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Abstract: African Swine Fever (ASF) is a highly contagious disease affecting pigs, with mortality 

rates varying based on host, viral dose, and transmission route. Since its first detection in Vietnam 

in 2019, ASF has spread rapidly, particularly among small-scale farms with limited biosecurity, 

causing severe economic losses. While pig movement studies have explored disease transmission, 

there is limited research on ASF control strategies using cloud-based multi-agent simulations. This 

study develops a novel multi-agent ASF spread model on the GAMA simulation platform, focusing 

on Hanoi, Vietnam’s second-largest pig-producing region. The model allows for scenario analysis 

by adjusting direct and indirect transmission factors. By deploying simulations of six control 

measures, such as movement restriction and culling, with an intuitively interactive map interface, 

the unseen behaviors and interactions of agents are revealed. Results highlight its potential in aiding 

policymakers to design effective ASF outbreak control strategies. 

Keywords: African Swine Fever, Cloud Computing, Disease Control Strategy, GAMA Platform, 

Multi-Agent Simulation. 

1. Introduction  

African Swine Fever (ASF) is commonly 

known worldwide, not only in Vietnam, was first 

detected by the Vietnamese government in 

February 2019 in the two provinces of Hung Yen 

and Thai Binh [1], and spread rapidly to all 

Vietnam's provinces. ASF, despite proactive 
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prevention measures and early awareness of the 

disease, was discovered for the first time in 

Hanoi on 31 May 2019. ASF cases were reported 

in Hanoi's 24 districts, towns, and villages with 

pig-farming in that same year. The total number 

of pigs killed was nearly 550,000, with a weight 

of approximately 37,100 tons [2]. ASF returned 

to Hanoi in April 2020, four months after it had 
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been declared eradicated. This time, the 

Department of Agriculture and Rural 

Development reported that the disease affected 

43 families in 25 communes in the 12 Hanoi 

districts on November 15, 2020. This led to 506 

pigs being killed and culled, with a combined 

weight of 31,342 kg. In 2024, ASF once again 

returned and broke out strongly in Vietnam even 

though Vietnam had developed an ASF vaccine 

since 2023. From the beginning of 2024 to July 

2024, the country had more than 630 outbreaks 

of ASF in 44 provinces and cities, forcing the 

destruction of more than 40,500 pigs [1]. 

According to research by Sykes et al., 

conventional ways of controlling pig diseases 

have been successful in the past [3]. These 

include killing any pigs that show signs of 

infection, limiting the movement of pigs and pig 

products, and improving agricultural 

biosecurity. However, its effectiveness is limited 

by how long it takes to completely contain the 

disease, which can range from 6-10 months. In 

addition, the methods used only account for 

human factors, such as care, transportation, and 

handling, whereas the characteristics of the pigs 

and their movements play a major role in 

transmitting infectious diseases. It is also not 

practical to conduct real-life experiments in a 

large population such as a whole region [3]. 

Besides, to efficiently allocate resources for 

surveillance in the event of personnel shortages, 

it is important that disease control directives are 

timely and accurate. Therefore, it is necessary to 

develop a simulation model of ASF spread, 

taking into account multiple influencing factors, 

to help policymakers not only understand how 

disease outbreaks affect a large geographical 

area but also make informed and precise 

decisions about cost-effective controls such as 

vaccinations and movement restrictions. In 

veterinary epidemiology, social network 

analyses are also commonly used to determine 

the role of animal movement in disease 

transmission. Some studies were conducted 

using social network analyses to determine the 

impact of contact networks between farms [4, 5]. 

These studies provided new insights on the 

influence of network properties on disease 

spread within a community. 

Meanwhile, cloud computing is a paradigm 

for delivering computing resources via the 

Internet, enabling consumers and businesses to 

access and utilize hardware, software, and 

services through a cloud infrastructure without 

the necessity of investing in physical 

infrastructure. This concept enables enterprises 

and individuals to reduce initial investment and 

maintenance expenses while offering flexible 

scalability and convenient access from any 

location and device with an Internet connection. 

Cloud computing offers unlimited computational 

resources, yet integration with ABM 

frameworks remains underexplored. Running 

simulation models on the cloud enables 

researchers to tap into unlimited resources as 

well as to perform and share their experimental 

results in an intuitive, user-friendly, and easy way. 

Recently, in Vietnam, studies of pig 

movement patterns provided more in-depth 

information on how farm systems can affect the 

spread of infectious diseases in pigs [4, 6, 7]. 

Vietnam's livestock statistics for 2020 show that 

there were 19.6 million pigs. Hanoi was the 

second largest province when it came to pig 

farming with almost 1 million. Therefore, data 

collection for the Hanoi pig farming industry 

will become easier. To the best of our 

knowledge, there are no studies evaluating the 

effectiveness of ASF epidemic control strategies 

using multi-agent cloud simulation in a specific 

geographical area such as Hanoi. The purpose of 

this study is to create a cloud-based simulator 

implementing ASF spread models, which will 

allow us to assess the effectiveness of disease 

control measures to reduce the impact of ASF on 

Vietnam. It is functionally tested using the ASF 

disease spread model in Hanoi. The results of 

simulations with different scenarios will also be 

presented and discussed in terms of their 

epidemiological implications for the community. 

This paper is organized into six sections. 

Section 2 provides a summary of the relevant 

literature.  The multi-agent model for ASF 
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spreading to Hanoi farms is described in Section 

3. In Section 4, we present the implementation of 

this model on our cloud platform using GAMA 

(GIS Agent-based Modeling Architecture), a 

powerful agent-based simulation (ABS) platform. 

Section 5 discusses numerous findings from 

running simulations with various control measures. 

Finally, we conclude the paper in Section 6. 

2. Literature Review 

Harvey et al. [8] collected and classified 

studies on the ASF spread model in three 

categories, which are methodology, objectives, 

and framework work. If they are classified by 

method, then there are three different types: 

experimental, observational, and simulation. 

Four types can be classified according to the 

objectives of the model. Estimate parameter type 

determines how quickly the virus spreads in pig 

farming, within herds of pigs, and under other 

conditions. The type that evaluates alternative 

strategies for disease control, pig reproductive 

strategies, and other measures is Assess 

Alternative Control Strategies. Type Assess 

Transmission Determinants focuses on the 

transmission dynamics, ecological aspects of the 

virus causing the illness, etc. Type Assess the 

consequences of hypothetical outbreak analyzes 

how the size and duration of control areas affect 

the outcome of an epidemic. It also assesses 

whether the virus poses a threat to the livestock 

sector.  

According to the frameworks, the 

classification includes models based on 

population, on meta-population, and solely on 

individuals. Population-based modeling is one 

where organisms are defined as belonging to a 

species. Each population has characteristics such 

as density, increase in natural rate, death rate, 

age distribution, dispersal, growth rate, etc. [9]. 

Models that consider a single population are the 

simplest. To determine the interactions between 

populations, growth rates and death rates are 

taken into account. It can depend on the size of 

the population but not on other populations. A 

metapopulation can be defined as an ensemble of 

disjunct spatial groups with some genetic or 

demographic connection. As a result, any 

specific group of populations could be 

considered a metapopulation. If they are not 

connected genetically or in a demographic sense, 

the groups can function separately and as 

different populations. Last, the agent-based or 

individual-based is known. These models 

provide feedback through the modeling 

framework [10]. Every individual has unique 

characteristics, which allows greater variations 

in behavior. The individual, the interactions 

among individuals, and the environment are 

three important aspects to take into account 

when creating an individual-based simulation. 

The development of traits with adaptive 

properties that mimic the behavior of real-

organisms is the key to a successful model. 

Indirect interactions can take place through the 

modification of an environment. For example, a 

chemical or physical mark is placed in a 

particular area to signal future individuals. The 

environment is the physical landscape in which 

organisms can move and interact. Changes in the 

environment are frequent enough that 

individuals can adapt to them. 

There are several studies on the spread of 

ASF in the world and in Vietnam. In the study 

by Tiwari et al., the authors utilized the 

Minimum Convex Polygon (MCP) model 

combined with the logistic diffusion model to 

analyze the spatial growth rate of ASFV on a 

weekly, monthly, and yearly basis. This 

approach provides a better understanding of the 

disease spread trends, thereby supporting the 

adjustment of management measures and the 

effective establishment of buffer zones [11]. In 

another study, Hsu et al. developed an integrated 

spatiotemporal model to provide an in-depth 

analysis of ASF spread [12]. The research team 

estimated outbreak clusters based on both 

temporal and spatial factors, thereby identifying 

seasonal indices and the disease's transmission 

direction. The results revealed a distinct seasonal 

distribution of outbreaks, with the highest 

frequency occurring from August to October and 

the lowest from April to May. This model 
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suggests that, at least in part, the seasonal trends 

of ASF can be explained by the interaction 

between environmental factors, such as rainfall, 

and cultural practices that contribute to the 

disease's spread. Lee et al.'s model [13] uses the 

North American Animal Disease Spread Model 

(NAADSM) to evaluate control strategies and 

simulate various scenarios for ASF transmission 

among farms. The authors used real data from 

Vietnamese pig farms in the Red River Delta 

region. The author’s scenarios included both 

direct and indirect contact scenarios, and then 

movement restrictions were implemented. The 

restriction of movement led to a significant 

decrease in the number of affected farms. In 

another work by Lee et al. [5], an SIR model is 

used to determine the effect of eliminating 

contaminated farms on disease outbreaks. The 

primary limitation of this study is its inability to 

consider all possible risk factors. They also point 

out the uncertainty of estimated parameters 

associated with disease transmission. 

Our study uses an individual-based 

simulation modeling method to evaluate 

different control strategies, the transmission of 

disease, and its consequences. ASF outbreaks 

are the subject of similar studies such as [5, 11-

13], but they differ from ours by the 

geographical scope applied (ours involves 

Hanoi), the platform technology used (we utilize 

a cloud-based multi-agent simulation platform, 

GAMA [14-16]), or even the methodology used 

(agent-based modeling). 

3. Model of the ASF Spread 

3.1. Main Components of the Simulation Process 

The NAADSM (North American Animal 

Disease Spread Model) is a simulation model 

used to study the spread of animal diseases, 

including the simulation of ASF spread [8]. 

Since it focuses on the goal of measures to 

control disease spread, the model has omitted 

some components such as infectious states: 

exposed, subclinical infected, and recovered. 

Thus, the built model studies only two states: 

susceptible and infected (i.e., SI model). The 

object of the model is to develop pig farms with 

the assumption that when one pig is infected, the 

whole herd is considered infected. The model 

also disregards vaccination mechanisms because 

it takes time to assess the effectiveness of the 

new ASF vaccine developed in Vietnam. The 

research focuses on models aimed at evaluating 

alternative control strategies and belongs to the 

category of individual-based models (or agent-

based models). Instead of applying population-

based models and metapopulation models, 

which are unsuitable due to the absence of 

geographical attributes for each studied entity, 

this approach provides a more precise 

representation. The equations describing the 

dynamics of the simulation system are 

differential equations or probabilistic rules that 

depict the state transitions of individuals from 

susceptible (S) to infected (I). The infection rate 

based on pig population density is calculated 

using Equation 1. 

𝜌 =
𝑁

𝐴
                              (1) 

Where N is the number of pigs in a farm or 

area, and A is the area of that farm or region. 

The main parameters of the model are 

referenced from the model of Lee et al. [13], 

including the probability of infection when a 

farm comes into contact with another infected 

farm and the frequency of contact between 

farms. At the same time, the model has added a 

number of parameters to simulate additional 

scenarios, such as the waiting time for 

destruction or the number of farms taken from 

reality. 

The model is simulated using the GAMA 

platform [14] with components of the simulation 

process, as shown in Fig. 1. QGIS is used as a 

preprocessing tool to filter out unnecessary map 

information for simulation, utilizing the .shp 

(shapefile) format [17], which is supported in 

GAMA. Data on the number of farms and the 

total pig population in each district is processed 

in Excel and stored in .csv format. The GAMA 

platform is employed to construct and execute 

simulations based on the disease spread model, 
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incorporating two input data sources from the 

preprocessed .shp and .csv files. The entire 

simulation code is stored in .gaml files [14]. 

During the simulation process, the Parameter 

Setting feature allows users to customize 

scenarios to validate different outbreak 

situations. Simulation also allows users to 

influence the parameters to set up simulation 

scenarios. The simulation is capable of 

displaying the spread of the ASF epidemic on a 

map of Hanoi, and is also capable of extracting 

parameters used to test and verify the model. 

Simulation also allows the extraction of 

parameters used to evaluate the impact of 

epidemic control methods.

 

 

Fig. 1. The main components of the simulation process: QGIS is used as a preprocessing tool to filter out 

unnecessary map information, data on the number of farms and the total pig population in each district is 

processed in Excel, the GAMA platform is employed to construct and execute simulations based on the disease 

spread model, incorporating two input data sources from the QGIS and Excel files. 

3.2. Simulation Data 

General Statistics Office of Vietnam 

provided information on the number of large and 

medium pig farms and small households that 

raise pigs. They also provided data on the total 

number of pigs in Hanoi’s communes and 

districts [18]. To classify livestock operations, 

they were divided into three different categories: 

small farms (less than or equal 100 pigs), 

medium farms (100 to 1,000 pigs), and large 

farms (more than 1,000 pigs). These data show 

that while the number of large and medium farms 

(226) is very low compared to the number of 

smallholdings that raise animals (44,429), they 

represent a substantial proportion of total pigs 

(27.27%). 

It is worth noting that, while the General 

Statistics Office (GSO) provides official 

statistics on farm structures and pig populations 

at the commune and district levels, detailed time-

stamped, farm-resolved ASF outbreak and 

culling records are not publicly available in 

Vietnam. In practice, available outbreak 

statistics are often aggregated at administrative 

levels, reported using different definitions (e.g., 

“culled” versus “dead and culled”), and 

maintained across multiple agencies, which 

makes it difficult to construct a consistent 

ground-truth dataset for rigorous quantitative 

validation at the farm level. Therefore, in this 

work, we focus on calibrating the baseline 

livestock system using official population 

statistics and use the model primarily for large-

scale scenario comparisons while 

acknowledging this validation constraint. 

The map data was downloaded from 

Vietnam Map [19]. These map data were 

processed using QGIS, keeping only the 

necessary information to simulate. We retained 
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two specific layers that were related to the 

boundaries and centers of the commune and 

district. At the same time, we deleted any data 

from outside of Hanoi. 

3.3. Multi-agent Model 

Model input is the total number of pig farms 

in Hanoi, classified by size. Randomly, a farm is 

chosen as the source of infection. From there, the 

model simulates the spread of disease using 

random probabilities. Every simulation cycle is 

equivalent to a day in real time and the model 

will run for 364 cycles. This is equivalent to 52 

weeks. A predetermined list of trading relations 

will determine how the farms interact. In each 

case, the probability of the recipient farm 

becoming infected is high if the farm source is 

also infected. ASF spreads in Vietnam mostly 

through indirect contacts (such as vehicles or 

people moving around, feeding, etc.). For 

medium- and small-scale farms, the direct and 

indirect probabilities of transmission are both 0.6 

or 60% (according to [6, 20]). The biosecurity 

level of large farms is usually high, resulting in 

lower probabilities of indirect transmission. 

Following consultation with experts in the area, 

a probability of 0.006 (0.6%) of indirect 

transmission was determined for this type of farm. 

The main suppliers of pigs in Vietnam are 

medium and large farms. The number of pigs 

transported from smaller to larger farms is very 

low [20]. Lee et al. (2020), suggest that the 

weekly trading rate is determined by considering 

the distribution [5]. To determine direct contact, 

they looked at statistics such as the frequency 

with which farmers catch pigs on farms for the 

purpose of sale and the frequency in which boars 

are shared between breeding facilities. They 

used a number of factors to evaluate the 

possibility and frequency of direct contact. 

These included the frequency and duration of 

vehicle visits to the farm within a six-month 

period, the number and duration of time 

veterinarians, veterinary technicians, or other 

residents visited the farm and how they 

interacted with the farm. The statistical process 

showed that the Poisson probability was the most 

appropriate. It is possible to use this probability 

for different parameter models. The distributions 

for the contact rate are calculated weekly. 

Because ASF spreads quickly, if one pig 

becomes infected, almost 100% of animals in a 

herd will also become infected. We ignore 

transmission within a herd when we study ASF 

and assume that all animals are infected. Our 

model visualizes the infected farm as a change 

from green to red, and it disappears once destroyed. 

3.4. Design of the Model in GAMA 

Our study utilizes GAMA, a desktop 

simulation platform, to create explicit agent-

based simulations. GAMA was chosen over 

other simulation tools such as Matlab, Dymola, 

and SciPy due to its specialized design, which 

enables the development of complex models 

with multiple interacting entities. Its powerful 

spatial processing capabilities, with built-in GIS 

integration, allow GAMA to simulate real-world 

environments more effectively than Matlab and 

SciPy, which require additional libraries. 

GAMA's intuitive interface enables users to 

easily observe, adjust, and analyze simulations 

without the need for complex programming, 

unlike Matlab or Dymola. Additionally, GAMA 

supports high-performance computing with 

parallel execution across multiple CPU cores, 

whereas Matlab and SciPy are not optimized for 

large-scale multi-agent simulations. With its 

dedicated GAML language, GAMA simplifies 

agent behavior modeling compared to the more 

complex coding approaches required in Matlab 

and SciPy. Furthermore, GAMA offers strong 

integration with various data formats and web 

services, while other tools often require 

additional configurations. 

GAMA provides a comprehensive agent-

based modeling (ABM) and simulation 

environment. In this research, it is applied to 

model the spread of ASF in pig farm 

environments in the Hanoi region. GAMA has a 

simulation interface that consists primarily of a 

screen that shows the Hanoi map, the districts, 

and the communities in Hanoi as well as the pig 

farms with the option to track the facilities. To 
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make GAMA more accessible to epidemiology 

researchers, we have created a cloud-ready 

version [15]. It is based on the services and key 

principles of Parlavantzas et al. [21] for 

developing and implementing high performance 

cloud-based epidemic simulation applications. 

In terms of appearance, each farm has a 

circle that represents it. Its radius is based on the 

number of pigs in the facility. ASF infection is 

indicated by the color of the circles. We designed 

a species (a GAMA data class representing a 

species or object) to represent the pig farms, 

which includes attributes such as the number of 

pig individuals in each farm, whether the farm 

has been infected or not, the number of days 

since the farm detected an infected pig, and a list 

of other small-/medium-/large-scale farms that 

can trade with this farm. Pig farms can also be 

designed to have certain behaviors, such as 

"infect". When the farm is infected, there is a 

probability that it will spread the disease 

randomly to other farms listed in the contact list. 

GAMA represents district shapes as species 

in its simulation environment. The species in 

GAMA include attributes like whether a district 

has been infected or not. They also contain the 

number of farms and pigs that are located there, 

including the number of farms with pigs. The 

parameters of this species are updated as well 

when drawing it. For the display of district 

shapes and coordinates, the Shapefile format 

[17] and other data are imported into the software. 

The model presents statistics such as the 

number of farms, infected individuals, and non-

infected individuals, along with displaying color 

changes for each district and farm on the map. 

The intensity of the red color in the RGB system 

increases as the number of infected farms rises. 

It also displays line charts showing the 

percentages and numbers of infected and 

uninfected farms. Each stage will generate 

shapefiles for display on the front-end of the 

web-based graphical interface on the cloud. Fig. 

2 shows an illustration of the distribution of 

farms displayed by the front-end of the GAMA 

cloud-based simulator, which will be discussed 

in detail in the next section.

 

 
Fig. 2. The design of the graphical interface that implements the ASF spread model on the GAMA cloud-based 

simulator: The main screen shows the Hanoi map, the districts, and the communities in Hanoi as well as the 

distribution of pig farms (green dots). 
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4. Implementation of the Simulation 

Application in the Cloud 

4.1. Implementation of the Simulation Application 

Using the agent-based ASF spread model 

developed on the GAMA platform, we simulated 

the spread of ASF in Hanoi. The simulations 

were divided into six scenarios: the base scenario 

and those that employ disease control strategies. 

In each scenario, the simulation is run 100 times, 

and the average values of key metrics such as the 

number of infected farms and the number of 

farms requiring pig culling are calculated for 

each farm type. During the initialization phase of 

each scenario, the simulation reads farm data and 

geographic data of Hanoi. Then, farms are 

initialized with their random locations and sizes 

across districts by the GAMA program. The 

program maintains the locations and sizes of the 

farms, as well as the randomly initial infected 

farm, until it executes all simulation runs of the 

scenario. In each simulation run, the spread of 

ASF in Hanoi is simulated over 52 weeks, a 

period long enough to cover a full pig production 

cycle in Vietnam (typically 6 to 8 months). 

Fig. 2 depicts a map showing pig farm 

locations in Hanoi. In this figure, districts are 

divided by a black border with little yellow spots 

indicating their centers. Small, medium and 

large farms are denoted by different sized dots. 

The green dots on the map represent unaffected 

farms, while the red dots signify farms that are 

infected by ASF. The spread of ASF is also 

indicated by the colors of districts. Red areas 

have an extremely high spread rate. Depending 

on the settings, this could be greater than 75% of 

affected pigs and/or farms. Orange, yellow, and 

green indicate infection rates that are below 

75%, 50%, 25%, respectively. The grey zones 

indicate areas without disease. In the inner 

districts of Hanoi, there are no pig-farming areas, 

so these appear naturally gray. This application 

displays not only the geographical distribution 

but also various charts to track statistical data. 

Line charts illustrate the evolution of both the 

farms involved and the number of pigs infected 

during an outbreak. The software allows us to 

understand trends and predict whether the 

outbreak is likely to escalate quickly or slowly. 

This software also includes pie charts showing 

the number of infected farms and how many 

infected pigs are in each district. 

4.2. Architecture of the Simulation Application 

on the Cloud 

Regarding the architecture of the simulation 

application deployment system, we use the 

Client - Server architecture pattern to design the 

system as described in Fig. 3. This system runs 

on the OpenStack private cloud deployed at the 

Center for Digital University of our university 

[22]. On the client side, the ReactJS framework 

is used to build a user interface that displays the 

simulation for the user. On the server side, 

Laravel [23] is used as the backend, using the 

Restful API to communicate with the front end, 

and the server side also needs to preinstall 

GAMA Desktop. When the client side runs the 

simulation API, Laravel will run GAMA through 

Headless mode. The resulting information will 

be saved in the MySQL database and files, and 

folders (e.g., projects, simulation images) will be 

managed by AWS cloud [24]. All user 

management operations are performed on the 

standard client-side interface. The back-end 

system source code has been openly published 

by the research team [16]. It can be seen that 

interacting through the cloud-based interface 

provides ease of use for users and experts. 

Additionally, availability is always ensured, 

allowing policymakers without deep technical 

expertise to use the system without requiring 

complex configurations, unlike the GAMA 

Desktop version. Another important aspect is 

that cloud infrastructure solutions offer high 

computational performance and flexible 

scalability, enabling simulations to run faster and 

expand more efficiently [7].
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Fig. 3. The architecture of the GAMA-based cloud simulation application with ReactJS  

at the client side and GAMA Desktop, Laravel, MySQL at the server side. 

5. Results and Discussion 

In this section, we perform simulations with 

the multi-agent model mentioned in Section 3 on 

the cloud system described in Section 4. To be 

able to evaluate the effectiveness of strategies to 

control the spread of ASF, many different 

scenarios have been designed that correspond to 

these strategies. The parameters used for each 

scenario are shown in Table 1. These parameters 

can also be customized right on the graphical 

interface of the cloud simulation application

Table 1. The parameters used for the scenarios 

Parameter 

 

 

 

 

Scenario 

Direct 

contact 

The 

contact 

of large 

farms 

Movement 

restriction 

(%) 

The 

duration of 

the 

restriction 

(weeks) 

Movement 

restriction 

(%) 

Reduce the 

probability of 

transmission 

through 

indirect 

contact (%) 

The 

destruction 

of pigs 

The 

duration of 

destruction 

delay 

(weeks) 

Base 

Scenario 
True True 0 4 0 0 False 2 

Culling all 

pigs from 

infected 

farms 

True True 0 4 0 0 True 3 

Elimination 

of direct 

contact and 

contact of 

large farms 

False False 0 4 0 0 False 2 

Limitation 

of 

movement 

of infected 

farms 

True True 75 4 0 0 False 2 

Restriction 

of 

movement 

of all farms 

True True 0 4 75 0 False 2 

Improving 

biosecurity 

for small 

and 

medium 

farms 

True True 0 4 0 50 False 2 
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5.1. Base Scenario 

In this scenario, no measures are applied to 

prevent disease spread. The simulation results of 

the base scenario in Fig. 4 show that most farms 

were infected at the end of the third quarter, 

consistent with the model results of Lee et al. 

[13]. The remaining uninfected farms are mostly 

large farms with high levels of biosecurity. Fig. 

4 also depicts the states of the ASF model in each 

of the four quarters when the spread of ASF is 

simulated without applying any controls. In the 

graphs, it is clear that 99% of the farms were 

infected within a year. Regardless of this 

extreme high, as we can see from the figure, the 

infected number of pigs only represents 

approximately 30% of the total population of 

pigs in Hanoi. In other words, large farms tend 

to have lower rates of infection. It is easy to 

explain by the biosecurity standards and hygiene 

measures implemented on larger farms. It is 

clear from these charts that ASF's severity and 

spread will be increased if control measures are 

not implemented. In one year, most of the areas 

in the region have become red zones because 

there are so many facilities that are affected.

 

  

(a) (b) 

  

(c) (d) 

Fig. 4. The ASF states spread at the end of a) the first, b) the second, c) the third and d) the fourth quarters when 

no control strategy was applied: most farms were infected at the end of the third quarter and the remaining 

uninfected farms are mostly large farms with high levels of biosecurity. 
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5.2. Culling All Pigs from Infected Farms 

The scenario of culling pigs from infected 

farms allows us to assess the role of culling 

measures on the rate of spread of ASF. By 

adjusting the delay time parameter before culling, 

we can create different scenarios such as culling 

pigs after 2/3/4/6 weeks after the farm is infected. 

Fig. 5 depicts different model states at the 

ends of four quarters when the ASF is spread by 

implementing a strategy culling pigs with at least 

one infected animal on the farm, but with a six-

week delay. Pigs are culled six weeks after 

determining a farm of infected pigs. We can see 

from the figure that, after 1 year, the risk has 

been significantly reduced. Specifically, the 

number of infected pigs is now only 2% (a 15-

fold reduction compared to the base scenario). 

The number of infected farms has also dropped 

dramatically to about 3% (an 87% decrease), 

excluding culled farms and pigs. The infected 

and culled pigs make up approximately one-third 

of the infected ones in the base scenario 

(approximately 8% compared to 30% infected 

without control). 

This number is very impressive. After the 

implementation of the culling measures, only a 

little more than 10% of the farms were infected. 

Failing control measures, the non-infected farms 

would only be around 9%, mainly large farms. 

When the culling approach is applied, this 

number of farms that are safe and noninfected 

increases 10 fold. By comparing maps for 

culling infected animals and those without 

intervention, we can clearly see the decrease in 

infected farms during the third quarter. As 

shown in Fig. 5d, we see that most areas only 

have a small number of infected farms. 

  

(a) (b) 

  
(c) (d) 

Fig. 5. States of the ASF spreading model at the end of a) the first, b) the second, c) the third, and d) the fourth 
quarters when applying the strategy of culling all pigs on farms with infected pigs with a delay time of 6 weeks. 
Consequently, little more than 10% of farms were infected, with a notable decline recorded in the third quarter 

relative to the base scenario. 
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Due to space restrictions, we are only able to 

provide maps for the scenario in which infected 

pigs would be killed after a 6-week delay. 

However, the results obtained by applying the 

culling strategy with different time delays show 

that by reducing the culling time to under 3 

weeks, we will be able to prevent the ASF 

epidemic from spreading. The use of this 

measure is one of the most effective disease 

control strategies, especially in the absence of an 

ASF vaccine. Culling has a significant impact on 

epidemic control and is crucial to preventing 

ASF. However, it is necessary to consider the 

economic consequences it brings to farmers and 

society. 

5.3. Eliminating Direct Contacts of All Farms 

and Contacts of Large Farms Only 

The scenario of elimination of direct and 

large farm contact allows us to assess the role of 

direct and indirect contact in the spread rate of 

the ASF. By changing the two parameters 

involved in the elimination of direct contact and 

the contact of large farms, we can create two 

scenarios for evaluation: the elimination of 

direct contact scenario and the removing contact 

of large farms scenario. These two scenarios are 

compared and assessed with the base scenario, 

where there is direct contact and contact of large 

farms. The average number of farms infected 

with the elimination of direct contact and contact 

of large farms is described in Table 2.

 

     Table 2. Results when eliminating direct contact and contact of large farms. The indirect contact has a huge 

influence on the spread of the disease, but large farm contact does not have much impact on results 

Contact Type Total Small Farm Medium Farm Large Farm 

Both direct and 

indirect contact 
44645 39444 5201 139 

Indirect contact 

only 

44615   

(-0.07 %) 

39443 

(-0.02%) 

5172 

(-0.56%) 

127 

(-9.45%) 

Eliminate contact 

of large farms 

44134 

(-1.16 %) 

39340 

(-0.27%) 

5169 

(-0.62%) 

0 

(-100%) 
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Fig. 6. Results of simulations for scenarios involving the elimination of large farm contacts and direct contacts: 

(a) Number of infected farms and (b) Percentage of infected farms. 

Based on the results, we can see that indirect 

contact has a huge influence on the spread of the 

disease. If we ignore direct contact, the results do 

not change much. Large farms are highly 

biosafe, making it more difficult to get infected. 

So ignoring large farm contacts does not have 

much to do with the outcome. Fig. 6 shows the 

results when eliminating direct and large farm 

contact. 

5.4. Limiting the Movement of Infected Farms 

The movement limit of the infected farm 

scenario allows one to assess the role of 

movement restrictions on the ASF spread rate. 

By changing the parameters related to the 

movement limitation coefficient and the duration 

of limitation applied, we can create many 

different scenarios, such as limiting 

25/50/75/100% of the movement of infected 

farms after 2/4/6/8 weeks. On the simulation 

side, restriction of movement is represented by a 

reduction in the Poisson distribution coefficient 

when calculating the average number of contacts 

an infected farm has had in a week [25]. For 

example, a large farm with 50% movement 

restrictions would have: the average number of 

direct contacts to medium-sized farms per week 

is Poisson(0.073/2); the mean number of indirect 

contacts from medium-scale farms for a week is 

Poisson(3.5/2) (instead of Poisson(0.073) and 

Poisson(3.5)). Subsequently, a contact list is 

created, selecting target farms within a 30 km 

radius that match the appropriate farm type. 

The results of the simulation for the 

movement limit scenarios are presented in Table 

3. Restricting the movement of infected farms 

only yields the expected results when the 

restriction of movement is greater than 75%. If 

the movement restrictions are too low, the rate of 

spread remains very high. Restricting 100% of 

movement to infected farms will reduce the 

infection rate by 99.72%, but it seems that this 

scenario is not practical. Fig. 7 also shows that 

the result of restricting movement by 75% has 

significantly reduced the number of infected 

farms. 

5.5. Restricting the Movement of All Farms 

The restraint scenario for all farms is similar 

to the limiting scenario of infected farms. The 

difference here is to apply the movement 

restriction to all the farms and apply it right from 

the start of the simulation when the epidemic 

appears. By changing the coefficient of 

limitation of movement, we can create other 

scenarios like limiting 25/50/75% of movement 

of all farms. The results of these scenarios are 

presented in Table 4.
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Table 3. Result when restricting movement of infected farms. Restricting the movement of infected farms only 

yields significant results when the movement restriction percentage is greater than 75% 

Movement 

restriction 

percentage 

Average number of infected farms % change in average 

number of infected 

farms 
Total Small Medium Large 

Base scenario 44645 39444 5201 139 N/A 

25% 44565 39236 5329 71 0.18 

50% 44163 39049 5114 55 1.08 

75% 26206 23112 3094 9 41.30 

100% 126 112 14 0 99.72 

 

 

 

Fig. 7. Results when restricting 75% of infected farm movements: (a) Number of infected farms  

and (b) Percentage of infected farms. 

Restricting the movement of all farms is 

effective in preventing disease spread quite 

quickly when the restriction is greater than 50% 

(see Fig. 8). However, restricting the movement 

of all farms will have a negative economic impact. 

5.6. Improving Biosecurity for Small and Medium 

Farms 

The biosafety improvement scenario for 

small and medium-sized farms enables the 
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assessment of the role of biosecurity 

improvement measures in the spread rate of 

ASF. Improved biosafety for small and medium 

farms helps reduce the risk of infection from 

indirect contact with these farms. By changing 

the parameter that reduces the probability of 

infection from indirect contact of small and 

medium farms, we created other scenarios, such 

as a 25/50/75% decrease in the probability of 

infection via indirect contact. These scenarios 

were compared and evaluated with the base 

scenario when there is no change in the 

probability of infection. The simulation results 

for the scenarios are presented in Table 5.

 
Table 4. The result when restricting the movement of all farms. Restricting the movement of all farms is 

effective in preventing disease spread when the restriction is greater than 50% 

Movement 

restriction 

percentage 

Average number of infected farms % change in average 

number of infected 

farms 
Total Small Medium Large 

Base scenario 44645 39444 5201 139 N/A 

25% 44354 38873 5481 71 0.65 

50% 26655 23745 2912 6 40.30 

75% 621 570 51 0 98.61 

 

 

Fig. 8. Result when restricting movement of all farms by 50%: (a) Number of farms infected  

and (b) Percentage of farms infected. 
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We can see that improved biosafety 

measures for small and medium farms start to 

work when the probability of infection through 

indirect contact is reduced by more than 50%. 

Fig. 9 describes in more detail the outcome of 

this scenario. 

 

Table 5. Results in improving biosecurity for small and medium farms. The measure starts to work  

when the probability of infection through indirect contact is reduced by more than 50% 

Parameters 

(Probability of infection) 

% change of parameters 

(Probability of infection) 
Average 

epidemic 

scale 

% change in 

average results 

compared to the 

baseline scenario 
Direct 

Contact 

Indirect 

Contact 

Direct 

Contact 

Indirect 

Contact 

0.6 0.6 N/A N/A 44645 N/A 

0.6 0.45 N/A −25% 44605 0.09 

0.6 0.3 N/A −50% 34105 23.61 

0.6 0.15 N/A −75% 24646 44.80 
 

 

 

Fig. 9. Results when improving biosecurity by 50% for small and medium farms: (a) Number of infected farms 

and (b) Percentage of infected farms. 
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5.7. Limitations and Future Work 

In this study, the disease dynamics were 

intentionally simplified to support large-scale 

scenario experimentation. Specifically, the 

model adopts an SI formulation and omits 

additional epidemiological states such as 

exposed, subclinical, and recovered. While this 

abstraction is adequate for comparative 

evaluation of control strategies, it may not 

capture delays due to incubation or 

heterogeneous progression at the individual 

level, potentially affecting the timing and 

magnitude of simulated outbreaks. 

Moreover, the model operates at the farm 

(herd) level and assumes that once infection is 

introduced into a farm, the whole herd is 

considered infected. In addition, within-herd 

transmission is not explicitly modeled. This 

assumption can accelerate the apparent transition 

of farms to the infected state and may 

overestimate outbreak severity when compared 

with real-world within-herd dynamics and 

detection delays. Consequently, the results 

should be interpreted primarily as a basis for 

relative comparison across intervention 

scenarios at the farm level, rather than as a 

precise prediction of within-farm infection 

trajectories. 

Vaccination effects are excluded because the 

manuscript disregards vaccination mechanisms. 

Therefore, the simulated outcomes correspond to 

a no-vaccination setting, and the reported 

effectiveness of non-pharmaceutical 

interventions should be interpreted under this 

assumption. Future work will incorporate 

vaccination-related parameters (e.g., coverage, 

efficacy, and time-to-immunity) to assess 

vaccination and hybrid control strategies once 

more reliable field evidence becomes available. 

Finally, the contact process is constrained by 

a spatial selection rule that considers connected 

farms within a 30 km radius, and the current 

implementation does not consider restocking 

after infection due to performance constraints at 

larger simulation scales. These constraints may 

limit long-term realism, especially for scenarios 

involving prolonged epidemic periods and 

supply-chain recovery. In future work, we plan 

to extend the model with restocking behavior 

and more flexible movement/contact 

mechanisms, leveraging distributed execution to 

maintain computational efficiency at scale. 

6. Conclusions 

According to the situation of ASF and the 

prevention policies implemented in Vietnam in 

recent years, the Vietnamese government is 

constantly making efforts to publish directives 

and develop support plans that aim to minimize 

damage to the pig herds and society. 

Contributions from this paper can help local 

authorities predict the spread of the disease and 

give timely, decisive instructions in order to 

reduce the damage. Our GAMA simulation 

platform on the cloud is user-friendly and open 

source. It can be used to develop and execute 

multi-agent models to predict the spread of ASF. 

Some key conclusions of interest can be drawn 

from the results of multi-agent simulations with 

different control measures, some of which have 

not been implemented in practice in Vietnam for 

various reasons. Using Hanoi as a case study, the 

simulation results indicate that (i) indirect 

contact plays a critical role in ASF transmission; 

(ii) small and medium farms contribute 

substantially to disease spread; (iii) movement 

restrictions can slow down transmission, 

although restricting all farms involves trade-offs 

with economic impacts; and (iv) improving 

biosecurity for small and medium farms is an 

effective mitigation strategy. Finally, in the 

absence of vaccination, early culling remains the 

most effective measure to control the epidemic. 

Future work will address the current modeling 

limitations (e.g., vaccination, restocking, and 

contact modeling) as discussed in Section 5.7. 
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