimensions, and the grid resolution is set to 100,
creating a stable grid size. Grid node values
initialize isosurface structures to aid in surface
optimization and reduce noise. During coarse
sampling, 64 points are initially sampled per
ray, followed by four rounds of refinement that
increase sampled points to 16 after each iteration.
This ensures dense sampling in areas with varying
sd f .

The input feature vector, f eatssd f−color,
has 64 dimensions, augmented with positional
encoding at frequency L = 10, resulting in a total
input dimension. The model’s hidden layers have
input and output sizes of 128 dimensions, using
ReLU activation before hidden layers. The output
layer has a single dimension without nonlinear
activation to maintain the sd f ’s sign.

Additionally, the model processes coordinate
encoding at a frequency, view direction encoding,
and the f eatssd f−color vector. Thus, the model’s
input size is defined accordingly, with hidden
layers again of 128 dimensions. The output layer
is 3 dimensions, utilizing the Sigmoid activation
function for RGB color channel values.

4.4. Evaluation

4.4.1. View Synthesis
The experiments on the BlendedMVS (Fig.

5) and DTU datasets were conducted without
using masks, comparing our results to modern
models such as NeRF [1], DVGO [3], Plenoxel
[13](Plens), and NeuS [2]. The model
was trained on a MIG 10G using an A100
GPU, demonstrating its efficiency in small
configuration environments (10G VRAM). The

model was evaluated using PSNR, SSIM, and
LPIPS metrics after 2500 iterations (i), while
also recording the loss value L during training.
The PSNR results are presented in Table 1.
The model converged quickly, achieving optimal
results after 15 minutes of training, with a PS NR
of 27 dB after 15 minutes and 30 dB after 30
minutes, approaching the quality of current state-
of-the-art models. Subjective visual assessments
indicated that the synthesized images were of
good quality, effectively distinguishing overall
details; however, small details remained low
quality or were lost in the synthesized images.
Within the same timeframe, the convergence
speed of our proposed method was nearly 20
times faster than that of NeRF and NeuS; the
PSNR achieved in 30 minutes was comparable
to NeRF trained for 15 hours and NeuS trained
for 10 hours. However, the convergence
speed was slower by a factor of 1.1 to 10
compared to the DVGO and Plenoxel methods,
which utilize spatial grids. This slowdown
is attributed to our method’s calculation of
indirect density through signed distance, where
the optimization of the indirect density relies on
the signed distance MLPsd f model, significantly
affecting convergence speed. Nevertheless, the
background synthesis quality of the proposed
method showed marked improvements over these
other methods.

Table 1. PSNR ↑ on the BlendedMVS and DTU

S ID NeRF DVGO Plens NeuS Ours

Bear 26 30 26 26 29
Jade 22 28 25 22 29

Sculp 23 26 23 20 24
Stone 22 28 23 21 23

24 25 25 27 24 27
37 25 25 25 23 26
105 30 30 30 29 33
106 33 33 33 32 33

Time 20 hs 10 ms 11 ms 14 hs 40 ms
300k i 250k i 250k i 300k i 100k i

For the SSIM and LPIPS metrics, the results
demonstrated significant performance without

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 45

Figure 5. New view synthesis on DTU and
BlendedMVS.

compromising quality, as detailed in Tables 2 and
3.

Table 2. SSIM ↑ on the BlendedMVS and DTU

S ID NeRF DVGO Plens NeuS Ours

Bear 0.15 0.03 0.05 0.11 0.04
Jade 0.26 0.08 0.11 0.27 0.08

Sculp 0.21 0.11 0.14 0.21 0.15
Stone 0.14 0.03 0.05 0.12 0.05

24 0.18 0.07 0.06 0.18 0.06
37 0.25 0.08 0.10 0.24 0.11
105 0.21 0.06 0.05 0.18 0.07
106 0.23 0.07 0.10 0.20 0.08

In the task of synthesizing novel views,

performance on two datasets with and without
masks is compared. The results indicate that
using masks enhances training efficiency by
150% and execution efficiency by 110% on the
BlendedMVS dataset, and by 160% and 130%
respectively on the DTU dataset, as shown in
Tables 4.

Table 3. LPIPS ↓ on the BlendedMVS and DTU

S ID NeRF DVGO Plens NeuS Ours

Bear 0.90 0.96 0.93 0.88 0.91
Jade 0.75 0.91 0.88 0.75 0.88

Sculp 0.80 0.88 0.87 0.79 0.86
Stone 0.86 0.93 0.92 0.86 0.90

24 0.75 0.85 0.80 0.72 0.89
37 0.79 0.88 0.89 0.78 0.88
105 0.82 0.89 0.84 0.80 0.89
106 0.87 0.91 0.92 0.83 0.93

Table 4. Performance comparison between
with/without masks

S ID Training time Rendering time
Without With Without With

Bear 10.10 15.10 20.31 18.10
Jade 10.15 15.11 20.13 18.05

Sculp 10.23 15.20 20.40 19.11
Stone 10.20 15.15 20.13 18.23

24 10.46 16.10 20.34 17.45
37 10.32 16.15 20.47 17.56
105 10.23 15.98 20.29 17.43
106 10.44 16.03 20.33 17.44

4.4.2. Hidden Surface Reconstructing
For the task of recovering hidden surfaces,

the approach was evaluated using the DTU
dataset without masks, as it provides realistic
models essential for calculating the Chamfer
distance metric. After every 10,000 iterations,
the proposed method saves the model state
and performs an evaluation using the Chamfer

46 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

Figure 6. Comparison of Random and Spherical
initialization of RoI.

distance on the realistic models from the DTU
dataset. Using the spherical initialization of the
region of interest, artifacts in the reconstructed
3D models are significantly reduced (Fig.
6). In the case of random initialization, the
3D model displays numerous noise surfaces
during the first 10,000 iterations. These
surfaces appear in a grid-like and random
pattern, concentrating near the object and
in regions with limited image information
or detail during the optimization process.
Furthermore, the signed distance field reveals
many artifact values along the coordinate axes
of the grid, resulting from errors in the grid and
position encoding. Conversely, with spherical
initialization prior to training, the level of noise
in the initial 10,000 iterations is significantly
reduced, leading to an improved convergence
rate for the model. By orienting the parameters
through spherical surface initialization, the
training process becomes more stable, thereby
minimizing the occurrence of artifacts in the
signed distance field. The Chamfer distance
of our method with modern models, including
NeRF [1], α Surf [15], UNISURF [16], and

Figure 7. Implicit surface restoration on Blended
MVS and DTU.

the traditional COLMAP method are compared.
The results are presented in Fig. 7 and Table
5. The model exhibited rapid optimization

Table 5. Chamfer distance on DTU

S ID NeRF Unis NeuS αS ur f Ours

24 1.9 1.32 1.00 1.11 1.05
37 1.6 1.36 1.37 1.50 1.43

105 1.07 0.89 0.83 0.85 0.80
106 0.88 0.59 0.52 0.48 0.52
110 2.53 1.47 1.20 1.12 1.21
114 1.06 0.46 0.36 0.35 0.35
118 1.15 0.59 0.49 0.50 0.48
122 0.96 0.62 0.54 0.50 0.49

after just 15 minutes of training. It quickly
adapted to the data, approximating the object to
be reconstructed within the first 5,000 iterations.
In the following iterations, the number of
noise planes decreased significantly, resulting
in smoother surfaces. The Chamfer distance
measure recorded after 30 minutes of training
was 1.75, which is comparable to the traditional
method COLMAP, which takes 60 minutes.
Consequently, within the same timeframe, the
optimization speed of the proposed method is
14 to 20 times faster than NeuS. The results
indicate that the proposed method significantly
outperforms NeRF, UNISURF, and COLMAP,
achieving quality on par with NeuS and α Surf.

M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48 47

Visually, the surface quality of the proposed
method is smooth like NeuS, surpassing α Surf,
but is somewhat less effective than α Surf when
handling thin or transparent surfaces.

5. Conclusions

The article introduces a novel method
for synthesizing new views and reconstructing
hidden surfaces. This approach enables the
extraction of 3D information from a collection of
2D different view images. The problem addressed
involves reconstructing a 3D model of a scene
from these images, which are taken from different
views.

The processing is divided into several stages,
starting with the preprocessing of the 2D image
data. A SfM framework, is utilized to analyze and
extract information from the input images. After
processing, camera matrices containing essential
details like position, orientation, and optical
parameters are obtained. From these matrices, the
space is segmented into light rays, each defined
by an origin, a direction vector, and a color. A
RoI is also identified, focusing the 3D recovery
process. These rays are projected into the space
using ray casting, which determines the position
and value of elements in the 3D environment.
For each spatial element, the values of the sdf
and color (c) are computed by querying features
stored on the nodes of the spatial grid and shallow
MLP models.

The resulting synthesis is used to compute
the loss function and optimize the model. The
method has been tested on datasets DTU and
BlendedMVS, demonstrating high performance
in both key tasks: synthesizing new views
and reconstructing hidden surfaces. This
approach significantly improves processing time
and computational resource efficiency while
maintaining high-quality results.

Acknowledgments

This work has been supported by VNU
University of Engineering and Technology under
project number CN24.14 ”Solution of 3D floor
plan generation”.

References

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, R. Ng, NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis (2020).
arXiv:2003.08934.
URL https://arxiv.org/abs/2003.08934

[2] P. Wang, L. Liu, C. T. Yuan Liu, T. Komura,
W. Wang, NeuS: Learning Neural Implicit Surfaces
by Volume Rendering for Multi-view Reconstruction
(2021). arXiv:inarXiv preprint arXiv:2106.10689.

[3] S. C. Sun, M., Chen, H.T., Direct Voxel Grid
Optimization: Super-fast Convergence for Radiance
Fields Reconstruction. (2022). arXiv:In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.pp. 5459–5469.

[4] J. Kajiya, B. V. Herzen, Ray Tracing Volume Densities
(1984). arXiv:In ACM SIGGRAPH Computer
Graphics: 18, pages 165–174.
URL https://doi.org/10.1145/964965.808594.

[5] N. L. Max, Optical Models for Direct Volume
Rendering (1995). arXiv:). “Optical Models for Direct
Volume Rendering”. In IEEE Trans. Vis. Comput.
Graph.: 1, pages 99–108.

[6] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama,
D. Weiskopf, In Real-Time Volume Graphics (2006).
arXiv:A K Peters/CRC Press, pages 163–185. ISBN:
9781439864296.
URL https://doi.org/10.1201/b10629

[7] K. Z. et.al., Real-time Smoke Rendering using
Compensated Ray Marchin (2008). arXiv:In ACM
Trans. Graph.: 27.
URL https://doi.org/10.1145/1399504.1360635

[8] A. B. Owen, Monte Carlo Theory, Methods and
Examples (2013).
URL https://artowen.su.domains/mc/.

[9] J. L. Schonberger, J.-M. Frahm, Structure-from-
Motion Revisited (2016). arXiv:In Conference on
Computer Vision and Pattern Recognition (CVPR).

[10] D. G. Lowe, Object Recognition from Local Scale-
Invariant Features (1999). arXiv:In Proceedings of The
Seventh IEEE International Conference on Computer
Vision: volume 2. Ieee, pages 1150–1157.

[11] T. T. Herbert Bay, L. V. Gool, SURF: Speeded
up Robust Features”. In Computer Vision (2006).
arXiv:ECCV 2006: by editor Ales Leonardis, Horst

48 M. T. Chau, D. V. Anh / VNU Journal of Science: Comp. Science & Com. Eng. Vol. 41, No. 2 (2025) 29–48

Bischof and Axel Pinz. Berlin, Heidelberg: Springer
Berlin Heidelberg, pages 404–417. ISBN: 978-3-540-
33833-8.

[12] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB:
An Efficient Alternative to SIFT or SURF (2011).
arXiv:In 2011 International Conference on Computer
Vision: pages 2564–2571.
URL doi.org/10.1109/ICCV.2011.6126544

[13] M. A. Fischler, R. C. Bolles, Random Sample
Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated
Cartography (1981). arXiv:In Commun. ACM: 24.6,
pages 381–395. ISSN: 0001-0782.
URL https://doi.org/10.1145/358669.358692

[14] Zhang, K., Riegler, G., Snavely, N., Koltun,
V, Nerf++: Analyzing and Improving Neural
Radiance Fields. (2020). arXiv:. arXiv preprint
arXiv:2010.07492.

[15] T. Wu, H. Liang, F. Zhong, G. Riegler, S. Vainer,
J. Deng, α Surf: Implicit Surface Reconstruction for
SemiTransparent and Thin Objects with Decoupled
Geometry And Opacity (2023). arXiv:inarXiv preprint
arXiv:2303.10083.

[16] M. Oechsle, S. Peng, A. Geiger, UNISURF: Unifying
Neural Implicit Surfaces and Radiance Fields for
Multi-View Reconstruction (2021). arXiv:In ICCV.

[17] A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, A. K.
Benjamin Recht, Plenoxels: Radiance Fields without
Neural Networks (2022). arXiv:In CVPR.

[18] I. V. R. R. Z. Zhdanov, W. I. Fushchych, On
The General Solution of The D’Alembert with a
Nonlinear Eikonal Constraint And Its Applications
(1995). arXiv:In Journal of Mathematical Physics:
36.12, pages 7109–7127.
URL https://doi.org/10.1063/1.531142.

[19] A. Majercik, C. Crassin, P. Shirley, M. McGuire,
A Ray-Box Intersection Algorithm And Efficient
Dynamic Voxel Rendering (2018). arXiv:inJournal
of Computer Graphics Techniques (JCGT): 7.3, pages
66–81. ISSN: 2331-7418.
URL http://jcgt.org/published/0007/03/04/

[20] W. Lorensen, H. Cline, Marching Cubes: A
High Resolution 3D Surface Construction Algorithm
(1987). arXiv:In ACM SIGGRAPH Computer
Graphics: 21.
URL https://doi.org/10.1145/37401.37422.

